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Abstract

In this report, the mechanics of a flyweight-actuated continuously variable transmission are
examined using quasi-static analysis. After mathematically modeling the belt kinematics, as well
as the primary and secondary clutch mechanisms, the input and output states of the transmission
are coupled to produce a single equilibrium equation. Finally, a Matlab implementation of the
equilibrium equation is presented as a means to tune the CVT to operate at the desired engine
speed.

1 Introduction

1.1 Motivation

The transmission of power from the output of an automotive engine to the input of the wheels is a
topic of great concern to all kinds of drivers. Whether the vehicle is used to commute to work or
race for thrills, any method by which the efficiency of its drivetrain can be increased is worthy of
pursuit. Continuously variable transmissions (CVTs) are v-belt systems which utilize adjustable
pulleys that allow for the smooth and continual change in transmission ratio. This feature permits
the engine to rotate at a constant speed while the vehicle accelerates by gradually shifting ratios,
rather than sequencing through a series of discrete gear ratios, as in the ubiquitous automatic and
manual transmissions of the previous century. By tuning the CVT to operate at an engine speed
that yields either optimal fuel efficiency or peak power, various sorts of drivers can find a direct
benefit in the use of continuously variable transmissions.

Though their low cost and high reliability are desirable, mechanically actuated CVTs can pro-
vide troubles when a technician is faced with tuning them. Trial-and-error adjustment of their
configurations is undoubtedly a cumbersome process. This report aims to mathematically model
the mechanisms found in the most common form of mechanically actuated CVTs in order to de-
velop a more systematic approach to achieving the desired tuning configuration, specifically in the
form of a simple Matlab program.

1.2 System Description

The system to be analyzed is a mechanically actuated v-belt CVT. Each of the two pulleys are
composed of one moveable and one axially fixed conical sheave, also known as a half-pulley. The
pulley attached to the output shaft of the engine is termed the primary clutch, and houses the
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mechanism used to activate transmission ratio changes. The actuation takes effect through the
clever placement of ramps within the primary clutch cage. Inside the primary clutch cage resides a
number or radially spaced lever arms with masses at their ends. These flyweights, when subjected
to an increase in engine speed, ride along the primary ramps due to centripetal effects which in turn
causes the moveable sheave to increase the radius at which the belt rides on the primary pulley.
Due to the finite length of the v-belt, the belt radius at the secondary pulley, or output clutch,
must decrease. The shift in gear ratio causes the engine speed to decrease to the rate at which it
was at prior to the shift. This feedback phenomena is what allows for the CVT to operate at a
constant engine speed within its range of transmission ratios.

The specific CVT model used in this report is the Gaged GX9. The GX9 is intended for use in
small vehicles, and is a popular choice by Baja SAE race teams around the world.

2 Analytical Development

2.1 V-Belt Kinematics

2.1.1 Belt Length

The current model will be developed under the assumption of an inextensible belt. While shifting,
any change in belt radius at the primary clutch must be counteracted by an opposing change in
belt radius at the secondary clutch in order to maintain a constant overall belt length. Therefore,
after the belt has been engaged by the primary pulley, the radii at the two clutches can be directly
related through the geometry shown in Figure 1.

C
rp

rs

ε

ε

εÛSp ÛSs
ÛSps

Figure 1: Geometric relation between belt length and pulley radii.

The length of the belt can be expressed as

Lb = ÛSp + ÛSs + 2ÛSps,
where the arc lengths of interest are ÛSp = (π − 2ε)rp,ÛSs = (π + 2ε)rs,ÛSps =

(
C2 − (rs − rp)2

)1/2
.
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Thus,

Lb = (π − 2ε)rp + (π + 2ε)rs + 2
(
C2 − (rs − rp)2

)1/2
,

where

ε = arcsin

Å
rs − rp
C

ã
. (1)

Therefore, for a known belt length and center-to-center distance between clutches, an implicit
relationship between rp and rs can be written as

Lb = π(rp + rs) + 2(rs − rp) arcsin

Å
rs − rp
C

ã
+ 2
(
C2 − (rs − rp)2

)1/2
. (2)

2.1.2 Sheave Displacement

Figure 2 shows the geometric relation between an incompressible v-belt of width wb and the ad-
justable primary-side pulley on which it rides. Note that one sheave is fixed axially.

wb
φ

rp

ω

zp

Belt
Engagement

Position

Figure 2: V-belt geometry after belt engagement.

3



z

r

ξ
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Figure 3: Vector analysis of v-belt shifting.

As shown in Figure 3, the belt must ride to a larger radius as the gap between the sheaves
decreases. Simple vector analysis gives

ξ +∆rpr̂−∆zpẑ− wbẑ = ξ−∆rp tan(φ)ẑ− wbẑ−∆rp tan(φ)ẑ +∆rpr̂.

Thus, the change in axial position of the moveable sheave in terms of change in belt radius is

∆zp = 2∆rp tan(φ).

By taking zp = 0 at the position of belt engagement, and denoting the belt radius at that instant
by rp,eng, this result becomes

zp = 2(rp − rp,eng) tan(φ). (3)

Note, however, that the inextensibility of the belt requires that the change in belt radius of the
primary and secondary clutches are always in opposite directions; ∆rs/∆rp < 0. A homologous
vector analysis performed on the secondary clutch yields

zs = 2(rs,eng − rs) tan(φ), (4)

so long as the z-coordinate direction remains consistent with that used to derive (3).

2.2 Primary Clutch Mechanism

2.2.1 Force Analysis

By modeling the CVT operations as steady-state phenomena, a quasi-static analysis may be em-
ployed by neglecting all but centripetal accelerations. Figure 4 shows a schematic of the flyweight
mechanism within the primary clutch.
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Figure 4: Primary clutch mechanism.

z

r

θ

φ

kpδpẑ
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Figure 5: Forces on the moveable sheave of the primary clutch.

As shown in Figure 5, summing forces in the axial direction gives

−naFa cos(αp) + kpδp +

∫ 3π
2
−ε

θ=π
2
+ε
dBp cos(φ) = 0,

where na is the number of flyweight arms, δp is the compression in the primary spring, and dBp is
the local normal force acting from the belt onto the moveable sheave at angular position θ. The
total axial clamping force is then dBp integrated over the belt wrap angle, θ ∈ [π2 + ε, 3π2 − ε]. The
total spring compression can be rewritten as

δp = δp,pre + δp,eng + zp,

where δp,pre and δp,eng are defined as the preload compression upon assembly and the compression
from the preload state to belt engagement, respectively.
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Figure 6: Forces on each flyweight of the primary clutch.

Neglecting friction, but taking into consideration the centripetal acceleration of the mass at the
end of one flyweight arm, the forces shown in Figure 6 give

Fa(sin(αp)r̂ + cos(αp)ẑ)−Nfw(cos(γp)r̂ + sin(γp)ẑ)) = −mfwafwr̂,

where Nfw is the normal force from the ramp onto the roller of the flyweight, Fa is the force applied
by the flyweight arm, and mfw is the mass of the flyweight itself. With rfw = Ra +La sin(αp) and
afw = ω2rfw, Nfw can be eliminated to find

Fa =
mfwω

2(Ra + La sin(αp))

cos(αp) cot(γp)− sin(αp)
.

Therefore, the net axial force applied back onto the belt is∫ 3π
2
−ε

θ=π
2
+ε
dBp cos(φ) =

namfwω
2(Ra + La sin(αp)) cos(αp)

cos(αp) cot(γp)− sin(αp)
− kp(δp,pre + δp,eng + zp). (5)

2.2.2 Flyweight Arm Kinematics

Figure 7 displays the manner in which the flyweight rolls along the ramp as the gap between the
primary sheaves decreases from the preload position.
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Figure 7: Motion of the flyweight and arm during shifting.

Vector analysis gives
−(δp,eng + zp)ẑ + La = La,pre +∆La,

which can be rewritten as

− (δp,eng + zp)ẑ + La(sin(αp)r̂ + cos(αp)ẑ)

= La(sin(αp,pre)r̂ + cos(αp,pre)ẑ) + ‖∆La‖2(sin(γp)r̂− cos(γp)ẑ).

Solving for ‖∆La‖2 from the radial components gives

‖∆La‖2 =
La(sin(αp)− sin(αp,pre))

sin(γp)
.

Eliminating ‖∆La‖2 from the axial projection then yields the following relation between primary
sheave displacement and flyweight arm angle:

zp = La(cos(αp)− cos(αp,pre) + (sin(αp)− sin(αp,pre)) cot(γp))− δp,eng. (6)
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2.3 Secondary Clutch Mechanism

2.3.1 Force and Torque Analysis

φ

ωs

γs

rs

ks, κs

Figure 8: Secondary clutch mechanism.

Figure 8 shows a schematic of the secondary clutch mechanism. As displayed in Figure 9, summing
forces on the moveable sheave in the axial direction gives

ncNc cos(γs) + ksδs −
∫ π

2
+ε

θ=−(π
2
+ε)

dBs cos(φ) = 0,

where nc is the number of cam rollers riding in the helix, δs is the compression in the secondary
spring, and dBs is the local normal force acting from the belt onto the moveable sheave at angular
position θ. The total axial clamping force is then dBs integrated over the belt wrap angle, θ ∈
[−(π2 + ε), π2 + ε]. The total spring compression is

δs = δs,pre + zs,

where δs,pre is the initial compression of the secondary spring upon assembly.
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Figure 9: Forces on the moveable sheave of the secondary clutch.
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Figure 10: Torques on the axially fixed sheave of the secondary clutch.

As shown in Figure 10, the balance of torques acting on the axially fixed sheave of the secondary
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clutch, about its axis of rotation, gives

ncRcNc sin γs +
Tb
2
− Tκ − TR = 0,

where Tb is the input torque applied by the belt, Tκ is the restoring torque due to torsion in the
spring, and TR is the resistive torque applied to the secondary output shaft which arises due to
friction throughout the back-half of the drivetrain and gravity acting on the vehicle when traveling
up inclines. Note that input torque is assumed to be split evenly between the two sheaves of the
clutch. By examining the two sheaves together, the internal reactions Nc and Tκ disappear and the
two external torques Tb and TR must balance each other at steady state. Thus,

Tb = TR.

Furthermore, the spring torque can be rewritten as

Tκ = κs(αs,pre + αs),

where αs,pre is the initial angular displacement of the spring, set by adjusting its torsional preload.
Furthermore, αs is the additional angle through which the moveable sheave rotates relative to the
radially fixed sheave and κs is the torsional spring rate. Therefore, the net axial force applied back
onto the belt from the moveable sheave of the secondary clutch is∫ π

2
+ε

θ=−(π
2
+ε)

dBs cos(φ) =
cot(γs)

Rc

ÅTR
2

+ κs(αs,pre + αs)

ã
+ ks(δs,pre + zs). (7)

2.3.2 Helix Kinematics

As shown in Figure 11, the cam roller rides along the helix at an angle of γs as the sheaves rotate
relative to one another. The helical constraint in turn forces the sheaves to move axially with
respect to each other. This geometric constraint can be written mathematically as

tan(γs) =
∆z

∆r
.

Note that for small rotations, ∆r ≈ ∆ÛS, where ∆ÛS is the circular arc generated by projecting the
helical path of the cam onto the rθ-plane. This arc length can be expressed as

∆ÛS = Rc∆αs.

Thus,

tan(γs) ≈
∆z

Rc∆αs
.

Note that since
lim

∆αs→0
∆r = dr = dÛS,

the above approximation holds exactly, and thus

tan(γs) =
dz

Rcdαs
.
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Figure 11: Helical constraint of the secondary cam rollers.

Therefore, integration over the rotation from belt engagement gives∫ zs

0
dz =

∫ αs

0
Rc tan(γs)dαs.

For constant helical angle γs,
zs = Rcαs tan(γs). (8)

2.4 Uncoupled Model

Thus far, the equations governing the operation of the v-belt CVT of interest have been derived in
the context of their respective subsystems. The model is defined by (1) through (8) below. Note,
however, that the clamping forces of the primary and secondary clutches have yet to be coupled
together. The axial compressive force applied by the primary clutch onto the belt fights against the
axial compressive force applied by the secondary system, and vice versa. This coupling relationship
between the two clamping forces will be developed in the following section by assuming a uniform
clamping pressure, then applied to the overall model as a means of generating a Matlab tuning
program.

ε = arcsin

Å
rs − rp
C

ã
(1)

Lb = π(rp + rs) + 2(rs − rp) arcsin

Å
rs − rp
C

ã
+ 2
(
C2 − (rs − rp)2

)1/2
(2)

zp = 2(rp − rp,eng) tan(φ) (3)

zs = 2(rs,eng − rs) tan(φ) (4)∫ 3π
2
−ε

θ=π
2
+ε
dBp cos(φ) =

namfwω
2(Ra + La sin(αp)) cos(αp)

cos(αp) cot(γp)− sin(αp)
− kp(δp,pre + δp,eng + zp) (5)
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zp = La(cos(αp)− cos(αp,pre) + (sin(αp)− sin(αp,pre)) cot(γp))− δp,eng (6)∫ π
2
+ε

θ=−(π
2
+ε)

dBs cos(φ) =
cot(γs)

Rc

ÅTR
2

+ κs(αs,pre + αs)

ã
+ ks(δs,pre + zs) (7)

zs = Rcαs tan(γs) (8)

2.5 Coupling via Uniform Clamping Pressure

The current approach to coupling the uncoupled model will be carried out under the assumption
that the pressures applied onto the belt by the clutch sheaves are independent of angular position.
In other words, any element of the belt along the wrap angle of a given pulley will be subjected to
a constant, uniformly distributed pressure. An arbitrary belt element and the forces applied to it
are shown in Figures 12 and 13.

dBi(− cos(φ)ẑ + sin(φ)r̂) dBi(cos(φ)ẑ + sin(φ)r̂)

r

z θ

φ φ

Ab

Figure 12: Forces on a belt element projected onto the rz-plane.
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(
dθ
2

)
r̂− cos

(
dθ
2

)
θ̂)

(Ti + dTi)(− sin
(
dθ
2

)
r̂

+ cos
(
dθ
2

)
θ̂)

dθ

dθ/2dθ/2

ab

dmb

Figure 13: Forces on a belt element projected onto the rθ-plane.
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Note that the element of interest is in contact with the sheaves of pulley i, where i ∈ {p, s}
can be used to distinguish between the primary and secondary clutches, respectively. Neglecting
angular and axial accelerations, force analysis gives

(Ti + dTi)

Å
− sin

Å
dθ

2

ã
r̂ + cos

Å
dθ

2

ã
θ̂

ã
+ 2dBi sin(φ)r̂− 2dfiθ̂

− Ti
Å

sin

Å
dθ

2

ã
r̂ + cos

Å
dθ

2

ã
θ̂

ã
= −dmbabr̂,

where Ti is the tension in the belt along its contact patch with pulley i, dfi is the friction force
applied onto the belt from each of the sheaves, and ab is the centripetal acceleration of the belt
element. Note that through Taylor expansion, it can be shown

cos

Å
dθ

2

ã
≈ 1,

and

sin

Å
dθ

2

ã
≈ dθ

2
.

Therefore, Å
−Tidθ − dTi

dθ

2
+ 2dBi sin(φ)

ã
r̂ + (dTi − 2dfi)θ̂ = −dmbabr̂.

Using ri to denote the radius to the centroid of the element,

dmb = ρbAbridθ,

where ρb is the mass density of the belt and Ab is its cross-sectional area. Furthermore,

dBi = PidAi,

where Pi is the normal pressure acting from the sheaves onto the belt element and dAi is the surface
area of the element of differential arc length in contact with each of the sheaves. Also note that
the second-order term may be neglected; dTidθ ≈ 0. Therefore, the equations of motion become

(−Tidθ + 2PidAi sin(φ))r̂ + (dTi − 2dfi)θ̂ = −ρbAbridθabr̂.

θ

r
q

dq

Figure 14: Conical coordinate system.
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As shown in Figure 14, the contact area can be found in terms of conical coordinates. Using q to
measure length along the conical sheave surface through a constant angular position, the differential
surface area of a cone is given by dA = rdθdq. Thus, the area of the belt element is

dAi =

∫ qi,2

q=qi,1

rdθdq = dθ

∫ qi,2

q=qi,1

rdq.

Therefore, Ç
−Tidθ + 2Pidθ

∫ qi,2

q=qi,1

rdq sin(φ)

å
r̂ + (dTi − 2dfi)θ̂ = −ρbAbridθabr̂,

where the centripetal acceleration of the belt element is

ab = ω2
i ri.

Substituting this result and rearranging the radial components gives

Ti = ρbAb(ωiri)
2 + 2Pi sin(φ)

∫ qi,2

q=qi,1

rdq.

Note that this result is independent of angular location, and thus the tension remains constant
throughout the wrap angle on the pulley. Therefore, as seen in Figure 15, the tension between the
two belts must equal each other, which remains constant throughout each of the wrap angles. That
is,

Tp = Ts,

ρbAb(ωprp)
2 + 2Pp sin(φ)

∫ qp,2

q=qp,1

rdq = ρbAb(ωsrs)
2 + 2Ps sin(φ)

∫ qs,2

q=qs,1

rdq.

C

Tp
Ts

rp

rs

ε

ε

Figure 15: Primary-to-secondary belt tension relation.

Since the belt is modeled as inextensible and incompressible, each point along its length must
travel with the same linear velocity. Specifically, along the line passing through the centroid of each
cross-section,

vb = ωprp = ωsrs,

and therefore

ωs =
rp
rs
ωp.
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Substituting this result into the belt tension equality gives

ρbAb(ωprp)
2 + 2Pp sin(φ)

∫ qp,2

q=qp,1

rdq = ρbAb

Å
rp
rs
ωprs

ã2
+ 2Ps sin(φ)

∫ qs,2

q=qs,1

rdq,

where the centripetal terms end up canceling, leaving only the following ratio between the two
pressures:

Pp

∫ qp,2

q=qp,1

rdq = Ps

∫ qs,2

q=qs,1

rdq.

The differential normal forces dBi = PidA can then be related by

dBs = Psdθ

∫ qs,2

q=qs,1

rdq

=

(
Pp

∫ qp,2
q=qp,1

rdq∫ qs,2
q=qs,1

rdq

)
dθ

∫ qs,2

q=qs,1

rdq,

dBs = Ppdθ

∫ qp,2

q=qp,1

rdq = dBp.

Thus, the uniform pressure approach to coupling the two clutches results in equivalent constant-
valued differential normal forces applied from both pulleys onto the belt. Substituting this result
into (7),∫ π

2
+ε

θ=−(π
2
+ε)

Ppdθ

∫ qp,2

q=qp,1

rdq cos(φ) =
cot(γs)

Rc

ÅTR
2

+ κs(αs,pre + αs)

ã
+ ks(δs,pre + zs),

Pp

∫ qp,2

q=qp,1

rdq cos(φ) =

cot(γs)
Rc

Ä
TR
2 + κs(αs,pre + αs)

ä
+ ks(δs,pre + zs)∫ π

2
+ε

θ=−(π
2
+ε) dθ

.

Substituting the same result for dBp in (5) gives∫ 3π
2
−ε

θ=π
2
+ε
Ppdθ

∫ qp,2

q=qp,1

rdq cos(φ) =
namfwω

2(Ra + La sin(αp)) cos(αp)

cos(αp) cot(γp)− sin(αp)
− kp(δp,pre + δp,eng + zp),

Pp

∫ qp,2

q=qp,1

rdq cos(φ) =

namfwω
2(Ra+La sin(αp)) cos(αp)

cos(αp) cot(γp)−sin(αp) − kp(δp,pre + δp,eng + zp)∫ 3π
2
−ε

θ=π
2
+ε dθ

.

Note that, as with their corresponding differential normal forces, the clamping forces per unit angle
are equivalent between primary and secondary clutches. Equating the two gives

cot(γs)
Rc

Ä
TR
2 + κs(αs,pre + αs)

ä
+ ks(δs,pre + zs)∫ π

2
+ε

θ=−(π
2
+ε) dθ

=

namfwω
2(Ra+La sin(αp)) cos(αp)

cos(αp) cot(γp)−sin(αp) − kp(δp,pre + δp,eng + zp)∫ 3π
2
−ε

θ=π
2
+ε dθ

.

Integrating over the belt wrap angles, substituting (1), and rearranging yields the following solution
function η. The goal in tuning the CVT is to manipulate the balance of forces such that η ≈ 0
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for the entire shift range of the CVT when subject to resistive loading TR. Alongside the formulas
derived for the uncoupled model, this function is implemented in the Matlab program found in
Listing 1. Note that, when all other quantities are fixed and known, the flyweight mass mfw can
be solved for explicitly from (9), since η is affine in mfw.

η :=
Ä
cot(γs)
Rc

Ä
TR
2 + κs(αs,pre + αs)

ä
+ ks(δs,pre + zs)

äÄ
π − 2 arcsin

Ä
rs−rp
C

ää
−
(
namfwω

2(Ra+La sin(αp)) cos(αp)
cos(αp) cot(γp)−sin(αp) − kp(δp,pre + δp,eng + zp)

)Ä
π + 2 arcsin

Ä
rs−rp
C

ää
= 0. (9)

3 Future Work

The most immediate goals for advancing this project include experimentally validating the pro-
posed solution approach, as well as generating more coupling methods and tuning approaches.
Experiments should be designed to measure the resistive torque felt at the secondary, preferably
as a function of vehicle speed and incline angle. Furthermore, experiments to measure the engine
speed and power output for a given set of weights should be performed in order to verify the correct
operating speed for the masses output by the program. One long-term goal of interest is developing
a transient response model. Models incorporating energy losses due to friction would also be of
usefulness. Additionally, more realistic, nonlinear profiles for the ramp and helix angles should be
experimentally measured for increased accuracy of the tuning program.
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Listing 1: Matlab program for CVT tuning.

1 clc; clear; close all;

2
3 % Created by Brendon Anderson on 1/7/2017. Updated 2/4/2017.

4
5 %%%%%%%%%% NOTES %%%%%%%%%%

6 % all values are in SI units

7 % conversion factors and known/computed values are uppercase

8 % parametric variables are lowercase

9 % parametric functions are lowercase with appended underscore

10 % additional functions for repeated parameters are appended with

additional underscore

11
12 %%%%%%%%%% CONVERSION FACTORS %%%%%%%%%%

13 DEG2RAD = pi /180; % degrees to radians

14 FT2M = 0.3048; % feet to meters

15 IN2M = 0.0254; % inches to meters

16 LBF2N = 4.44822; % pounds (force) to newtons

17 LBM2KG = 0.453592; % pounds (mass) to kilograms

18 MIN2S = 60; % minutes to seconds

19 REV2RAD = 2*pi; % revolutions to radians

20
21 %%%%%%%%%% KNOWN VALUES %%%%%%%%%%

22 ALPHA_P_PRE = 2.38* DEG2RAD; % flyweight arm angle at preload

23 ALPHA_P_F = 19.05* DEG2RAD; % flyweight arm angle at shift -out

24 ALPHA_S_PRE = 25* DEG2RAD; % secondary spring torsion preload angle

25 C = 10.075* IN2M; % center to center pulley distance

26 DELTA_P_PRE = 0.945* IN2M; % primary spring compression at preload

27 DELTA_P_ENG = 0.075* IN2M; % primary spring compression from preload

to belt engagement

28 DELTA_S_PRE = 1.34* IN2M; % secondary spring compression at preload

29 GAMMA_P = 22.55* DEG2RAD; % flyweight ramp angle

30 GAMMA_S = 30.5* DEG2RAD; % helix angle

31 K_P = 48.14* LBF2N/IN2M; % primary spring rate

32 K_S = 22.475* LBF2N/IN2M; % secondary spring rate (compressive)

33 KAPPA_S = 1.8588* DEG2RAD *(1/ IN2M)*( LBF2N); % secondary spring rate (

torsional)

34 L_A = 1.253* IN2M; % flyweight arm length

35 N = 100; % grid size

36 N_A = 4; % number of flyweight arms

37 N_ITER = 1000; % number of numerical iterations

38 OMEGA = 3400* REV2RAD/MIN2S; % engine rotational speed

39 PHI = 12.85* DEG2RAD; % sheave angle

40 R_A = 1.6125* IN2M; % radius to flyweight arm pivot

41 R_C = 1.6025* IN2M; % radius to center of helical surface

42 R_P_ENG = 1.135* IN2M; % primary belt radius at preload

43 R_P_F = 2.65* IN2M; % primary belt radius at shift -out

44 R_S_ENG = 3.79* IN2M; % secondary belt radius at preload

45 R_S_F = 2.0635* IN2M; % secondary belt radius at shift -out

46 TAU_R = 17* LBF2N*FT2M; % secondary resistive torque load

47 TOL = 10^( -6); % numerical tolerance

48
49 %%%%%%%%%% PARAMETRIC FUNCTIONS %%%%%%%%%%

50 %%% sheave displacement %%%
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51 z_p_ = @(r_p) 2*( r_p - R_P_ENG)*tan(PHI); % primary spring compression

after belt engagement as function of primary belt radius

52 z_s_ = @(r_s) 2*( R_S_ENG - r_s)*tan(PHI); % secondary sheave

displacement as function of secondary belt radius

53
54 %%% flyweight arm angle (curvefit) %%%

55 z_p__ = @( alpha_p) L_A*((cos(alpha_p) - cos(ALPHA_P_PRE))...

56 + (sin(alpha_p) - sin(ALPHA_P_PRE))*cot(GAMMA_P))...

57 - DELTA_P_ENG; % primary spring compression after belt engagement as

function of flyweight arm angle

58 ALPHA_P = linspace(ALPHA_P_PRE ,ALPHA_P_F ,N)';
59 Z_P = z_p__(ALPHA_P);

60 coeff = polyfit(Z_P , ALPHA_P , 2);

61 alpha_p_ = @(z_p) coeff (1)*z_p.^2 + coeff (2)*z_p + coeff (3); %

flyweight arm angle as function of primary spring compression after

belt engagement

62
63 %%% belt radius kinematics (curvefit) %%%

64 l_b_ = @(r_p , r_s) pi*(r_p + r_s) + 2*( r_s - r_p).*asin((r_s - r_p)/C)...

65 + 2*sqrt(C^2 - (r_s - r_p).^2); % belt length as function of

pulley radii

66 L_B = l_b_(R_P_ENG , R_S_ENG); % overall belt length

67 R_P = linspace(R_P_ENG ,R_P_F ,N)';
68 R_S = (( R_S_ENG + R_S_F)/2)*ones(length(R_P) ,1); % initial guesses for

secondary radii

69 E = 1; % initialize error

70 ii = 0; % initialize counter

71 f_ = @(r_p ,r_s) l_b_(r_p ,r_s) - L_B; % function for newton -raphson

method

72 df_ = @(r_p ,r_s) pi + 2*asin((r_s - r_p)/C); % df/dr_s for jacobian

73 while (max(abs(E)) > TOL) && (ii < N_ITER) % iteration for newton -

raphson method

74 ii = ii + 1;

75 E = -diag(df_(R_P ,R_S))\f_(R_P ,R_S);

76 R_S = R_S + E;

77 end

78 coeff = polyfit(R_P , R_S , 2);

79 r_s_ = @(r_p) coeff (1)*r_p .^2 + coeff (2)*r_p + coeff (3); % secondary

radius as function of primary radius

80
81 %%% axial compressive force %%%

82 f_p_z_ = @(alpha_p , m_fw , z_p) (N_A*m_fw*( OMEGA ^2)*(R_A + L_A*sin(alpha_p)

)...

83 *cos(alpha_p))/(cos(alpha_p)*cot(GAMMA_P) - sin(alpha_p))...

84 - K_P*( DELTA_P_PRE + DELTA_P_ENG + z_p); % primary compressive

force as function of flyweight arm angle , flyweight mass , and

primary spring compression

85 f_s_z_ = @(tau_r , z_s) K_S*( DELTA_S_PRE + z_s)...

86 + cot(GAMMA_S)*(tau_r /2 + KAPPA_S *( ALPHA_S_PRE + z_s))...

87 /R_C; % secondary compressive force as function

of secondary resistive torque and secondary sheave displacement

88
89 %%%%%%%%%% SOLUTION APPROACH: UNIFORM PRESSURE DISTRIBUTION %%%%%%%%%%

90 %%% equilibrium flyweight mass %%%
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91 m_fw_ = @(f_p_z_1 , f_s_z , r_p , r_s , z_p) ((pi - 2*asin((r_s - r_p)/C))*

f_s_z...

92 /(pi + 2*asin((r_s - r_p)/C)) + K_P*( DELTA_P_PRE + DELTA_P_ENG + z_p))

...

93 /( f_p_z_1+K_P*( DELTA_P_PRE + DELTA_P_ENG + z_p)); % solution where

f_p_z evaluated at m_fw = 1

94
95 %%% flyweight mass for average resistive torque at average belt position

%%%

96 R_P_AVG = mean([R_P_ENG , R_P_F]); % average belt position (middle of

shift)

97 M_FW = m_fw_(f_p_z_(alpha_p_(z_p_(R_P_AVG)), 1, z_p_(R_P_AVG)),...

98 f_s_z_(TAU_R , z_s_(r_s_(R_P_AVG))),...

99 R_P_AVG , r_s_(R_P_AVG), z_p_(R_P_AVG));

100 disp(['M_FW = ', num2str(M_FW), ' kg']);
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