
Diffusion-Based Control of Robotic Swarms
Brendon Anderson

Mechanical and Aerospace Engineering
University of California, Los Angeles

Los Angeles, California 90095
Email: bganderson@ucla.edu

Swagata Biswas
Department of Mathematics

University of California, Los Angeles
Los Angeles, California 90095

Email: swagata biswas@yahoo.com

Marissa Gee
Department of Mathematics

Harvey Mudd College
Claremont, California 91711

Email: mgee@hmc.edu

Eva Loeser
Department of Mathematics

Brown University
Providence, Rhode Island 02912
Email: eva loeser@brown.edu

Fei Ren
Department of Mathematics

University of California, Los Angeles
Los Angeles, California 90095
Email: feiren1995@g.ucla.edu

Ge Zhang
Control Science and Engineering
Harbin Institute of Technology

Harbin, Heilongjiang, China 150001
Email: zhangge19951114@gmail.com

Abstract—In this report, we analyze a decentralized
stochastic control law used to transport a robotic swarm
toward a desired distribution. We first review relevant
background information, including the error metric used
to evaluate the swarm’s performance. We then develop
a definition of “steady state” for this stochastic system
using an exponential decay model. Next, we compute the
optimal configuration of robots with respect to the desired
distribution to develop a reference point for our error
metric. We further study the error metric, proving that
for randomly chosen robot configurations drawn from
the desired distribution, its probability density function
converges to a normal distribution. We show that for robots
distributed according to the desired distribution, the error
metric approaches zero as the number of robots goes to
infinity and their size goes to zero. Furthermore, we show
that if the desired distribution is uniform, the control
law preserves and tends towards uniformity. By using
a simple “bounceback” boundary behavior, convergence
toward the desired distribution is achieved, aside from
slight warping in corner regions of the domain. Finally,
we explore the use of a deterministic control law, and its
accuracy in approximating a macroscopic diffusion model
is demonstrated using a one-dimensional simulation.

I. INTRODUCTION

Swarm robotics is the study of large groups of robots
that cooperate to accomplish a goal that a single robot
could not. To be manufactured on a large scale, it is
preferable that these robots are relatively simple and
inexpensive. However, this limits their computational
power and communication capabilities, and can make
it infeasible to issue individualized instructions to each
agent. With these restrictions in mind, this report ex-
plores a stochastic swarm control law that provides
simple rules of motion for each agent, and does not rely
on communication or localization. Instead, the proposed
control law relies only on scalar measurements of each
robot’s local environment to achieve the desired group
behavior. Such a control law has applications in com-

mercial pollination, surveillance, and search and rescue
operations.

The primary theoretical result underpinning this
project is presented in [3]. In this paper, the authors
present a stochastic control law for a robotic swarm,
which ensures that the swarm converges to a distribution
proportional to the scalar field being measured. The
scalar field can be any property of the task environment
that can be measured and understood in terms of a scalar
value. In [3], the authors model the control law with both
a stochastic differential equation and a corresponding
partial differential equation. It shows that the solution to
the PDE, and thus the corresponding stochastic process,
converges to the scalar field for their control law.

Motivated by these theoretical results, last summer’s
swarm robotics team created simulations and ran phys-
ical experiments that implement this control law [1],
[8]. In their results, they demonstrate that the swarm
converges in simulation and in experiment to the desired
distribution. Additionally, the team explores different
error metrics and how well they characterize how far
a swarm is from the desired distribution. Finally, they
investigate the rate at which the swarm converges, and
show that in experiment the rate of convergence appears
to grow linearly with 1√

N
, where N is the number of

robots in our swarm.
This summer our team has worked to answer lingering

questions from the previous summer’s research, and has
looked into methods that extend or modify the control
law. The report is organized into the following sections,
based on the topics we have studied this summer. First,
Section II outlines useful definitions for our report.
Section III seeks to understand how the error evolves
in time, and to quantify when the swarm has reached its
steady state distribution. Section IV investigates numer-
ical methods for computing the optimal error value, and

1

how this value depends on properties of our swarm. In
Section V, we further contextualize the error metric by
characterizing its distribution in steady state. Section VI
examines different methods of controlling the robots at
the boundary of our domain, how these methods affect
the steady state swarm distribution, and how we can
account for boundary collisions for a circular domain,
which could also represent collisions with obstacles. Sec-
tion VII explores how the distribution of robots evolves
over a single time step, and how this evolution is affected
by a robot’s proximity to the boundary. Next, in Section
VIII we consider applications of the control to three
additional scenarios: the case that collisions between
robots are significant, the case of a three-dimensional
scalar field, and the case of a time-dependent scalar
field. Section IX summarizes the continued work in
running physical experiments for our control law. Finally,
in Section X we examine a new method for solving
PDEs of the same type as our model and discuss the
possible extension of this method to the development of
a deterministic control law for a robotic swarm.

II. PRELIMINARIES

In this paper, our robots are moving in a finite rect-
angular domain Ω ∈ R2. On this domain, we define
a scalar field, F . Our control law is designed with the
goal that the robot positions converge to a distribution
that is proportional to this scalar field. In our physical
experiments the scalar field is represented by the color
of the floor underneath the robot. The black represents
a high value of the scalar field. The white represents
a low value of the scalar field. The red represents the
boundary. There are two non-uniform scalar fields used
in this analysis. The first is a ring scalar field, in which
the scalar field is 36 on an annulus and 1 outside the
annulus. The second is a row scalar field, in which there
are three vertical bars in the domain in which the scalar
field has a value of 36, and 4 vertical bars in the domain
in which the scalar field has a value of 1.

Our robots are moving according to a control law in
which each robot follows a random walk with speed
inversely correlated to the square root of the scalar field
at the robot’s position. To be precise, if a robot is at
position x(t), its next move will be governed by

dx(t) = D(x(t))dW + dΨ(t),

where

D(x(t)) =
1√

F (x(t))
,

and dW represents the standard Weiner process. The
function, Ψ(t), cannot be explicitly defined that reverses
robot velocity when the robot hits the boundary. Fur-

(a)

(b)

Fig. 1: (a) The scalar field with the ring pattern used
in simulations. (b) The scalar field with the row pattern
used in both simulations and physical experiments. The
yellow circle on the top right marks the initial position
for the robot.

2

thermore, as stated in [3], this stochastic model can be
understood via the following partial differential equation:

∂u

∂t
−∆(D(x)2u) = 0 in Ω× [0, T],

n · ∇(D(x)2u) = 0 on ∂Ω× [0, T],

u(x, 0) = u0(x) in Ω.

We think of each robot as patrolling a space of radius
δ around its position, and represent it by the so-called
Gaussian blob function

G(x1, x2) =
1

2πδ2
e−

x1
2+x2

2

2δ2 .

Where x = (x1, x2). Namely, if the robots have a
configuration X = (X1, ..., XN) we define the blob
function to be

G(X) =
1

N

N∑
i=1

G (x−Xi)

We define the error, eδN (X), of a configuration X =
(X1, ..., XN) of N robots that we think of as patrolling
a space of radius δ around their position as

eδN (X) =

∫
Ω

∣∣∣∣∣ 1

N

N∑
i=1

G (x−Xi)− F

∣∣∣∣∣ dx

We often set this function to 0 outside a ball of radius
r, where r is positive real number of our choosing.

III. STEADY STATE MEASUREMENT

A. Motivation

Since we are interested in studying the average error
metric in steady state and determining how long the
physical experiments should be run, we need a way to
measure when steady state of a system of the robots
with a given scalar field starts. Conceptually, we define
the steady state of the simulations and experiments
as the state of the robots in which the robots finish
spreading out on the scalar field. At the steady state,
the robots’ distribution is similar to the target scalar
field even though they are still constantly moving.
Even though we can gauge how well the robots spread
out on the domain in the case of uniform scalar field
with naked eyes, it is very hard for us to tell whether
the steady state is reached in case of non-uniform
scalar fields, especially the ones we use which are
not continuous, from pure observation. The reason is
that we cannot compare the ratio of the density of
the robots in the flower region to density of robots
outside the flower region with the ratio prescribed by
the scalar field in real time while the robots are moving.
Therefore, we need a more quantitative measurement
for steady state for arbitrary scalar fields. Since the
error metric measures how well the robots spread out

according to the target scalar fields, which matches
with our conception of differences between transient
and steady states, we study the time convergence of the
error metric to measure steady state.

B. Methods

We want to define the steady state to be the state in
which certain properties of the error metric of robots
with respect to the target scalar field are constant. In
this case, one interpretation would be the steady state
starts when de

dt = 0 where e is the error metric.
Since the calculation of derivative is a set of floating
number operations, the number can never reach 0 exactly.
Instead, we use 10−4 as a threshold for 0. Namely, if
the derivative is smaller than this threshold, then it is
considered as de

dt = 0. However, like Figure 2 shows,
the error metric signal always has random noise. Thus,
we need to smooth the error metric signal first.

We have tried two signal processing methods to
smooth the error metric. The first method is wrapping
the signal with two envelope functions by applying the
envelope function in MATLAB. The two envelope
functions, high and low, are specified by the peak
separation parameter (np). We use np = 31 which is
determined by observation. After we obtain the two
envelope functions, we can calculate the mean line of the
two functions and use this new function, which is much
more smoother than the original error metric curve, to
approximate the error metric. If we check the derivative
of the mean line with the threshold, we can use the first
data point which has a derivative less than the threshold
as the starting point for steady state. However, the
simulation results show that the starting points indicated
by this method are often unstable stationary points which
come before the starting points of the real steady state
measured with the underlying exponential decay model
of the noisy error metric curve (Figure 3).

The other method to smooth the error metric curve
is taking the cumulative average of all of existing error
metric values. This method is motivated by the moving
average filter. The moving average filer method requires
at least two parameters: width of the moving window
and the threshold for approximation of 0, in this case,
chosen to be 10−4. These two parameters are inher-
ently arbitrary so it is hard to justify which numerical
values to use. Compared to the moving average filter
method, the cumulative average method has one less
arbitrary constant, the width of the window. Like its
name suggests, the cumulative average method is just
calculating cumulative average of the error metric. The
advantage of this method is that the smoothed curve after
applying this method is monotonously decreasing instead
of oscillating. However, due to the nature of this method,

3

Fig. 2: Simulation with the ring pattern scalar field. This plot shows that the error metric always has random noise.
The shape of the error metric curve suggests we should consider fitting a decaying exponential model to it.

Fig. 3: Measurement of the steady state with the envelope method with target scalar field as the row pattern scalar
field. The yellow mean line has low-frequency noise. The starting point of the measured steady state sometimes
precedes that of the real steady state.

the measured steady state always comes long after the
where the real steady state starts (Figure 4).

Lastly, we decide to fit exponential models to the error
metric curve since Figure 2 looks like an exponential
decay model with noise. Later in Section III-D, The-
orem 1, we mention that the time convergence of our
PDE model is indeed bounded by decaying exponential.
We use fit function in the Curve Fitting Toolbox of
MATLAB to fit the following exponential model:

y = ae−bt + c. (1)

This is achieved by using exp2 as the parameter for
the model and setting specific limits on the unwanted
parameters. Then we apply the engineering convention
of defining steady state [12]. Since we know the model
(ffit) we fit, we can calculate the asymptote of the
exponential curve (limt→∞ ffit(t)) and then define the
threshold value (T) as follows:

T (ffit) = lim
t→∞

0.02(ffit(0)− ffit(t)) + ffit(t). (2)

The steady state starts when the error metric value first
drops below the line defined by y = T .

4

Fig. 4: Error metric plots with the target scalar field as the row scalar field. The top plot is the error metric curve.
The bottom plot is the cumulative average of the error metric. This pair of plots shows that the starting point of
the measured steady state with the cumulative averaging method comes long after the real steady state starts.

This method is not flawless, either. Even though
the measured steady state is very close to the steady
state determined by naked eye, it can still sometimes
come before the real steady state. To make sure the
measured steady state almost never comes before the
real steady state, we pick an exponential decay model
which looks like the error metric curve and add noise,
which is drawn randomly from the shifted steady
state error distribution, to it. We fit the exponential
model according to equation (1) with various constants
including 0.02 to define thresholds. We have tried
constants ranging from 0.02 to 0.01. We decide to
use 0.016 since it is the largest value with which the
measured steady state only comes before the real steady
state of the original exponential curve less than 10−3%
of the time.

C. Results

Figure 5 shows one example of how to measure
steady state with the error metric for the ring scalar field.

D. Theoretical Comparisons

After fitting the rate of convergence of the error metric
to an exponential function, we decided to investigate
the relationship between the convergence of our error
metric and the convergence of the PDE model to steady
state. In [3], the authors showed that with our governing
control law and a zero-flux boundary condition, the
solution to the PDE model converges to the scalar
field in steady state. Furthermore, they showed that the

rate of this convergence was bounded by a decaying
exponential. However, they do not present expressions
for the coefficient of the exponential term. Thus, we
decided to begin our investigation by determining what
this coefficient was in our case. We begin by exploring
the simplified case of a uniform scalar field.

For the case of a uniform distribution, the rate of
convergence is determined by the Poincaré constant of
our domain. We can show this using standard arguments
from analysis. For the following, recall that Ω, our do-
main, is a bounded subset of R2 with Lipschitz boundary.
Let u : Ω × [0, T] → R satisfy the following boundary
value problem:

∂u

∂t
−D2∆u = 0 in Ω× [0, T],

n ·D2∇u = 0 on ∂Ω× [0, T],

u(x, 0) = u0(x) in Ω,

(3)

where D is a constant because the scalar field is uniform.
We now establish that u(x, t) converges as t → ∞ to
uΩ, where

uΩ =
1

|Ω|

∫
Ω

u0(x)dx.

Note that |Ω| is the Lebesgue measure of our domain.

Theorem 1. For Ω, u, and η defined above, and t ∈
[0, T], the following inequality holds:∫

Ω

(u(x, t)− uΩ)2dx ≤ e−
2
CΩ

t
∫

Ω

(u0(x)− uΩ)2dx,

where CΩ is the Poincaré constant of our domain.

5

Fig. 5: An example of the steady state measurement with the exponential curve fitting method.

Proof: We begin by noting that for all t > 0, we have∫
Ω

u(x, t)dx =

∫
Ω

u0(x)dx. (4)

This is obtained by taking the time derivative of the left-
hand side, and using equation (3). Next, we consider the
quantity

η(t) =
1

2

∫
Ω

(u(x, t)− uΩ)2dx.

Observe that
dη

dt
=

d

dt

1

2

∫
Ω

(u(x, t)− uΩ)2dx

=

∫
Ω

(u(x, t)− uΩ)ut(x, t)dx

=

∫
Ω

(u(x, t)− uΩ)∆u(x, t)dx,

where the final substitution follows from the fact that
u(x, t) satisfies equation (3). Integrating this quantity by
parts we obtain∫

Ω

(u(x, t)− uΩ)∆u(x, t)dx

=

∫
∂Ω

u(x, t)∇u(x, t) · dS

−
∫

Ω

∇u(x, t) · ∇u(x, t)dx

= −
∫

Ω

(∇u(x, t))2dx. (5)

Additionally, note that by equation (4) the function
(x, t)→ (u(x, t)− uΩ) has integral 0 on Ω. Therefore,
we can apply the Poincaré inequality in order to obtain∫

Ω

(u(x, t)− uΩ)2 ≤ CΩ

∫
Ω

(∇u(x, t))2,

where CΩ is the Poincaré constant for our domain. This
tells us that

dη

dt
=−

∫
Ω

(∇u(x, t))2dx (6)

≤− 1

CΩ

∫
Ω

(u(x, t)− uΩ)2

=− 2

CΩ
η(t).

Combining this with equation (5) we obtain

η(t) ≤e−
2
CΩ

t
η(0).

Applying the definition of η(t) we obtain∫
Ω

(u(x, t)− uΩ)2dx ≤ e−
2
CΩ

t
∫

Ω

(u0(x)− uΩ)2dx,

as desired. �

With these results in mind, we were interested in
determining the exact value of the Poincaré constant for
our domain, in this case the rectangle [0, 4.8] × [0, 7].
Unfortunately, the exact value of the Poincaré constant
exactly has not been determined for a region of this type.
However, it is not difficult to find an upper bound for
the constant. For the case of the L2 norm, according to
[9], the Poincaré constant for a bounded, convex domain
with Lipschitz boundary has an upper bound of d

π where
d is the diameter of the region of interest. Therefore, this
gives the lower bound 2

C ≥ 0.74, where 2
C is the value

of the coefficient in the exponential.
Having obtained an approximate value of C, simula-

tions were run to compare the coefficient found in the
exponential curve fit with the bound found analytically.
Note, however, that the coefficient in the exponential
model could depend on N , the number of robots, and δ,

6

the size of the blob around each robot, both of which are
variables not found in the PDE model. Thus, we were
additionally interested in investigating the relationship
between N , δ, and b, the coefficient in the exponential
model. Preliminary simulation results have not supported
the conjecture of the relationship between b and the
Poincaré constant. In general, the values of b found in
simulation were lower than the values predicted analyti-
cally. However, due to time constraints we were not able
to run the simulation for very small values of δ. Thus,
this topic requires further investigation. It is possible that
in considering smaller values of δ and larger values of
N , as well as non-uniform distributions, a relationship
between b and the Poincaré constant could be found.

IV. ERROR METRIC EXTREMA

In order to better understand whether error metric
values represent good or poor swarm coverage, it is nec-
essary to develop reference points on which comparisons
can be based. It is known that the error metric falls
between 0 and 2, but these values are not appropriate
references since these bounds are only approached in
limiting cases of N and δ [1]. The minimum and
maximum values of the error metric for the desired
swarm size, robot radius, and scalar field are natural
choices for reference points. If the error found at steady
state is 10% larger than the error metric minimum, it
seems reasonably justified to classify the swarm as well
distributed. In contrast, an error 10% smaller than the
error metric maximum represents a poor robot config-
uration. The computation of these extrema is carried
out numerically in Section IV-A, and the dependence
of the error metric minimum on swarm characteristics is
studied further in Section IV-B.

A. Nonlinear Programming Problem

To compute the error metric extrema, we first define
the nonlinear optimization problem of interest. Let X
represent a vector of N robot coordinates. The optimiza-
tion problem is,

minimize eδN (X),

subject to Xi ∈ Ω for i ∈ {1, 2, . . . , N}, (7)
X = (X1, X2, . . . , XN).

Thus, the only constraints imposed on the problem
are bounds keeping each robot coordinate within the
domain. Note that to find the maximum of the error
metric, the same problem structure can be used by
minimizing the negative of eδN . Problems of this form
are readily solved in MATLAB using the built-in function
fmincon. However, one limitation of fmincon is
its restriction to finding local minima. Therefore, by
running the optimization many times, the lowest local

minimum can be taken as an estimate of the global
minimum. Using a 4.8 × 7.0 ring scalar field with a
swarm of N = 200 robots with radius δ = 0.2, 50
local minima were computed with a mean of 0.2968
and a standard deviation of 0.0081. Therefore, using the
smallest local minimum to represent the global minimum
appears reasonable. These results are shown in Figures
6 and 7. Note that, as intuition predicts, the minimum of
the error metric is higher than zero for a finite number
of robots of nonzero radius.

We also tried another popular large-scalar nonlinear
programming solver - IPOPT. Unlike fmincon, the
MATLAB interface of IPOPT requires the user to specify
the gradient of the objective function for this optimiza-
tion problem. Since the objective function is complicated
for a large number of robots, finding the symbolic
expression for the gradient of the objective function is
impractical. Therefore, IPOPT is not as applicable to our
optimization problem as fmincon.

Fig. 6: Robot distribution over ring scalar field yielding
minimum value of error metric.

B. Dependence on Swarm Size

Further insight into the error metric can be gained
by studying the dependence of the metric extrema
on the number of robots N and their radius δ. This
is done by slightly modifying the optimization prob-
lem (7) to include δ as a decision variable; X =
(δ,X1, X2, . . . , XN). Thus, fmincon not only com-
putes the optimal coordinate for each robot Xi, but
it also determines which radius δ yields the lowest
error for a given swarm size. Figure 8 shows the error
metric minimum versus the number of robots in the
swarm. Note that each data point has a different radius
δ. As one would expect, the error decreases as N
increases. Furthermore, the error roughly scales linearly

7

Fig. 7: Maximum error metric value arises when all
robots coincide outside the ring.

with 1/
√
N , which agrees with the claim made from the

2016 REU Robots group. Interestingly, Figure 8 shows a
slight oscillation about the trendline, with an increasing
frequency as N increases. We suspect that this may be an
artifact of the numerical solver, but further investigation
should be carried out to validate this suspicion.

Fig. 8: Minimum value of error metric scales linearly
with 1/

√
N .

V. ERROR PROBABILITY DENSITY FUNCTION

The goal of our error metric is to quantify the distance
a given robot configuration is from being proportional
to our scalar field. Thus, one way to contextualize error
metric values is to compare them to values that occur
when our robot positions are pulled from a distribution

proportional to the scalar field (ie., the goal is met). Let
f be this distribution. Define random variable

ẽδN = eδN (X),

where X is a vector (X1, .., XN) and Xis are inde-
pendent, identically distributed random variables, each
taking values in R2, with density function f . In order
to contextualize values of the error metric, we want to
find the distribution of this random variable. Thus, the
following section focuses on finding the PDF of ẽδN . We
will show, both numerically and analytically, that as N
gets large and δ gets small (with special conditions on
the rates) the error of ẽδN approaches a normal random
variable whose mean and variance also decrease in N
and δ. Further, we will show that ẽδN converges in
the sense of distributions to 0 under these conditions,
proving that Xi converges in the sense of distributions
to f implies convergence to the target distribution with
respect to this error metric. The following is a formula
for the derived CDF of a random variable ẽδN

P(e(X) ≤ y) =

∫
{x|e(x)≤y}

gX(x)dx,

where gX is the pdf of X = (X1, ..., XN). In our
circumstance, this gives

P(e(X) ≤ y) =

∫
Ω

1{x|eδN (x)≤y}

N∏
i=1

f(xi)dx. (8)

A. Numerical Integration for Derived Distribution

For a swarm of N robots, the integral defining the
cumulative density function of the error metric is of
dimension 2N + 1, and therefore finding analytical
representations for the derived distribution becomes un-
feasible for large swarms. Therefore, we approximate
the solution to (8) using Monte Carlo integration. Monte
Carlo integration is a numerical scheme well-suited for
high-dimensional integration [10]. The result for a ring
scalar field with 200 robots using M = 1000 Monte
Carlo evaluation points is shown in Figure 9. The numer-
ical solution appears to closely match an erf(·) function,
and therefore an analytical curve is fit to the data using
MATLAB’s lsqcurvefit least squares curve fitting
function. To obtain the probability density function of
the error metric, the analytical expression found for the
CDF is differentiated, and the result is shown in Figure
10.

An important property of the numerical integration
scheme used is that it relies on random variables; Monte
Carlo method yields a different value for the CDF
each time the MATLAB code is run. However, due to
its 1/

√
M convergence, any noticeable discrepancies

vanish as the number of evaluation points increases

8

Fig. 9: Cumulative density function of error metric
obtained from Monte Carlo integration. The use of an
erf(·) curve fit matches very closely.

Fig. 10: Probability density function of error metric. The
erf(·) CDF curve fit yields a Gaussian PDF.

[10]. Deterministic numerical schemes similar to Monte
Carlo method do exist for high-dimensional integration,
namely, quasi-Monte Carlo methods. These schemes uti-
lize the same general form as Monte Carlo method, but
with evaluation points chosen from a low-discrepancy
sequence. Quasi-Monte Carlo integration have conver-
gence rates between 1/

√
M and 1/M , where the rate

of convergence tends towards that of standard Monte
Carlo as the dimensionality of the problem increases
and the smoothness of the integrand deteriorates. Fur-
thermore, in order to use quasi-Monte Carlo for non-
uniform scalar fields, a non-uniform low-discrepancy
sequence must be generated. This is typically done

using the Hlawka-Mück method whereby an existing
low-discrepancy sequence is transformed according to
the desired distribution. Unfortunately, this method is
computationally expensive with a complexity of O(M2)
and no explicit algorithm for distributions of dependent
variables [6]. Rejection sampling methods for obtaining
non-uniform low-discrepancy sequences do exist, but the
quasi-Monte Carlo efficiency is lost.

B. Convergence to Normal

In this section we present some theoretical results
from Horváth [7] that support these numerical findings.
Because N and δ are related in this analysis, we assign
one δ value to each N , and refer to it as δN . We will
refer to ẽδNN simply as ẽN for this reason. Our work
fits into the theoey of kernel density estimators. Indeed,
our blob function defined II is exactly analogous to the
kernel density estimator associated to f which is denoted
by fn in [7]. Before proceeding with our analysis, we
will define some expressions: Let

D =

∫
R2

K2(u)du.

Let
φ(u) = (2π)

−1
2 e

−u2

2 .

We take

f(N) =
1

δ2
N

∫
R2

K

(
x− y
δN

)
f(y)dy,

where K is a kernel, which, as explained in Section II,
we take to be Gaussian type. Specifically, we define

K =
1

2π
e
−x2−y2

2 × 1{Br}
1

C
,

where C and r are chosen such that K integrates to 1.
Let

mn(x) = N
1
2 δN (f(N) − f).

We take the asymptotic expected value, vN , to be

vN =

∫ ∞
−∞

∫
R2

|f 1
2D

1
2u+mN (x)|1{Ω}φ(u)dxdu

and let σ(N) be defined as in [7]. For our purposes, it
is important to note only that 0 < σ(N) < C for some
constant C independent of N .

Theorem 2.
1

σ(N)δN
(N

1
2 ẽN − vN)→D N (0, 1)

when
• δN = O(N

−1
6) as N →∞

• δNN
1
4 →∞ as N →∞

This result is a direct application of the theorem
proved in Horváth’s paper. This theorem applies if we

9

smooth our scalar field to be C2 because our kernel
satisfies hypotheses (C1)-(C6) from the paper.

An important corollary to this theorem is the follow-
ing:

Corollary 3. ẽN →D 0

Proof: Using symmetry of the kernel and the Taylor
approximation of f [5], we see that vN = O(N

1
2 δ3
N).

Because σ(N) is finite, we get

1

σ(N)δN
(N

1
2 δN ẽN − vN)→D N(0, 1)

⇒ 1

σ(N)δN
(N

1
2 δN ẽN − CN

1
2 δ2
N)→D N(0, 1)

⇒ N
1
2

σ(N)
(ẽN − Cδ2

N)→D N(0, 1)

⇒ N
1
2

σ(N)
(ẽN − Cδ2

N) = N(0, 1) + oN (1)

⇒ ẽN = N(Cδ2
N ,

σ2(N)

n
) + oN (1)

⇒ ẽN →D 0

The goal of our error metric is to measure how far a
given configuration of robots is from being proportional
to our scalar field. Thus Corollary 3 is of importance
to our analysis because it shows that when our robot
positions are pulled from a distribution proportional to
our scalar field, the error does in fact converge to 0.

Further, we conjecture that smoothing our scalar field
is unnecessary. Giné et. al. [4] showed in 2003 that
the result did not rely on the continuity of the target
distribution for univariate scalar fields, and alluded to
a multivariate counterpart that would apply in our case.
The author further lessens constraints on the relationship
between δn and n, giving the constraints
• δn → 0 as n→∞
•
√
nδn →∞ as n→∞

instead of those given in Theorem 2.

VI. BOUNDARY CONTROL LAW SIMULATIONS

A. Introduction

In this section, we study various boundary control
laws and how they affect the distribution of robots. The
boundary control laws we had available at the beginning
of the project were:

1) Specular reflection [11]: The robot reaches the
boundary and reflects across a line normal to the
boundary. The incident angle is equal to the angle
of reflection.

2) Bounceback: This boundary control law was de-
veloped by the summer 2016 swarm robotics team.
The robot hits the boundary and then reverses its
direction for the remaining time.

3) Single rejection [11]: If the calculated step takes
the robot out of bounds then the robot does not
move for the given time step.

4) Multiple rejection [11]: The robot continues to
calculate new steps until it calculates a step within
the boundary.

5) Interruption [11]: The robot reaches the boundary
and calculates a new step for the remaining time.

We also developed a new boundary control law called
implementable rejection, which is discussed later in this
section. Although specular reflection is commonly used
to simulate a zero-flux boundary condition and has been
demonstrated to not warp the boundary distribution [11],
this boundary control law is not implementable since our
robots do not have localization capabilities. Therefore,
following the summer 2016 swarm robotics team, we
continue using bounceback as our preferred boundary
control law.

In order to investigate the robustness of our bounce-
back boundary control law and compare it with other
boundary control laws, we simulate N = 200 robots
with δ = 0.2021 moving on a uniform distribution.
These simulations are adapted from the summer 2016
swarm robotics team’s MATLAB code and modified to be
compatible with C++. In order to increase the efficiency
of the code, we use a stamping method to calculate
the Gaussian blob function of each robot. Additionally,
we introduce wrap-around to the Gaussian blob function
calculations to increase accuracy. In these simulations,
the domain Ω of the robots’ movement is discretized
into a 200 by 200 grid space. Further explanations in
this section refer to discrete elements of this space as
bins. We refer to a grid with side lengths equal to those
of the original domain as a square.

B. Implementation

1) Wrap-Around: In the simulations, each side of a
square consists of 200 bins. Previous calculations of
the error metric had a deficiency in the Gaussian blob
distribution along the boundaries because as the position
of a robot approached any of the boundaries of the
domain, an increasingly large portion of the robot’s
Gaussian blob was lost because it exceeded the limits
of the domain. Our solution is to increase the size of
the domain over which the Gaussian blob is calculated
to a triple grid that has sides three times as long as the
original grid. In other words, the triple grid is composed
of nine squares. Our original domain corresponds to
the middle square of the triple grid. If we put this on
a coordinate axis, then since the width of the original
domain ranges from 0 to 4.8 and the height ranges from
0 to 7, the width of the triple grid ranges from -4.8 to 9.6
and the height ranges from -7 to 14. After calculating
the Gaussian blobs of the robots over this triple grid, we

10

match the bottom left corner of each square and sum the
Gaussian blob values for each bin, thus collapsing the
triple grid into a single grid with the dimensions of the
original grid.

2) Stamping: Previous simulations calculated the
Gaussian blobs of each robot for each time step. To
decrease the number of calculations, we create a stamp of
the Gaussian blob for a single robot located at the point
(0, 0), i.e. the bottom left corner of the original domain.
This blob is calculated on a “double grid” twice as large
as the actual domain. The double grid consists of four
squares, with the original domain corresponding to the
top left square of the double grid. Instead of recalculating
the Gaussian blob for each robot, we shift the blob stamp
to be centered at each robot’s position and add the stamp
to the triple grid.

C. Results

Fig. 11: Concentration profiles of boundary control laws

Figure 16 demonstrates that bounceback maintains a
uniform distribution in the middle of the domain and
the density in the corners is higher than that of the rest
of the domain. However, the corner warping does not
result in distortion of the distribution along the rest of
the boundary. Neither multiple rejection nor interruption
maintains a uniform distribution. Bounceback, specular
reflection, single rejection, and implementable rejection
maintain similar concentration profiles while multiple
rejection and interruption do not (Figure 11).

1) Corner Warping: The warping we see in the cor-
ners from the bounceback boundary control law is caused
by double bounce: a robot in a corner takes a step large
enough to cause it to hit the boundary twice, effectively
getting stuck in the corner. To study the warping in
the corner region, we examine the normalized density
surplus of the corner region. This quantity represents
how much more dense a region is than the average
density of the whole domain. The lower bound of the
color axis in Figure 13 is 0 because we are interested in
studying the region in which there is a density surplus.

Fig. 12: Due to double bounce, the average density in
the corner increases as dmax increases

The amount of warping in the corners decreases as the
maximum distance dmax decreases (Figure 12) because
as the maximum distance the robot can travel decreases,
the area in which the robot can take a step large
enough to cause it to hit the boundary twice decreases.
We expect the corner region to take the shape of a
quadrant. However, the results do not reflect this as
dmax increases. The reason for this warping is a possible
area of further study. Additionally, the theoretical region
in which double bounce is possible does not entirely
encompass the region in which a density surplus occurs.
An exact analytic expression for the density surplus
region remains to be determined.

2) Implementable Rejection: Single rejection does not
cause warping at the corners, but is also not imple-
mentable because the robots lack localization capabil-
ities. Let us consider an implementable version of single
rejection that is similar to bounceback: after hitting a
boundary, the robot reverses its direction and attempts
to return to its original position; if there is not enough
time for it to return then it goes as far back as possible.
Like single rejection, implementable rejection does not
cause warping at the corners. However, we expect the
convergence time to be higher for implementable rejec-
tion. Additionally, the error metric for implementable
rejection on a uniform distribution is not significantly
lower than that for bounceback.

11

Fig. 13: Density of a corner as a ratio of the average
density of the domain. The size and value of the surplus
varies with dmax.

D. Further Exploration

We also wish to examine the behavior of robots
moving on a circular domain.

Figures 14 and 15 compares the results of single
rejection and bounceback on a circular domain. With-
out the problem of double bouncing in a corner, the
two distributions appear approximately equally uniform.
Note that the deficiency at the boundaries probably
occurs because we did not implement wrap-around on
the circular domain.

Fig. 14: Single rejection on circular domain.

Fig. 15: Bounceback on circular domain.

12

(a) Bounceback (b) Specular Reflection

(c) Multiple Rejection (d) Interruption

(e) Single Rejection (f) Implementable Rejection

Fig. 16: Gaussian blob distributions for various boundary control laws. Following the previously described
discretization method, the height and width of the domain have been divided into 200 bins.

13

VII. ROBOT FLUX

A. Introduction

In order to better understand how the distribution
of the swarm evolves, we developed an analytical
framework for understanding how the density of agents
changes over one time step. To this end, we developed
an idea of robot flux, or, the likelihood that a robot
at a given position would enter or exit a target region
in a single time step. We developed this idea in order
to understand how the density of robots changes over
time. We showed that for a scalar field, if agents are
distributed according to the scalar field, then near no
boundaries and near a single boundary, the robots tend
to maintain their uniform distribution. Furthermore, the
argument breaks down for the case when a robot is near
a corner. Finally, we were also able to show that for
a uniform scalar field, if the robots are not distributed
uniformly, their distribution tends toward uniform. We
will begin by rigorously defining robot flux. We begin
with preliminary definitions that help us describe the
movement of the robots over a single time step, and how
this relates to robot flux:

B. Preliminaries

For the following section, assume the scalar field F
is uniform. Let Ω = [0, 1]× [0, 1]. We take

H1 ={
(x1, x2) :

(
(|x1 − a| <

αmax
2

) ∨ (|x1 − b| <
αmax

2
)
)}

and

H2 ={
(x1, x2) :

(
(|x2 − c| <

αmax
2

) ∨ (|x2 − d| <
αmax

2
)
)}

.

Define H = H1∩H2. Let αmax ∈ R+ be the maximum
distance a robot can travel in one time step. Assume
αmax <

1
4 . Define fα, the probability density function

of α, to be a function such that its support is a subset
of [0, αmax]. We take α be a random variable with
distribution fα. Let β be a random variable pulled uni-
formly at random from [0, 2π]. Let ρ(x1, x2) be a PDF
with domain Ω that represents the current distribution of
robots.

We introduce some notation. The displacement func-
tion gives the position after one time step of a robot
located at x = (x1, x2), given that the robot chooses
a direction β and a speed α at which to travel. Let
s̃α,β(x1, x2) = (x1, x2) + (α cos(β), α sin(β)). Define
the displacement function, s : Ω \H → Ω, to be

sα,β(x1, x2) ={
s̃α,β(x1, x2) s̃α,β(x1, x2) ∈ Ω
s̃α0,β(x1, x2) + s̃α0−α,β(x1, x2) s̃(x, y, α, β) /∈ Ω,

where α0 is the unique value such that s̃(x, y, α0, β) ∈
∂Ω. We define the entrance function on a region S ⊂
Ω \ H , NS : Ω \ S → R such that NS(x1, x2) is the
probability that sα,β(x1, x2) ∈ S. We define the exit
function on a region S ⊂ Ω \H , TS : S → R such that
TS(x1, x2) is the probability that sα,β(x1, x2) /∈ S. The
influx of a region S ⊂ Ω \H , IS is

IS =

∫
Ω\S

NS(x1, x2)ρ(x1, x2)dµ.

The outflux of a region S ⊂ Ω \H , OS is

OS =

∫
S

TS(x1, x2)ρ(x1, x2)dµ.

We will define the flux of a region S,

ΦS = IS −OS .

C. Main Result

Theorem 4. For any S ⊂ Ω\H , ΦS = 0 when ρ(x1, x2)
is the uniform distribution.

Proof.
Part 1: Center Region
Assume for all x ∈ S, d(x, ∂Ω) > αmax. If we
think of α and β as fixed quantities, in this region
sα,β−π(sα,β(x1, x2)) = (x1, x2), so sα,β−π = s−1

α,β .
This inverse, sα,β−π , is differentiable because it is a
translation. Thus we will use it as a change of variables
function in the following proof. Because ρ(x1, x2) is a
uniform distribution on the unit square, the ρ(x1, x2)
term is identically 1 everywhere in Ω, so we are left
with influx of

IS =

∫
Ω\S

NSdµ

=

∫
Ω\S

∫ αmax

0

∫ 2π

0

1{sα,β(x1,x2)∈S}fα
1

2π
dβdαdµ

=

∫ αmax

0

fα
1

2π

∫ 2π

0

∫
Ω\S

1{sα,β(x1,x2)∈S}dµdβdα.

Then we make the change of variables in (x1, x2)

(x1, x2) = sα,β−π(x′1, x
′
2).

In the center region,

sα,β−π(x′1, x
′
2) = (x′1, x

′
2)+(α cos(β−π), α sin(β−π))

thus this change of variables has a Jacobian of 1. Since
this is a simple change of variables in x1 and x2, we
compute only the inner integral, viewing α and β as
fixed quantities.

∫
Ω\S

1{sα,β(x1,x2)∈S}dµ

14

=

∫
sα,β(Ω\S)

1{sα,β(sα,β−π(x′1,x
′
2))∈S}dµ

=

∫
sα,β(Ω\S)

1{(x′1,x′2)∈S}dµ

=

∫
Ω

1{sα,β−π(x′1,x
′
2)}/∈S}1{(x′1,x′2)∈S}dµ

=

∫
S

1{sα,β−π(x′1,x
′
2)}/∈S}dµ.

Thus we have

IS =

∫ αmax

0

fα
1

2π

∫ 2π

0

∫
S

1{sα,β−π(x′1,x
′
2)}/∈S}dµdβdα

=

∫ αmax

0

fα
1

2π

∫ 2π

0

∫
S

1{sα,β(x′1,x
′
2)}/∈S}dµdβdα

=

∫
S

∫ αmax

0

∫ 2π

0

1{sα,β(x′1,x
′
2)}/∈S}fα

1

2π
dβdαdµ

=

∫
S

TSdµ

= OS .

Thus ΦS = IS −OS = 0. �

Part 2: Near One Edge
Now assume for all (x1, x2) ∈ S, x ∈ [0, αmax], y ∈
[αmax, 1− αmax].

IS =

∫
Ω\S

NSdµ

=

∫
Ω\S

∫ αmax

0

∫ 2π

0

1{sα,β(x1,x2)∈S}fα
1

2π
dβdαdµ

=

∫ αmax

0

fα
1

2π

∫ 2π

0

∫
Ω\S

1{sα,β(x1,x2)∈S}dµdβdα.

Now we make a similar change of variables, but this
time we must split it into two cases.
Case 1 x > α cos(β)
Here, it is exactly the same as the center region case.
Case 2 x < α cos(β)
In this case, sα,β is its own inverse. So we use (x1, x2) =
sα,β(x′1, x

′
2) as our change of variables.

In this case we have

sα,β = (−α cos(β)− x1, x2 − 2x1 tan(β)− α sin(β)).

Thus the Jaccobian is

J =

∣∣∣∣det

([
−1 − tan(β)
0 1

])∣∣∣∣ = 1

in this case as well. Once again, we only calculate the
inner integral. We use the notation

sα,β(x1, x2) = (sα,β(x1, x2)1, sα,β(x1, x2)2).∫
Ω\S

1{sα,β(x1,x2)∈S}dµ

=

∫
Ω\S∩{x>α cos(β)}

1{sα,β(x1,x2)∈S}dµ

+

∫
Ω\S∩{x>α cos(β)}

1{sα,β(x1,x2)∈S}dµ

=

∫
Ω

1{(x1,x2)∈Ω\S}1{x>α cos(β)}1{sα,β(x1,x2)∈S}dµ

+

∫
Ω

1{(x1,x2)∈Ω\S}1{x<α cos(β)}1{sα,β(x1,x2)∈S}dµ

=

∫
sα,β(Ω)

1{sα,β−π(x′1,x
′
2)∈Ω\S}1{sα,β−π(x′1,x

′
2)1>α cos(β)}

× 1{sα,β−π(sα,β(x′1,x
′
2))∈S}dµ

+

∫
sα,β(Ω)

1{sα,β(x′1,x
′
2)∈Ω\S}1{sα,β(x′1,x

′
2)1<α cos(β)}

× 1{sα,β(sα,β(x′1,x
′
2))∈S}dµ

=

∫
Ω

1{sα,β−π(x′1,x
′
2)∈Ω\S}1{sα,β−π(x′1,x

′
2)1>α cos(β)}

× 1{(x′1,x′2)∈S}dµ

+

∫
Ω

1{sα,β(x′1,x
′
2)∈Ω\S}1{sα,β(x′1,x

′
2)1<α cos(β)}

× 1{(x′1,x′2)∈S}dµ

=

∫
S

1{sα,β−π(x′1,x
′
2)/∈S}1{sα,β−π(x′1,x

′
2)1>α cos(β)}dµ

+

∫
S

1{sα,β(x′1,x
′
2)/∈S}1{sα,β(x′1,x

′
2)1<α cos(β)}dµ.

So then

IS =

∫ αmax

0

fα(α)
1

2π

∫ 2π

0

∫
S

1{sα,β−π(x′1,x
′
2)/∈S}

× 1{sα,β−π(x′1,x
′
2)1>α cos(β)}dµ

+

∫
S

1{sα,β(x′1,x
′
2)/∈S}1{sα,β(x′1,x

′
2)1<α cos(β)}dµdβdα.

But since we are integrating β from 0 to 2π, replacing
β − π with β does not change the value of the integral
in any way. Thus we have:

=

∫ αmax

0

fα(α)
1

2π

∫ 2π

0

∫
S

1{sα,β(x′1,x
′
2)/∈S}

× 1{sα,β(x′1,x
′
2)1>α cos(β)}dµ

+

∫
S

1{sα,β(x′1,x
′
2)/∈S}1{sα,β(x′1,x

′
2)1<α cos(β)}dµdβdα

=

∫ αmax

0

fα(α)
1

2π

∫ 2π

0

∫
S

1{sα,β(x′1,x
′
2)/∈S}dµdβdα

=

∫
S

∫ αmax

0

∫ 2π

0

1{sα,β(x′1,x
′
2)/∈S}dβdαdµ

=

∫
S

TSdµ

= OS .

Thus ΦS = IS − OS = 0. Since flux is unchanged by
rotating the region, this is true near any single, straight
boundary. �

15

D. Flux When Robots are Not Uniformly Distributed

Theorem 5. Let S ⊂ Ω \H . If there exists C such that
ρ(x1, x2) < C in S and ρ(x1, x2) ≥ C in Ω \ S. Then
ΦS < 0.

Proof

IS =

∫
S

NS(x1, x2)ρ(x1, x2)dµ

<

∫
S

NS(x1, x2)Cdµ

< C

∫
S

NS(x1, x2)dµ

< C

∫
Ω\S

TS(x1, x2)dµ

<

∫
Ω\S

TS(x1, x2)ρ(x1, x2)dµ

< OS .

Thus ΦS < 0. By the same logic, we have ΦS > 0
when the inequalities with respect to C and ρ(x1, x2) are
flipped. This shows that robots tend towards the target
distribution because if there are any areas that are less
populated than the rest of the region, we expect more
robots to enter than to exit.

E. Conclusion

In conclusion, when the scalar field is uniform and we
are examining regions far from the corners, Theorem 4
shows that our control law preserves the target distribu-
tion, and Theorem 5 shows that our control law tends
towards the target distribution. Further, this analysis
breaks down in the corners because sα,β no longer has
a piecewise differentiable inverse, which may be a clue
as to why we see warping of the distribution in the
corners. For any region S for which there exists n <∞
such that robots with initial position in S cannot bounce
more than n times in the next step, sα,β has a piecewise
differentiable inverse. Because a region arbitrarily close
to the corner that does not include the corner has this
property, the authors conjecture that there is a singularity
at the corner points that causes the negative flux near the
corners that we see in simulation. Future work includes
performing analysis of flux on the corner regions and of
flux over arbitrary scalar fields. One method to generalize
this result to an arbitrary scalar field would be to use
change of variables to prove that flux is 0 on any open
ball. Using the analysis in this section, one can check that
flux is a finitely additive set function with bounded total
variation whose absolute value is bounded above by the
maxΩ{ρ(x1, x2)}µ, where µ is the Lebesque measure.
Thus it is a signed measure, so proving 0-flux on an
open ball does prove 0-flux everywhere.

VIII. CONTROL LAW EXTENSIONS

A. Collisions between Robots

1) Motivation: Last summer, the team assumed that
the robots are small relative to the environment or that
collisions between robots are unimportant and would not
affect the distribution of the swarm, given its stochastic
nature. They also considered the case in which collisions
need to be avoided to prevent damage to the robots.
According to their work in [1], if each robot were
equipped with a rangefinder to sense the relative loca-
tions of other robots, additional repulsive force can be
applied to robots in order to prevent collisions between
neighboring robots without altering the diffusive nature
of the swarm. However, they have found in [1] through
simulation that the speed of convergence to the desired
distribution will slow down when applying such a control
law that prevents collisions, and the steady state error
will increase, especially in regions where high density is
expected.

Since our robots do not have localization capability, it
is not implementable to prevent collision. Therefore, we
need to find a control law for when robots collide with
each other.

2) Method: We design our bounceback control law
to deal with the situation of collisions between robots.
A robot that collides with another robot will bounce
back in the same way as they would when they hit the
boundary, which is shown in Section VI. That is, both
the robots reverse their direction and move opposite to
the direction from which they were originally moving.
First, we calculate the next positions of the robots
and examine whether any robots are going to overlap
with each other. If this is the case, we then apply our
bounceback control law. Previously, each robot chose a
random direction with the speed inversely proportional to
the square root of the scalar field. During one time step,
robots kept moving in one direction. After applying our
bounceback control law, each robot uses this previous
method to choose a direction and a speed. However,
during one time step, robots spend part of time moving
towards each other and spend the rest of time bouncing
back, which means that the velocity vectors of robots
are reversed after collision. The distance that a robot
bounces back will not exceed that of moving towards
each other in order to prevent hitting the boundary. We
want to find whether the application of our bounceback
control between robots will affect the diffusive nature of
the swarm, which is measured by the error metric. In
the simulation where the radius of robots is considered
inconsequential, the initial positions of all the robots
are the same, which is not implementable when taking
the radius of robots into consideration. Also, the initial
positions of the robots cannot scatter randomly in the

16

scalar field since it contradicts the purpose of employing
swarm robots, so we restrict the initial positions of robots
to the domain ranging from 3.9 to 4.8 and the height
ranging from 5.9 to 6.8. The time duration of simulation
is 500 s.

Fig. 17: Sample simulation result of the distribution of
robots applying bounceback control law between robots

3) Simulation Result: Figure 17 shows the simulation
result for rows pattern of the distribution of the number
of robots N = 200 with the radius of robots R = 0.025,
the size of Gaussian blob δ = 0.2, time step dt = 0.5.
Our simulation reaches steady state at t = 349 s. The
maximum of the error metric eδN is 1.7456 and the
minimum of it reaches 0.5842.

We conjecture that the speed of convergence to the
desired distribution will slow down when the radius of
the robots R gets larger since applying the bounceback
control law between robots will slow down the speed
of movement in the area where the density of robots is
high and robots are more likely to collide with each other
when their radius becomes larger. We need simulations
to further verify the assumption.

B. 3D Simulation

1) Motivation: Since we want to apply the control
laws to crop pollination, it is sensible to consider scalar
fields in 3D. We set up simulations with the target scalar
field as the 3D row scalar field (see Figure 18) to test
whether our control laws work in 3D.

2) Results: We set the scalar field to be 100 for flower
region and 1 for the empty region. We ran 5 simulations
and measured the steady state for each simulation. The
average of number of steps to reach the steady state with

Fig. 18: The yellow semi-transparent surfaces outline the
flower regions. The dimensions of this domain are 7 ×
4.8× 5 and the dimensions of each flower row are 7×
4.5
7 × 2.

3D row scalar field is 380.2 with standard deviation of
43.69. We did similar simulation with a 2D scalar field,
too. Specifically, we kept the 2D scalar field the same as
the dissection of the 3D scalar field at z = 0. The robots
start at the same position in 2D and 3D simulations from
the top view. The average of number of steps to reach
the steady state with 2D row scalar field is 621.8 with
standard deviation of 87.84.

We conjecture that this discrepancy of how the time
convergence of the error metric originates from differ-
ence of the percentages of the area/volume of the flower
regions. For the 2D row scalar field, flower rows take up
40.2% of the total area. For 3D row scalar fields, flower
rows take up only 16.1% of the domain. Since robots
start at empty region for both cases of simulations, the
larger the empty region is relative to the domain, the
faster the robots can spread out according to the target
scalar fields. This conjecture can explain the results from
these five pairs of simulations but more simulations are
needed to further verify it.

C. Time-Varying Scalar Field

1) Motivation: Another application for swarm
robotics is surveillance or searching operations where
robots follow a moving target. We simulate this with a
time varying scalar field. In this case, the target scalar
field is a bar that spans the height of the domain and
moves sinusoidally across the domain.

2) Results: We observe that the distribution of robots
follows the motion of the scalar field (Figure 19). Further
work on calculating the error metric of a time-varying
scalar field needs to be done.

17

Fig. 19: Comparison of the Gaussian blob distribution
(top) with the position of a time-varying scalar field
(bottom) at a single time step.

IX. PHYSICAL EXPERIMENT

A. Introduction

This section focuses on the physical experiments we
did. The reasons why we conducted experiments are
that we try to verify the analytic and simulation results
mentioned in Sections IV, VII, and VI as well as the
robustness of our control laws. In this section, we will
first introduce the camera and the robot we used and
how we setup our experiments. Then we will discuss
the challenges we encountered when we conducted the
experiments. Lastly, we will analyze the experimental
results.

B. Camera

We use a Microsoft Life Camera which has 720p
resolution for videos. We fix it to the overhead pole
over the test bed.

(a)

(b)

Fig. 20: (a) The Kiwi-drive robot used in Summer 2016
REU [1]. (b) The same robot with modifications used in
summer 2017.

C. Robot

We use the Kiwi-drive robot (Figures 20a and 20b)
made by students from last summer and made some
changes to it. Students from last summer discussed
wheels, the color sensor, the processor, the battery,
and the overall structure of the robot in detail in their
final report “Decentralized Stochastic Control of Robotic
Swarm Density” Section 4.3 “Robots” [1].

Based on the design of the robot made from last
year, John Cutone, a student researcher who is not in
this summer’s REU program, added another transparent
plastic panel to the robot to better stabilize everything
on board. Students who continued this robotics research

18

Fig. 21: The robot with the tag and the black skirt.

in 2016-17 academic year installed a white ping-pong
ball on the top plastic panel and put a blue LED light
inside the ping-pong ball. For our experiments, this LED
light serves as a means for the robot to communicate
with the camera (see details in Subsection IX-E). Since
part of the battery and the microprocessor board is
blue, it confuses the camera when the camera tries to
capture the blue light from the LED. Therefore, John
added a small black covering made with cloth (referred
as “the black skirt” for the rest of the report) with
holes (see Figure 21) in the center to the top of the
robot to shade everything except the ping-pong ball.
He also added three white rods, which are projected
from the center of the robot beneath the bottom plastic
panel, to expand and hold the black skirt. Since the
camera needs to see the tag on top of the robot
and the LED light inevitably blocks some part of
the tag due to the space limit of the top panel, we
raised the tag above the ping-pong ball by fixing a
pillar on the top panel and fix the tag on top of the pillar.

D. Experiment Setup

We use row pattern printed by students from last
summer as the test bed (Figure 1b). The dimension of
the test bed is 70.1875 inches×48.125 inches with each
darker strip of the size 67.875 inches × 6.75 inches.
(Note: the white margins on the two sides of the test
bed do not have the same width and the width of one
of the margin is larger than that of any of the black
stripes.) We fix the test bed to the floor and overlay a
transparent plastic sheet with red tape on the boundary
on it. The initial position of the robot (the yellow circle
on Figure 1b) is on the corner close to the shelf and
away from the door facing the slurry group’s experiment
equipment. The coordinate is 8 inches away from the

longer side of the test bed and 9.4 inches away from
the shorter side to match the initial position of the
simulations. We decide to run each experiment for 568
steps. We choose this number by running computer
simulations with the same set of parameters and found
out that, on average, it takes 200 robots 394 steps for
their error metric to converge. We decide to let the robot
run for another 174 steps after the error metric reaches
the steady state. By some arguments involving Central
Limit Theorem, 174 is the smallest number with which
we can get a steady state error metric value very close
to the true steady state error metric value by taking the
average of the error metric for all steady state steps.

E. Communication between the Robot and the Camera

1) Tag Tracking: We adopt the method students from
last used, which is mentioned in Section 4.2 of last
year’s final report [1], to track the tag and record the x,y
coordinates of the robot. Besides the outputting the x, y,
time data, we also generate videos of each experimental
run and output it. We automate the process of starting
and ending the recording. After the robot stands still for
more than 200 consecutive frames, the recording on the
camera/desktop computer end stops itself.

2) LED Light Capture: The robot keeps the blue light
on when it is moving, i.e. from its first step to the last
step. The camera starts recording when it detects the
blue light from the LED light. Since the tag is above the
LED light, the LED light might be shaded and it cannot
be detected by the camera depending of the relative
position between the robot and the camera. Therefore,
before every experiment run, we put the robot on its
initial position with the LED light facing the camera.

F. Challenges and Solutions

This subsection includes challenges we encountered
when we ran physical experiments. We will also discuss
the analysis and solutions, if available.

1) Recording before the Robot Starts Moving: Like
we mentioned in the Subsection IX-E, we try to start
the recording as soon as the robot begins its first step.
However, we noticed that the camera sometimes picks
up more blue pixels than the existing pixels in the
designated region in the first few milliseconds after the
camera is turned on. We tried to delay the camera’s
detection of the blue light but this solution only solved
this problem partially.

2) Robot Stops Prematurely: We noticed that the
robot stopped prematurely before it finished all of steps
sometime. We confirmed that this problem is not caused
by the test bed, the color sensor, servos, and any mechan-
ical failures. In the end, we tweaked the end of wires on
the robot to tighten the connection between the wires and

19

Fig. 22: The error metric eδN of a simulation and ex-
periments over time. The error metric corresponding to
the experiments does not reach steady state whereas that
corresponding to the simulations reaches steady state.

the female connector and the problem has not happened
again since we made the fix.

3) Out of Bounds: The robot sometimes ran out
of the boundary marked by the red tape instead of
bouncing back as it should do. We believe that this
problem is related to the fact that the robot rotates when
it is moving. If the robot’s previous position is very
close to one of the boundaries and its new direction
forms a very small angle with the closest the boundary,
the robot might end up moving in a direction parallel
to the boundary when it is on the boundary region (red
tape). Then, after the robot bounces back, it moves to
the opposite direction but the direction is still parallel.
Depending on how the robot rotates while it is bouncing
back, it could either go out of bound or come back to
the test bed region. We have tried to find out why the
robot rotates even though it is not programmed to do
so but we could not figure out the causes. If the robot
goes out of the boundary for any experiment run, we
terminate the experiment and delete all of files related
to that run.

G. Result

We finished 228 experiment runs. Ignoring some runs
with too much invalid data, we have 200 runs of data.
We overlap 200 runs’ data as if 200 robots were used in
one experiment run, calculate the error metric, and get
the error metric curve in Figure 22. The error metric
calculated with the experimental data is significantly
greater than the one calculated with the simulation with
the same set of parameters. Also, after applying way
to measure the steady state discussed in Section III, we
noticed that the experiment error metric did not converge.

When we ran the experiments, we noticed that the
robot almost never went to the bottom left corner of the
test bed (Figure 1b). This might partially explain why
the experiment error metric is higher than the simulation
error metric. We also suspect that the robot did not follow
the control law and the boundary control law exactly. We

have started investigating the experimental data to check
whether the directions the robot travelled are randomly
drawn from uniform distribution. From our preliminary
analysis of the experimental data from 25 experiment
runs, we found out that the directions are not uniformly
distributed. Further analysis of the experimental data
may include investigating the speed of the robots to
verify that the speeds are normally distributed. It also
remains to be verified that the speed of the robot scales
correctly according to the target scalar field. That is, the
average speed in the white regions of the test bed should
be 6 times as much as the average speed in the black
regions.

X. DETERMINISTIC CONTROL LAW

The diffusion of our robotic swarm can be modeled
using the partial differential equation

ut −∆

(
u

F (x)

)
= 0 in Ω× (0,∞), (9)

n · ∇
(

u

F (x)

)
= 0 on ∂Ω× (0,∞), (10)

where F (x) is the desired distribution. One method for
approximating the solution to this PDE is to convolve
a distribution of Dirac masses with a smooth mollifier
function, φε [2]. This gives

ρε(x, t) = φε ∗
N∑
i=1

δ(xi(t)− x)mi.

Through the sifting property, this becomes

ρε(x, t) =

N∑
i=1

φε(x− xi(t))mi, (11)

which represents the superposition of N blobs as an
approximation to u. In order to specify the trajectory
of each blob, we let the blob position follow the ODE

ẋi(t) = v(xi(t), t), (12)

where the velocity v comes from the gradient flow
structure of the PDE. For (9) this becomes

vk(x, t) = −a(x)

N∑
i=1

∂xkφε(x− xi(t))mi

ρε(xi(t))

− a(x)
∂xkρε(x)

ρε(x)
− axk(x), (13)

where a(x) = 1/F (x) and v = (v1, v2, . . . , vd).
Hence, by representing each robot by one of the blobs,
the swarm diffusion can be deterministically controlled
according to these ODEs. Advantages to this method
are natural adaptation to non-uniform scalar fields and
high spatial dimensionality, as well as a suspected error
convergence of O(N−1), as opposed to the slower

20

O(N−1/2) of the stochastic control law. However, the
trajectory of each robot is now dependent on not only
the local scalar field, but also its relative distance from
the other N − 1 robots. This requires the robots to have
localization and communication capabilities. For large
swarms, the velocity of a given robot may be dominated
by only its nearest neighboring robots. Therefore, ad-
vanced implementations of this control law may enforce
sparsity patterns where the influence between two robots
is low, effectively lowering computation time.

A. Implementing Boundary Conditions

Although the solution defined by (11), (12), and (13)
is claimed to converge to u as ε → 0 and N →
∞, there is no explicit implementation of the no-flux
boundary condition (10). To approximate this boundary
condition, the scalar field can be modified such that
F (x) ≈ 0 for all x /∈ Ω. For a strictly positive F ,
this results in a large potential around the boundary ∂Ω
which prevents the blobs from exiting the domain. In the
one-dimensional case, this modification is as simple as
multiplying the scalar field by steep sigmoid functions
at the boundaries.

B. One-Dimensional Simulations

To test the capabilities of this control law, we ran
simulations for N = 200 robots over a bounded domain
x ∈ (−100, 100) with a non-uniform scalar field. The
initial distribution is taken to be

u(x, 0) =

{
1−

(
x
50

)2
, x ∈ (−50, 50),

0, x /∈ (−50, 50).

The desired distribution is

F (x) = S(x)
[
cos
(x

10

)
+ 3
]
,

where S is the sigmoid function

S(x) =
1

1 + e−10(x+100)
− 1

1 + e−10(x−100)
.

Our choice of mollifier is a standard Gaussian;

φε(x) =
1

ε
√

2π
e−(x/ε)2/2.

The mollifier width ε is analogous to the robot radius
δ used for the Gaussian blobs in the stochastic control
law. To choose the mollifier width ε and the initial
configuration of blobs, we resort to minimizing the L1

norm of the difference between the initial condition and
approximate solution;

e =

∫
Ω

| u(x, 0)− ρε(x, 0) | dx.

This minimization is carried out using MATLAB’s
fmincon optimization function. The resulting approxi-
mation is shown in Figure 23 with an optimal mollifier
width of ε = 2.2944.

Fig. 23: Approximation of initial condition using
fmincon.

Fig. 24: Robot trajectories for N = 200.

Using the initial distribution of Figure 23, the simu-
lation is carried out with constant mollifier width, and
the robot trajectories and resulting distribution evolution
are shown in Figures 24 and 25 respectively. To validate
this method of control, the robot diffusion governed by
(9) and (10) is also solved using the built-in MATLAB
function pdepe and shown in Figure 26. The two
PDE solutions show very close agreement, indicating the
accuracy of this control law in representing diffusion at
the macroscopic level.

21

Fig. 25: Robot diffusion through time. Robot distribution
converges toward the desired sinusoidal distribution.

Fig. 26: Finite difference solution to robot diffusion
equation.

XI. CONCLUSION

In conclusion, we have presented a robotic swarm
algorithm that takes a swarm of robots with no com-
munication or localization capabilities and distributes
them according to a scalar field. While we found some
warping of the target distribution in the corners of
our regions, we have verified the robustness of our
bouceback boundary control law and stochastic control
law with simulation data for non-uniform 2D, 3D, and
time-varying scalar fields, and compared our bounceback
boundary control law to other possible control laws.
Further, we showed that for regions far from corners,
our control law preserves and tends towards the target
distribution when the target distribution is uniform. We
have found a reliable way to measure steady state on
arbitrary scalar fields, and contextualized our steady state
error metric values by approximating lower bounds on

error. We also found the PDF error values when the
robots are distributed according to the target distribution.
Furthermore, we investigated the relationship between
convergence of our error metric and convergence of the
PDE solution to steady state. Lastly, we adapted Bertozzi
and Craig’s blob method [2] for solving our robot dif-
fusion PDE, and developed a method for implementing
no flux boundary conditions for this approach.

ACKNOWLEDGMENT

The authors would like to thank our incredibly sup-
portive advisors, Olga Turanova and Matt Haberland.
Thank you two for teaching us how to do research,
creating a collaborative and productive work environ-
ment, and for your infinite patience. We also would like
to thank Andrea Bertozzi, who created this team and
guided us with her expertise. We would like to thank Hao
Li for fruitful conversation and great paper suggestions.
Lastly, we would like NSF Grant 1659676 for funding
this project.

REFERENCES

[1] S. Berman et al., “Decentralized Stochastic Control of Robotic
Swarm Density,” UCLA, Los Angeles, CA, Aug. 2016.

[2] K. Craig, and A. Bertozzi. “A blob method for the aggregation
equation,” Mathematics of Computation, vol. 85, no. 300, pp.
16811717, 2016.

[3] K. Elamvazhuthi et al. “Coverage and Field Estimation on
Bounded Domains by Diffusive Swarms,” In IEEE Conference on
Decision and Control (CDC), pp. 6300-6307. IEEE. 2016.

[4] E., Giné, et al. “The L1 density estimator process,” The Annals
of Probability, vol. 31 pp. 719-768. 2003.

[5] B, Hansen. Lecture Notes on Nonparametrics. 2009. [Online]
[6] J. Hartinger and R. Kainhofer. “Non-Uniform Low-Discrepancy

Sequence Generation and Integration of Singular Integrands,”
Monte Carlo and Quasi-Monte Carlo Methods, pp. 163-179, 2004.

[7] L. Horváth, “On Lp norms of multivariate density estimators,”
Ann. Statist. vol. 19, pp. 1933-1949. 1991.

[8] H., Li et al. “Decentralized Stochastic Control of Robotic Swarm
Density: Theory, Simulation, and Experiment,” Proc. of Interna-
tional Conference on Intelligent Robots and Systems, 2017.

[9] L.E. Payne and H. F. Weinberger. “An Optimal Poincaré Inequal-
ity for Convex Domains,” Archive for Rational Mechanics and
Analysis. Vol. 5, pp. 286-292, 1960.

[10] I. Sloan. “Integration and Approximation in High Dimensions,”
Uncertainty Quantification, Edinburgh, May 2010.

[11] P. Szymczak and A. J. C. Ladd, “Boundary conditions for
stochastic solutions of the convection-diffusion equation,” Physical
Review E, 68(3), 2003.

[12] T. T. Tay et al., “Off-line Controller Design,” in High perfor-
mance control, Birkhuser, ch. 4, pp. 93, 2012.

22

