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Abstract

In this report, the mechanics of a flyweight-actuated continuously variable transmission are
examined using quasi-static analysis. After mathematically modeling the belt kinematics, as well
as the primary and secondary clutch mechanisms, the input and output states of the transmission
are coupled to produce a single equilibrium equation. Finally, a MATLAB implementation of the
equilibrium equation is presented as a means to tune the CVT to operate at the desired engine
speed.

1 Introduction

1.1 Motivation

The transmission of power from the output of an automotive engine to the input of the wheels is a
topic of great concern to all kinds of drivers. Whether the vehicle is used to commute to work or
race for thrills, any method by which the efficiency of its drivetrain can be increased is worthy of
pursuit. Continuously variable transmissions (CVTs) are v-belt systems which utilize adjustable
pulleys that allow for the smooth and continual change in transmission ratio. This feature permits
the engine to rotate at a constant speed while the vehicle accelerates by gradually shifting ratios,
rather than sequencing through a series of discrete gear ratios, as in the ubiquitous automatic and
manual transmissions of the previous century. By tuning the CVT to operate at an engine speed
that yields either optimal fuel efficiency or peak power, various sorts of drivers can find a direct
benefit in the use of continuously variable transmissions.

Though their low cost and high reliability are desirable, mechanically actuated CVTs can pro-
vide troubles when a technician is faced with tuning them. Trial-and-error adjustment of their
configurations is undoubtedly a cumbersome process. This report aims to mathematically model
the mechanisms found in the most common form of mechanically actuated CVTs in order to de-
velop a more systematic approach to achieving the desired tuning configuration, specifically in the
form of a simple M ATLAB program.

1.2 System Description

The system to be analyzed is a mechanically actuated v-belt CVT. Each of the two pulleys are
composed of one moveable and one axially fixed conical sheave, also known as a half-pulley. The
pulley attached to the output shaft of the engine is termed the primary clutch, and houses the
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mechanism used to activate transmission ratio changes. The actuation takes effect through the
clever placement of ramps within the primary clutch cage. Inside the primary clutch cage resides a
number or radially spaced lever arms with masses at their ends. These flyweights, when subjected
to an increase in engine speed, ride along the primary ramps due to centripetal effects which in turn
causes the moveable sheave to increase the radius at which the belt rides on the primary pulley.
Due to the finite length of the v-belt, the belt radius at the secondary pulley, or output clutch,
must decrease. The shift in gear ratio causes the engine speed to decrease to the rate at which it
was at prior to the shift. This feedback phenomena is what allows for the CVT to operate at a
constant engine speed within its range of transmission ratios.

The specific CVT model used in this report is the Gaged GX9. The GX9 is intended for use in
small vehicles, and is a popular choice by Baja SAE race teams around the world.

2 Analytical Development

2.1 V-Belt Kinematics
2.1.1 Belt Length

The current model will be developed under the assumption of an inextensible belt. While shifting,
any change in belt radius at the primary clutch must be counteracted by an opposing change in
belt radius at the secondary clutch in order to maintain a constant overall belt length. Therefore,
after the belt has been engaged by the primary pulley, the radii at the two clutches can be directly
related through the geometry shown in Figure 1.

~
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Figure 1: Geometric relation between belt length and pulley radii.

The length of the belt can be expressed as

~ ~ ~

Ly =8, + S, + 25,

where the arc lengths of interest are

§p = (m — 2e)ry,
Sy = (7 + 2¢)rs,
Aps

1/2

(02 —(rs — Tp)Q)



Thus,
Ly = (m—2e)rp + (7 + 2e)rs + 2(02 — (s — rp)2)1/27
where

. (Ts—Tp
= 7T, 1
€ = arcsin < 8 > (1)

Therefore, for a known belt length and center-to-center distance between clutches, an implicit
relationship between r, and r; can be written as

— f,"p

Ly =m(rp+rs) + 2(rs — rp) arcsin (TS ) + 2(02 — (rs — rp)2)1/2. (2)

2.1.2 Sheave Displacement

Figure 2 shows the geometric relation between an incompressible v-belt of width w; and the ad-
justable primary-side pulley on which it rides. Note that one sheave is fixed axially.

Belt 0] w,

Engagement ————
Position 7

Figure 2: V-belt geometry after belt engagement.
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Figure 3: Vector analysis of v-belt shifting.

As shown in Figure 3, the belt must ride to a larger radius as the gap between the sheaves
decreases. Simple vector analysis gives

§&+ Arpt — Azpz — wpz = & — Arptan(d)z — wpz — Arp tan(¢)z + Arpf.
Thus, the change in axial position of the moveable sheave in terms of change in belt radius is
Azp, = 2Ar, tan(¢).

By taking z, = 0 at the position of belt engagement, and denoting the belt radius at that instant
by 7 eng, this result becomes

2p = 2(1p — Tpeng) tan(e). (3)

Note, however, that the inextensibility of the belt requires that the change in belt radius of the
primary and secondary clutches are always in opposite directions; Arg/Ar, < 0. A homologous
vector analysis performed on the secondary clutch yields

Zs = 2(rs,eng - rs) tan(¢)a (4)

so long as the z-coordinate direction remains consistent with that used to derive (3).

2.2 Primary Clutch Mechanism
2.2.1 Force Analysis

By modeling the CVT operations as steady-state phenomena, a quasi-static analysis may be em-
ployed by neglecting all but centripetal accelerations. Figure 4 shows a schematic of the flyweight
mechanism within the primary clutch.
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Figure 4: Primary clutch mechanism.
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Figure 5: Forces on the moveable sheave of the primary clutch.

As shown in Figure 5, summing forces in the axial direction gives

3 _
2 5]

—nqgFy, cos(ayp) + kpdp + . dB,, cos(¢) =0,
=5te

where n, is the number of flyweight arms, J, is the compression in the primary spring, and dB,, is
the local normal force acting from the belt onto the moveable sheave at angular position 6. The
total axial clamping force is then dB, integrated over the belt wrap angle, 6 € [§ + ¢, 37” —¢]. The
total spring compression can be rewritten as

6p = 5p,p7"e + 90 ,eng + Zp,

where 0y pre and 0p cng are defined as the preload compression upon assembly and the compression
from the preload state to belt engagement, respectively.



Figure 6: Forces on each flyweight of the primary clutch.

Neglecting friction, but taking into consideration the centripetal acceleration of the mass at the
end of one flyweight arm, the forces shown in Figure 6 give

Fo(sin(ap)T + cos(oyp)z) — Ny (cos(yp)E + sin(vp)2)) = —m fpa ol

where Ny, is the normal force from the ramp onto the roller of the flyweight, Fy, is the force applied
by the flyweight arm, and my,, is the mass of the flyweight itself. With r¢,, = R, + Lo sin(«y,) and
Afyy = wQwa, Ny, can be eliminated to find

_ mypw?(Ra + Lo sin(ap))

B cos(ayp) cot(yp) — sin(ay)”

Therefore, the net axial force applied back onto the belt is

o dB, cos(¢) = nam puw? (Ra + Lasin(ap)) cos(ay)

h=14c cos{a,) cot(7,) — sin(ay)

- kp(épmre + Op,eng + zp)‘ (5)

2.2.2 Flyweight Arm Kinematics

Figure 7 displays the manner in which the flyweight rolls along the ramp as the gap between the
primary sheaves decreases from the preload position.
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Figure 7: Motion of the flyweight and arm during shifting.

Vector analysis gives
_(5p,eng + Zp)i + La = La,pre =+ ALa,

which can be rewritten as
~ Gpeng + )2+ La(sin(ay) + cos(a)2)
= Ly (sin(oyp pre)T + cos(ayp pre)z) + || ALg || (sin(yp)F — cos(vp)Z).
Solving for ||AL,||, from the radial components gives

L (sin(ap) — sin(ayp pre)) .

ALa = .
” H2 SID(Vp)

Eliminating ||AL,||, from the axial projection then yields the following relation between primary
sheave displacement and flyweight arm angle:

zp = La(cos(ap) — cos(ap pre) + (sin(ap) — sin(ap pre)) cot(1p)) — Op,eng- (6)



2.3 Secondary Clutch Mechanism
2.3.1 Force and Torque Analysis
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Figure 8: Secondary clutch mechanism.

Figure 8 shows a schematic of the secondary clutch mechanism. As displayed in Figure 9, summing
forces on the moveable sheave in the axial direction gives

™
2 te

neNe cos(ys) + ksds — / dBg cos(¢) =0,
——(5+¢)

where n. is the number of cam rollers riding in the helix, J; is the compression in the secondary
spring, and dBy is the local normal force acting from the belt onto the moveable sheave at angular
position 6. The total axial clamping force is then dB; integrated over the belt wrap angle, 0 €
[—(5 +¢€),5 +¢]. The total spring compression is

53 = 5s,pre + Zs,

where 05 pre is the initial compression of the secondary spring upon assembly.
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Figure 9: Forces on the moveable sheave of the secondary clutch.
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Figure 10: Torques on the axially fixed sheave of the secondary clutch.

As shown in Figure 10, the balance of torques acting on the axially fixed sheave of the secondary



clutch, about its axis of rotation, gives

neRe N sinvg + g — T —Tr =0,
where Ty, is the input torque applied by the belt, 7, is the restoring torque due to torsion in the
spring, and Tg is the resistive torque applied to the secondary output shaft which arises due to
friction throughout the back-half of the drivetrain and gravity acting on the vehicle when traveling
up inclines. Note that input torque is assumed to be split evenly between the two sheaves of the
clutch. By examining the two sheaves together, the internal reactions N, and 7, disappear and the
two external torques 7, and Tr must balance each other at steady state. Thus,

Ty = Tr-
Furthermore, the spring torque can be rewritten as
T = /’is(as,pre + CVs)a

where o pre is the initial angular displacement of the spring, set by adjusting its torsional preload.
Furthermore, «; is the additional angle through which the moveable sheave rotates relative to the
radially fixed sheave and kg is the torsional spring rate. Therefore, the net axial force applied back
onto the belt from the moveable sheave of the secondary clutch is

T4e
/2 dBs COS(¢) = COt(’YS) <7}% + "Qs(a&pre + as)) + ks((ssapre + Zs)- (7)
O0=—(5+¢) R. 2

2.3.2 Helix Kinematics

As shown in Figure 11, the cam roller rides along the helix at an angle of 5 as the sheaves rotate
relative to one another. The helical constraint in turn forces the sheaves to move axially with
respect to each other. This geometric constraint can be written mathematically as

Az
tan(ys) = A

Note that for small rotations, Ar = AS , where AS is the circular arc generated by projecting the
helical path of the cam onto the rf-plane. This arc length can be expressed as

AS = R.Aas.
Thus,
tan( ) ~ i
7/ ¥ R Aay

Note that since

lim Ar = dr = dS,
Aas—0

the above approximation holds exactly, and thus

dz
R.day

tan('ys) =

10
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Figure 11: Helical constraint of the secondary cam rollers.

Therefore, integration over the rotation from belt engagement gives

/ "de :/ SRctan(%)das.
0 0

zs = Reas tan(7s). (8)

For constant helical angle s,

2.4 Uncoupled Model

Thus far, the equations governing the operation of the v-belt CVT of interest have been derived in
the context of their respective subsystems. The model is defined by (1) through (8) below. Note,
however, that the clamping forces of the primary and secondary clutches have yet to be coupled
together. The axial compressive force applied by the primary clutch onto the belt fights against the
axial compressive force applied by the secondary system, and vice versa. This coupling relationship
between the two clamping forces will be developed in the following section by assuming a uniform
clamping pressure, then applied to the overall model as a means of generating a MATLAB tuning

program.
. T's —Tp
g=arcsin |\ ———

)
)

Ly = m(rp +rs) 4+ 2(rs — 1) arcsin ( 2 (;rp +2(C% — (rs — rp)2)1/2 )
Zp = (Tp Tp eng) tan<¢) (3)
s = 2(Ts,eng - TS) tan(d’) (4)
3
P naM puw?(Rq + Lg sin(ay)) cos(ay)
dB,cos(¢) = - — kp(8ppre + Openg + 2 5
6=T+e p cos(?) cos(ay) cot(yy) — sin(ay) »(0pp p.eng + %) (5)
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zp = Lq(cos(ayp) — cos(appre) + (sin(ayp) — sin(ap pre)) cot(vp)) — dp,eng (6)

1-{-6
/2 st COS(¢) = COt(fys) <E + Hs(as,pre + as)) + ks(és,pre + Zs) (7)
0=—(5+¢) Re \ 2
zs = Reass tan("ys) (8)

2.5 Coupling via Uniform Clamping Pressure

The current approach to coupling the uncoupled model will be carried out under the assumption
that the pressures applied onto the belt by the clutch sheaves are independent of angular position.
In other words, any element of the belt along the wrap angle of a given pulley will be subjected to
a constant, uniformly distributed pressure. An arbitrary belt element and the forces applied to it
are shown in Figures 12 and 13.

Ay
¢ ¢
dB;(— cos(¢)z + sin(¢)F) dB;(cos(¢)z + sin(¢)F)

r
z 89
Figure 12: Forces on a belt element projected onto the rz-plane.

1 2dB; sin(¢)T

Figure 13: Forces on a belt element projected onto the rf-plane.
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Note that the element of interest is in contact with the sheaves of pulley i, where i € {p, s}
can be used to distinguish between the primary and secondary clutches, respectively. Neglecting
angular and axial accelerations, force analysis gives

do do\ ~ R
(T; + dT;) (— sin(;)f‘ + COS(;) 9) + 2dB; sin(¢)F — 2df;0

—T; <sin<%9)f' + cos(%g) é) = —dmpapt,

where T; is the tension in the belt along its contact patch with pulley ¢, df; is the friction force
applied onto the belt from each of the sheaves, and a; is the centripetal acceleration of the belt
element. Note that through Taylor expansion, it can be shown

<d9>
cos| — | =1,
2

1 9 ~ 9 .

and

Therefore,
<—Tid9 —~ dﬂ%e + 2dB; sin(¢)>f + (dT; — 2df;)8 = —dmyapf.
Using 7; to denote the radius to the centroid of the element,
dmy = pyApTid0,
where p is the mass density of the belt and A is its cross-sectional area. Furthermore,
dB; = PidA;,

where P; is the normal pressure acting from the sheaves onto the belt element and dA; is the surface
area of the element of differential arc length in contact with each of the sheaves. Also note that
the second-order term may be neglected; dT;df ~ 0. Therefore, the equations of motion become

(=T;df 4 2PidA; sin(¢))F + (dT; — 2df;)0 = —py AyTsdfayt.

Figure 14: Conical coordinate system.
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As shown in Figure 14, the contact area can be found in terms of conical coordinates. Using ¢ to
measure length along the conical sheave surface through a constant angular position, the differential
surface area of a cone is given by dA = rdfdq. Thus, the area of the belt element is

qi,2 qi,2
dA; = / rdfdq = dH/ rdq.
a=qi1 q

=qi,1

Therefore,

qi,2 R
(—Tzdﬁ + QHdH/ rdq sin(¢))f‘ + (de — Qdfi)e = —ppApT;dfayt,

4=4i,1
where the centripetal acceleration of the belt element is

ap = w? Ti.
Substituting this result and rearranging the radial components gives

9 qi,2

T; = ppAp(wiT;)” + 2P; sin(9) / rdg.
9=9i,1

Note that this result is independent of angular location, and thus the tension remains constant

throughout the wrap angle on the pulley. Therefore, as seen in Figure 15, the tension between the

two belts must equal each other, which remains constant throughout each of the wrap angles. That
is,

Tp =Ts,
dp,2 qs,2

rdq = pbAb((,qu)2 + 2P sin(¢) / rdq.

pbAb(prp)2 + 2P, sin(¢) /
4=(s,1

4=dp,1

Figure 15: Primary-to-secondary belt tension relation.

Since the belt is modeled as inextensible and incompressible, each point along its length must

travel with the same linear velocity. Specifically, along the line passing through the centroid of each
cross-section,

and therefore



Substituting this result into the belt tension equality gives

dp,2 g qds,2

rdq = pbAb( wp7“8> + 2Ps sin(¢) / rdq,

d=(qs,1

pbAb(prp)z + 2P, sin(¢) /

d=qp,1

where the centripetal terms end up canceling, leaving only the following ratio between the two

pressures:
dp,2 qds,2
P, / rdq = P /
qd=Aqp,1 gs,1

The differential normal forces dB; = P;dA can then be related by

qs,2
dBs = Pydb rdq

d=(s,1

qqf’; L rdq .2
=|P-F2— d&/ rdq
p s, 3

R qu 4=4qs,1

fIQ1

dBs; = P, d@/ rdq = dB,.
dp,1
Thus, the uniform pressure approach to coupling the two clutches results in equivalent constant-

valued differential normal forces applied from both pulleys onto the belt. Substituting this result
into (7),

14’6 qp’Q t
/2 dee/ rdqcos(¢) = cot(3s) (7}{ + ks (o pre T as)) + ks((s&pre + zs),
6 +e) q

:7(% =dp,1 RC 2
Gp,2 %35) (% + Ks(Qs pre + as)) t Es(Ospre + 25)
pp/ rdq cos(¢) = Tie '
q=4p,1 0=—(5+e) do

Substituting the same result for dB, in (5) gives

/2—6 P /qp 2 rdqcos() — nam fw?(Rq + Lo sin(ay)) cos(ay) k(B 46 ‘)
ap,1 COS<Oép) COt(’yp) — Sin(ap) PATP.P p,eng P/
Nam fopw? (Ra~+La sin(ap)) cos(ap)
.2 cos(ayp) co —sin(« —k (5 ,pre + 0. en, + z )
Pp/ rdq cos(¢) = (ap) cot(vp)—sin( p)M_6 p\9p,p p,eng » ‘
o Joz 5.0
2

Note that, as with their corresponding differential normal forces, the clamping forces per unit angle
are equivalent between primary and secondary clutches. Equating the two gives
% (% + ﬁs(as,pre + as)) + ks((gs,p’/‘e + Zs)

5+e
92:—(g+€) do

Nam w2 (Ra+La sin(ap)) cos(ap) _k
cos(ap) cot(yp)— sm(ap)

p(Op,pre + Op.eng + 2p)

f Hzé —T—a df

Integrating over the belt wrap angles, substituting (1), and rearranging yields the following solution
function 7. The goal in tuning the CVT is to manipulate the balance of forces such that n ~ 0
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for the entire shift range of the CVT when subject to resistive loading 7r. Alongside the formulas
derived for the uncoupled model, this function is implemented in the MATLAB program found in
Listing 1. Note that, when all other quantities are fixed and known, the flyweight mass m,, can
be solved for explicitly from (9), since 7 is affine in m,,.

n = (co%%) (% + Hs(Oés,pre + as)) + ks(és,pre + 25)) (7T — 2 arcsin (%))

C

— (n“mf“’wQ(R“JrL“ sin(ap)) cos(ap) _ kp(9p pre + Op.eng + zp)> (7r + 2 arcsin (%)) =0. (9)

cos(ayp) cot(yp)—sin(ay)

3 Future Work

The most immediate goals for advancing this project include experimentally validating the pro-
posed solution approach, as well as generating more coupling methods and tuning approaches.
Experiments should be designed to measure the resistive torque felt at the secondary, preferably
as a function of vehicle speed and incline angle. Furthermore, experiments to measure the engine
speed and power output for a given set of weights should be performed in order to verify the correct
operating speed for the masses output by the program. One long-term goal of interest is developing
a transient response model. Models incorporating energy losses due to friction would also be of
usefulness. Additionally, more realistic, nonlinear profiles for the ramp and helix angles should be
experimentally measured for increased accuracy of the tuning program.
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Listing 1: MATLAB program for CVT tuning.

clc; clear; close all;

% Created by Brendon Anderson on 1/7/2017.

hthhththt%hlh NOTES
% all values
% conversion
% parametric
% parametric
% additional

additional underscore

Dbt helohohhls

are in SI units

factors and known/computed values are
variables are lowercase

functions are lowercase with appended
functions for repeated parameters are

Updated 2/4/2017.
uppercase

underscore
appended with

hhhhhhh%%h% CONVERSION FACTORS %%%%%%%%%A

DEG2RAD = pi/180; % degrees to radians

FT2M = 0.3048; % feet to meters

IN2M = 0.0254; % inches to meters

LBF2N = 4.44822; % pounds (force) to newtons

LBM2KG = 0.453592; % pounds (mass) to kilograms

MIN2S = 60; % minutes to seconds

REV2RAD = 2x*pi; % revolutions to radians

hhhhhhhhhh KNOWN VALUES %hhhhhhthhh

ALPHA_P_PRE = 2.38*DEG2RAD; % flyweight arm angle at preload

ALPHA_P_F = 19.05*DEG2RAD; % flyweight arm angle at shift-out

ALPHA_S_PRE = 25*xDEG2RAD; % secondary spring torsion preload angle

C = 10.075*IN2M; % center to center pulley distance

DELTA_P_PRE = 0.945%IN2M; % primary spring compression at preload

DELTA_P_ENG = 0.075*%xIN2M; % primary spring compression from preload
to belt engagement

DELTA_S_PRE = 1.34x%xIN2M; % secondary spring compression at preload

GAMMA_P = 22.55*DEG2RAD; % flyweight ramp angle

GAMMA_S = 30.5*DEG2RAD; % helix angle

K_P = 48.14xLBF2N/IN2M; % primary spring rate

K_S = 22.475*xLBF2N/IN2M; % secondary spring rate (compressive)

KAPPA_S = 1.8588*DEG2RAD*(1/IN2M)*(LBF2N) ; % secondary spring rate (
torsional)

L_A = 1.253%xIN2M; % flyweight arm length

N = 100; % grid size

N_A = 4; % number of flyweight arms

N_ITER = 1000; % number of numerical iterations

OMEGA = 3400*REV2RAD/MIN2S; % engine rotational speed

PHI = 12.85%xDEG2RAD; % sheave angle

R_A = 1.6125%xIN2M; % radius to flyweight arm pivot

R_C = 1.6025*xIN2M; % radius to center of helical surface

R_P_ENG = 1.135%xIN2M; % primary belt radius at preload

R_P_F = 2.65%xIN2M; % primary belt radius at shift-out

R_S_ENG = 3.79*%IN2M; % secondary belt radius at preload

R_S_F = 2.0635*xIN2M; % secondary belt radius at shift-out

TAU_R = 17xLBF2N*FT2M; % secondary resistive torque load

TOL = 10~ (-6); % numerical tolerance

hhnhhhhhh% PARAMETRIC FUNCTIONS %%%%%%%N%NS%

%%% sheave displacement %%%
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z_p_ = @(r_p) 2x(r_p - R_P_ENG)x*tan(PHI); % primary spring compression
after belt engagement as function of primary belt radius

z_s_ = @(r_s) 2*x(R_S_ENG - r_s)x*tan(PHI); % secondary sheave
displacement as function of secondary belt radius

%hth flyweight arm angle (curvefit) %%h%

z_p__ = @Calpha_p) L_A*((cos(alpha_p) - cos(ALPHA_P_PRE))...
+ (sin(alpha_p) - sin(ALPHA_P_PRE))*cot (GAMMA_P))...
- DELTA_P_ENG; % primary spring compression after belt engagement as

function of flyweight arm angle

ALPHA_P = linspace (ALPHA_P_PRE,ALPHA_P_F,N)';

Z_P = z_p__(ALPHA_P);

coeff = polyfit(Z_P, ALPHA_P, 2);

alpha_p_ = @(z_p) coeff(1)*z_p."2 + coeff(2)*z_p + coeff (3); %
flyweight arm angle as function of primary spring compression after
belt engagement

%%% belt radius kinematics (curvefit) %%%

1. b_ = @(r_p, r_s) pi*(r_p + r_s) + 2x(r_s - r_p).*asin((r_s - r_p)/C)...

+ 2%sqrt(C"2 - (r_s - r_p)."2); % belt length as function of
pulley radii

LB = 1_b_(R_P_ENG, R_S_ENG); % overall belt length

R_P = linspace(R_P_ENG,R_P_F,N)"';

R_S = ((R_S_ENG + R_S_F)/2)*ones(length(R_P),1); % initial guesses for
secondary radii

E = 1; % initialize error

ii = 0; % initialize counter

f_ = @e(r_p,r_s) 1_b_(r_p,r_s) - L_B; % function for newton-raphson
method

df_ = @(r_p,r_s) pi + 2%asin((r_s - r_p)/C); % df/dr_s for jacobian

while (max(abs(E)) > TOL) && (ii < N_ITER) % iteration for newton-
raphson method
ii = ii + 1;

E = -diag(df_(R_P,R_S))\f_(R_P,R_S);
R_S = R_S + E;

end
coeff = polyfit(R_P, R_S, 2);
r_s_ = Q(r_p) coeff(1)*r_p. 2 + coeff(2)*r_p + coeff (3); % secondary

radius as function of primary radius

%%h% axial compressive force %%k

f_p_z_ = @(alpha_p, m_fw, z_p) (N_A*xm_fwx(OMEGA"2)*(R_A + L_Axsin(alpha_p)
).

xcos (alpha_p))/(cos(alpha_p)*cot (GAMMA_P) - sin(alpha_p))...

- K_P*x(DELTA_P_PRE + DELTA_P_ENG + z_p); % primary compressive
force as function of flyweight arm angle, flyweight mass, and
primary spring compression

f_s_z_ = @(tau_r, z_s) K_S*x(DELTA_S_PRE + z_s)...
+ cot (GAMMA_S)=*(tau_r/2 + KAPPA_S*x(ALPHA_S_PRE + z_s))...
/R_C; % secondary compressive force as function

of secondary resistive torque and secondary sheave displacement

hhhhhhh%%h% SOLUTION APPROACH: UNIFORM PRESSURE DISTRIBUTION %%%%%%%%A%%
%%% equilibrium flyweight mass %%%
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m_fw_ = @(f_p_z_1, f_s_z, r_p, r_s, z_p) ((pi - 2*xasin((r_s - r_p)/C))x
f_s_z...

/(pi + 2xasin((r_s - r_p)/C)) + K_P*x(DELTA_P_PRE + DELTA_P_ENG + z_p))

/(f_p_z_1+K_P*x(DELTA_P_PRE + DELTA_P_ENG + z_p)); % solution where
f_p_z evaluated at m_fw = 1

%%t flyweight mass for average resistive torque at average belt position
Dol
R_P_AVG = mean([R_P_ENG, R_P_F]); % average belt position (middle of
shift)
M_FW = m_fw_(f_p_z_(alpha_p_(z_p_(R_P_AVG)), 1, z_p_(R_P_AVG)),...
f_s_z_(TAU_R, z_s_(r_s_(R_P_AVG))),...
R_P_AVG, r_s_(R_P_AVG), z_p_(R_P_AVG));
disp(['M_FW = ', num2str(M_FW), ' kg']l);
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