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Abstract

Methods to certify the robustness of neural networks in the presence of input uncertainty are vital
in safety-critical settings. Most certification methods in the literature are designed for adversarial or
worst-case inputs, but researchers have recently shown a need for methods that consider random input
noise. In this paper, we examine the setting where inputs are subject to random noise coming from
an arbitrary probability distribution. We propose a robustness certification method that lower-bounds
the probability that network outputs are safe. This bound is cast as a chance-constrained optimization
problem, which is then reformulated using input-output samples to make the optimization constraints
tractable. We develop sufficient conditions for the resulting optimization to be convex, as well as on
the number of samples needed to make the robustness bound hold with overwhelming probability. We
show for a special case that the proposed optimization reduces to an intuitive closed-form solution. Case
studies on synthetic, MNIST, and CIFAR-10 networks experimentally demonstrate that this method is
able to certify robustness against various input noise regimes over larger uncertainty regions than prior
state-of-the-art techniques.

1 Introduction

Real-world data is inherently uncertain. Such uncertainty comes in a variety of forms, including random
measurement noise, adversarial attacks, and even structural perturbations in the underlying graph topology
of networked systems [1–3]. Despite their excellent performance in a variety of decision and control tasks,
e.g., distributed control using graph neural networks [4], researchers have found that neural networks are
highly sensitive to uncertainties in their inputs [5–7]. This sensitive behavior is intolerable when using neural
networks to operate safety-critical control systems, such as the power grid [8]. As a result, a large emphasis
has been placed by researchers on the development of methods that certify the robustness properties of
neural networks.

Much of the literature on robustness certification has revolved around adversarial inputs, i.e., inputs
with small-magnitude perturbations that are designed to cause a worst-case prediction [9–12]. However, as
argued in [13] and [14], random input uncertainty better models reality in many applications. Areas that
commonly use a probabilistic model of uncertainty include stochastic control and finance, where unpredictable
measurement errors and state disturbances are assumed to be random [15, 16]. The stochastic framework
also naturally encapsulates applications where unbounded uncertainties may exist, albeit with an extremely
low probability. This is typical in real-world applications such as aviation [17]. In fact, the International
Organization for Standardization (ISO) asserts in their guide on safety aspects that there is never absolute
safety, and therefore the goal is to achieve what they define to be tolerable risk [18,19]. Not only are random
uncertainties pervasive and realistic, they have been shown to pose a legitimate threat—small uniform noise
causes misclassification rates of well over 10% on MNIST and CIFAR-10 networks, and for Bernoulli noise
the misclassification rates become drastically worse, sometimes reaching 100% [20].

The aforementioned motivations have led to an influx of recent works considering robustness against
random inputs, which we review in Section 1.1. Many of them make stringent assumptions on the structure
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of the network or input distribution, or the formal certification guarantees are relaxed or eliminated in order
to enhance computational tractability. Since neural networks are more sensitive to adversarial inputs than
to random input noise [1], worst-case sensitivity analyses are too conservative for random input noise when
the goal at hand is to achieve a tolerable risk level, whereas high-probability robustness certificates may
completely fail in the presence of adversaries; the two settings are disjoint and should be studied using
distinct methods. Consequently, our study is intended to certify robustness against random input noise with
minimal conservatism, and is not intended to assess adversarial robustness.

1.1 Related Works

In this section, we review the state-of-the-art methods for assessing robustness to random inputs, highlight
their usages, and address their limitations. For instance, [14] defines robustness as the network output being
Lipschitz continuous with high probability when two inputs are chosen randomly. Their proposed method
is limited to neural networks composed of conditional affine transformations, e.g., ReLU networks. On the
other hand, [20] analytically bounds the probability that a classifier’s margin function exceeds a given value.
Although this probabilistic method applies to general neural network models, it assumes that the random
input noise is constrained to an `p-norm ball and is either Gaussian or has independent coordinates. Fur-
thermore, their bounding technique relies on worst-case analysis methods, making their resulting certificates
relatively loose (see Section 6).

In [13], robustness is measured by the probability that random input noise results in misclassification. The
authors propose a sampling-based approximation of the robustness level. However, no theoretical guarantees
are given to certify the network’s robustness. Contrarily, [21] formally bounds the probability that a random
input maps to an unsafe output. However, the bounding function is nonconvex, and therefore obtaining
tight bounds amounts to nonconvex optimization. Alternatively, [1] bounds the size of a random input
perturbation that causes a classifier prediction error with high probability. Their bounds provide elegant
theoretical guarantees, but they depend on the network’s worst-case robustness level, which is generally
NP-hard to compute without approximation errors or additional assumptions [10,22].

The works [23] and [24] provide methods to guarantee that network outputs do not significantly deviate
from the nominal output when the input is subject to random uncertainty. This corresponds to the problem
of localizing the network outputs within the output space. The work [23] uses the output localization to
issue high-probability guarantees for the network’s robustness. However, their method requires solving a
semidefinite program, and their results are demonstrated on small, single-layer networks, so it is not clear
whether their method scales to realistic applications. The concentration bounds presented in [24] can be
applied to deep networks, but their localization results do not immediately translate into a meaningful
certificate of robustness.

The authors of [25] and [26] use input-output samples to learn how input noise is propagated to the
output space through a method called scenario optimization. This approach naturally embeds the stochastic
nature of the input noise into the assessment procedure. The work [25] provides a method to estimate
a network’s set of possible outputs, but this localization may fail to determine the safety of the output
since the underlying optimization does not directly consider any safety specifications, e.g., classification
boundaries. We demonstrate this phenomenon in Section 6.2. Other scenario-based output set estimation
techniques for general nonlinear maps, such as [27–29], suffer from the same limitation in the context of
neural network certification. Contrarily, [26] directly considers output safety in their scenario approach.
However, their method makes use of an affine approximation to the network’s nonlinear margin function, a
worst-case analysis technique from the adversarial robustness literature. In our experiments, we show that
this worst-case technique yields loose robustness bounds as the size of the input noise increases.

Finally, [17] also uses sampled data to bound the probability of failure. Their guarantees take the probably
approximately correct (PAC) form in terms of probability levels ε, δ ∈ [0, 1], and they improve the sample
complexity from O( 1

ε2 log 1
δ ) of the naive Chernoff bound to O( 1

ε log 1
δ ). This is achieved by imposing a

Bayesian framework and assuming that the failure probability follows a uniform prior distribution. As the
authors remark, this is a “very conservative choice.” In contrast, the method to be proposed in this paper
solves for the optimal (least conservative) robustness bound of this form with the same O( 1

ε log 1
δ ) sample

complexity.
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1.2 Contributions

In this paper, we develop a data-driven framework for certifying neural network robustness against random
input noise using scenario optimization. Our direct approach avoids worst-case analysis techniques, such as
those found in the adversarial robustness literature, e.g., [20], and also avoids the need for selecting a Bayesian
prior distribution governing the network’s failure probability, as in [17]. The procedure is capable of localizing
network outputs into a general class of sets, and we develop sufficient conditions on this class to ensure that
the procedure amounts to a convex optimization problem. Furthermore, we develop formal guarantees that
the resulting robustness certificate holds with overwhelming probability upon using sufficiently many samples
in the scenario optimization. Although the method is applicable to all neural networks and all input noise
distributions, we show how to exploit the structure of networks with affinely bounded activation functions
in order to reduce sample complexity.

Our numerical experiments demonstrate that the proposed optimization is capable of issuing robustness
certificates in cases where the two-step process of optimally localizing the outputs (e.g., using [25]) and
then certifying them cannot, providing a novel perspective that output set estimation techniques do not
necessarily work well for certification. Furthermore, we show on both synthetic networks and large MNIST
and CIFAR-10 networks that our robustness bounds are much tighter than those obtained by the state-of-
the-art method [20], particularly for large noise levels.

1.3 Outline

We begin by formulating the certification problem in Section 2. In Sections 3 and 4, we propose an op-
timization to solve for the high-probability robustness certificate, and then show that it suffices to solve
a data-driven convex optimization problem with sufficiently many samples. Next, we demonstrate how to
exploit the neural network structure to reduce the sample complexity of the proposed method in Section 5.
We numerically illustrate the results and compare to state-of-the-art methods in Section 6. We conclude in
Section 7. Proofs and various supplementary materials are presented in the appendices.

1.4 Notations

The ceiling of x ∈ R is written dxe. For x, y ∈ Rn, we define [x, y] = {z ∈ Rn : x ≤ z ≤ y}, where the
inequalities are interpreted element-wise. Given a set X , we denote its power set by P(X ). The Minkowski
sum of sets X and Y is defined as X + Y = {x + y : x ∈ X , y ∈ Y}. We define R++ = {x ∈ R : x > 0}.
For a function f : Rm → Rn, we write the image of X ⊆ Rm under f as f(X ) = {f(x) ∈ Rn : x ∈ X}.
If g : Rn → Rp is another function, we define the composition g ◦ f : Rm → Rp by g ◦ f(x) = g(f(x)).
If X : Ω → Rn is a random variable on a probability space (Ω,F ,P), g : Rn → R is a Borel measurable
function, and c ∈ R, we use the notation P(g(X) ≥ c) to mean P({ω ∈ Ω : g(X(ω)) ≥ c}). Similarly,
if S ⊆ Rm is a Borel set and h : Rn → Rm is a Borel measurable function, we write P(h(X) ∈ S) to
mean P({ω ∈ Ω : h(X(ω)) ∈ S}). For a norm ‖ · ‖ on Rn we denote its dual norm by ‖ · ‖∗, where
‖y‖∗ = sup{x>y : ‖x‖ ≤ 1}. We assume throughout that optimization problems are attained by a solution.

2 Problem Statement

2.1 Network Description, Safe Set, and Safety Level

In this paper, we consider a Borel measurable neural network f : Rnx → Rny with arbitrary structure and
parameters.1 We assume that the input to the network is a random variable X : ΩX → Rnx on a fixed
probability space (ΩX ,FX ,PX).2 We do not assume that the distribution PX is exactly known—we only
assume that we are able to sample from PX . The support of the probability measure PX is called the input
set, which is denoted by X ⊆ Rnx . The output set of the network is defined to be Y = f(X ) ⊆ Rny .

1Borel measurability of the network is almost always satisfied in practice. Indeed, every continuous function is Borel
measurable.

2It is easily verified that all probabilistic expressions in this paper are well-defined from a measure-theoretic perspective. We
leave out these measurability verifications for the sake of exposition.
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Next, consider a given convex polyhedral safe set S = {y ∈ Rny : Ay + b ≥ 0}, where A ∈ Rns×ny and
b ∈ Rns . Without loss of generality, we assume that ns = 1, henceforth setting A = a> ∈ R1×ny and b ∈ R.3

The results of this paper can be immediately generalized to the case where ns > 1. See Appendix B for a
detailed explanation.

The elements of the set S are considered to be safe. For a point y in the output space Rny , the value
s(y) = a>y+ b is called the safety level of y. The point y is safe if and only if its safety level is nonnegative.
Broadly speaking, the overall goal of this paper is to certify that the random output Y = f(X) is safe. When
this holds for all or many of the possible outputs in Y, we obtain a natural certificate for the robustness of
the network against the random noise.

Example 1. When f is an ny-class classifier and x̄ ∈ Rnx is a deterministic nominal input with class
i∗ ∈ arg maxi∈{1,2,...,ny}fi(x̄), a common goal is to certify that additive random noise δ on x̄ does not cause
misclassification [20]. This problem falls within our framework by defining the safety level of f(X) to be the
margin function value gi(X) := fi∗(X)− fi(X) for X = x̄+ δ.

2.2 Various Notions of Robustness

We now use the safety level of outputs to introduce three meaningful notions of robustness against random
input noise, and discuss how they are related to one another.

2.2.1 Deterministic Robustness Level

The deterministic robustness level of the network is defined as

r∗ = inf
y∈Y

a>y + b. (1)

If r∗ ≥ 0, then Y ⊆ S, implying that the random output Y = f(X) is safe with probability one. This notion
of robustness coincides with that used when considering adversarial inputs [9,11,12], but the resulting worst-
case safety level is often much lower than the safety levels of random outputs in practice [13]. Consequently,
using r∗ to assess robustness may falsely indicate that the network is sensitive to the input noise.

2.2.2 Approximate Robustness Level

Although r∗ can issue strong guarantees about the safety of the network output, (1) amounts to an intractable
nonconvex optimization problem, since Y is generally a nonconvex set. Instead of computing r∗, we can
consider approximating it by

r̂(Ŷ) = inf
y∈Ŷ

a>y + b, (2)

where Ŷ ⊆ Rny , termed the surrogate output set, is more tractable than Y, and preferably convex. We call
(2) the approximate robustness level of the network. If Y ⊆ Ŷ, then r̂(Ŷ) ≤ r∗. In this case, if r̂(Ŷ) ≥ 0,
then the random output Y = f(X) is safe with probability one. In general, choosing Ŷ to cover Y makes
r̂(Ŷ) an over-conservative measure of robustness for the same reasons r∗ is.

2.2.3 Probabilistic Robustness Level

The notion of deterministic robustness is too strong for applications involving random input noise, as many
input distributions have unbounded support or have their worst-case inputs in regions of low probability
measure [13]. Furthermore, (1) and (2) neglect the distributional information given for X. This conservatism
means that the robustness levels (1) and (2), with Y ⊆ Ŷ, are generally unable to certify that Y is safe,

3The polyhedral safe set assumption is without loss of generality. Suppose that the safe set is S = {y ∈ Rny : a>g(y)+b ≥ 0}
for some nonlinear Borel measurable g : Rny → Rnz and some a ∈ Rnz , b ∈ R. Then we can reduce the problem to our assumed
form by considering f ′ := g ◦ f to be the (Borel measurable) neural network and S′ := {z ∈ Rnz : a>z + b ≥ 0} to be the
(polyhedral) safe set, since then f(x) ∈ S if and only if f ′(x) ∈ S′, for all x ∈ X . The architecture-dependent results of Section
5 must be applied to f ′ with care, since g must now be considered as another layer in the network, making Assumptions 1 and
2 to follow slightly more stringent.

4



even when Y concentrates around safe outputs. Consequently, for a prescribed probability level ε ∈ [0, 1],
we define the more natural probabilistic robustness level of the network to be

r̄(ε) = sup{r ∈ R : PX(a>f(X) + b ≥ r) ≥ 1− ε}. (3)

Intuitively, the random output f(X) has a safety level at least r̄(ε) with high probability. In the case that
r̄(ε) ≥ 0, we certify that the random output Y = f(X) is safe with probability 1 − ε, and we say that the
network is probabilistically robust.4 Another interpretation of probabilistic robustness is that the majority
of possible outputs (with respect to the distribution PX) are safe. The probabilistic robustness level is
catered towards our setting of random input noise, and, compared to the worst-case alternatives, reduces
conservatism by considering the actual likelihood of the possible inputs. This is precisely the notion of
robustness we adopt in this paper. We remark that this definition of probabilistic robustness coincides with
that used in [13] and [20], albeit our subsequent analysis and guarantees vastly differ from these works.

Example 2. Consider again the classification network in Example 1. In this setting, if r∗ ≥ 0, then the
probability of misclassification is zero, in which case the noise δ is not important. On the other hand, if
there exists a perturbed input x̄+ δ in the input set X that is misclassified, then r∗ < 0. It may be the case,
however, that this misclassification occurs with a sufficiently low probability with respect to the tolerance
ε. This is precisely what we seek to certify: that the probability of misclassification is less than ε, which
mathematically amounts to showing that r̄(ε) ≥ 0.

In this paper, we aim to certify the safety of Y = f(X) by lower-bounding the probabilistic robustness
level r̄(ε). A trivial lower bound is easily verified: r∗ ≤ r̄(ε) for all ε ∈ [0, 1], and r∗ = r̄(0). However, as we
will see in Section 6, this approach of considering worst-case inputs instead of likely inputs, often results in
a very loose lower bound, sometimes failing to issue a robustness guarantee at all. In the next section, we
show that by using a special type of surrogate output set in r̂(Ŷ), we can optimize a lower bound on r̄(ε)
and obtain an estimate of the output set Y as a natural byproduct.

3 Formulating the Certificate

3.1 Bounding the Probabilistic Robustness Level

As we have seen, r̂(Ŷ) ≈ r∗ ≤ r̄(ε). Two natural questions arise. 1) Can one use r̂(Ŷ) to certifiably lower-
bound the quantity r̄(ε) of interest? 2) If so, how can Ŷ be chosen to optimize the bound? In this section,
we study the first question. As it turns out, such a lower bound holds so long as Ŷ has high enough coverage
over Y. Before proving this claim, we formally define this notion of coverage.

Definition 1. Let Ŷ be a subset of Rny . For ε ∈ [0, 1], the set Ŷ is said to be an ε-cover of Y = f(X ) if Ŷ
is Borel measurable and PX(f(X) ∈ Ŷ) ≥ 1− ε.

Intuitively, an ε-cover of Y is a set that contains Y = f(X) with high probability. If we can compute
an ε-cover of Y, then we will have localized the output with high confidence. By restricting Ŷ in (2) to be
an ε-cover of Y, we ensure that the approximate robustness level takes into account the likely inputs X,
but not necessarily the worst-case inputs. Consequently, this permits r̂(Ŷ) to be greater than r∗, reducing
the conservatism in our measure of robustness caused by unlikely worst-case inputs. We now show that this
special type of surrogate output set is a good enough estimate of Y to maintain the lower bound on r̄(ε)
that we seek.

Proposition 1. Let Ŷ be an arbitrary subset of Rny . If Ŷ is an ε-cover of Y = f(X ), then

r̂(Ŷ) ≤ r̄(ε). (4)

Proof. See Appendix A.

4Note the distinction: “safety” is a property of outputs, whereas “robustness” is a property of the neural network (with
respect to the noisy input distribution PX). We are always careful when using these terminologies.
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3.2 Optimizing the Bound

From Proposition 1, we know that ε-covers constitute good choices of the surrogate output set Ŷ used to
compute the approximate robustness level. This is because the random output Y = f(X) is guaranteed to
have safety level at least r̂(Ŷ) with high probability. However, it is entirely possible that the choice of ε-cover
results in r̂(Ŷ) < 0, even when the network is probabilistically robust. In this case, r̂(Ŷ) fails to issue a
high-probability certificate for the safety of the random output Y = f(X), despite Ŷ being able to localize
it.

To overcome the above problem, we turn to studying our second inquiry from earlier, namely, how to
optimize the lower bound (4). This amounts to finding an ε-cover of Y that maximizes r̂(Ŷ). Since optimizing
over all subsets of Rny is intractable, we restrict our search to sets within a class H = {h(θ) : θ ∈ Θ}
parameterized by a parameter set Θ ⊆ Rp and a set-valued function h : Rp → P(Rny ). We assume throughout
that the class H is chosen such that h(θ) is a Borel set for all parameters θ ∈ Θ. A concrete example of one
such class is given below.

Example 3. Let ‖ ·‖ be a fixed norm on Rny and Θ = Rny ×R++. Defining p = ny+1, let h : Rp → P(Rny )
be defined by h(ȳ, r) = {y ∈ Rny : ‖y − ȳ‖ ≤ r}. Then, Θ and h(·) define the class of ‖ · ‖-norm balls:

H =
{
{y ∈ Rny : ‖y − ȳ‖ ≤ r} : r > 0, ȳ ∈ Rny

}
.

The problem of choosing h(·) and Θ (and therefore also H) is discussed in detail in Section 4. By
restricting our search for ε-covers to within the class H, our search reduces to maximizing the approximate
robustness level over the parameter set Θ. By slightly abusing notation, we denote the dependence of the
approximate robustness level on the parameter θ explicitly as r̂(θ) = inf{a>y + b : y ∈ h(θ)}, and we
formulate the following optimization problem:

maximize
θ∈Θ

r̂(θ)− λv(θ)

subject to PX(f(X) ∈ h(θ)) ≥ 1− ε,
(5)

where λ ≥ 0 and v : Rp → R is taken to be a nonnegative convex function on Θ that increases with the
volume of h(θ). The objective r̂(θ) in (5) is the approximate robustness level computed using the set h(θ) as
the surrogate output set. The constraint PX(f(X) ∈ h(θ)) ≥ 1−ε enforces that we only consider parameters
θ such that h(θ) is an ε-cover of Y. The regularization term −λv(θ) penalizes the size of h(θ). This makes
the set h(θ) as small as possible while maintaining its ε-coverage, thereby yielding the tightest localization
of the output Y . The regularization is done at the expense of a slightly suboptimal bound (4), and can be
eliminated by setting λ = 0, if no localization of the output Y is desired. On the other hand, increasing λ
amounts to putting more assessment effort into localizing Y , making the ε-cover h(θ) a better estimate of
Y. This certification-localization tradeoff is experimentally explored in Section 6.1.

4 Data-Driven Reformulation

Even when the set h(θ) is convex for all θ ∈ Θ, the probabilistic constraint in (5) is in general nonconvex
[30]. Constraints of this form are referred to as chance constraints, and there exist various approaches
to reformulating and relaxing them into convex constraints. Since the problem at hand considers neural
networks whose models are usually complicated to analyze, but whose input-output samples are easily
obtained, we seek a data-driven approach to approximately enforcing the chance constraint in (5), without
losing the robustness certificate provided by the solution. The scenario approach is a popular method
within the stochastic optimization and robust control communities that replaces the chance constraint with
hard constraints on a number of random samples [30–33]. The scenario approach has been studied for
general problems, even those with nonconvex objectives and those whose resulting hard constraints are
nonconvex [34]. However, the most powerful use of scenario optimization arises when the resultant scenario
problem is convex, as then a priori probabilistic guarantees can be made about the solution’s feasibility for
the original chance constraint. As we will soon see, this sampling-based method fits nicely into the framework
of our problem, and maintains a lower bound on r̄(ε) with high probability, provided that a sufficiently large
number of samples is used and the scenario problem is convex.
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To implement the scenario approach, suppose that {xj : j ∈ {1, 2, . . . , N}} ⊆ X is a set of N independent
and identically distributed samples drawn from PX . For each input xj , we compute its corresponding output
yj = f(xj). Then, replacing the chance constraint in (5) with N hard constraints on the samples yj yields
the following scenario optimization:

maximize
θ∈Θ

r̂(θ)− λv(θ)

subject to yj ∈ h(θ) for all j ∈ {1, 2, . . . , N}.
(6)

Note that, because the data yj is random, solutions θ∗ to (6) are random. We assume throughout the
paper that (6) is attained by a solution θ∗, and we denote the probability space on which it is defined by
(Ωθ∗ ,Fθ∗ ,Pθ∗).
Remark 1. The above assumption of independent and identically distributed samples is critical for relating
the solution θ∗ back to the original chance-constrained problem (5). In particular, it is a key assumption on
which the forthcoming high-probability robustness certificate in Theorem 2 rests. Despite these assumptions
holding in many practical models, the independence may be violated in certain applications with inherent
time-correlation between samples, and the assumption prevents the use of selective sampling to improve the
efficiency of the scenario approach.

The identical distribution assumption is also critical, and it may be violated in two main ways. First,
the underlying distribution of the data used in (6) may change from sample to sample, and second, the
underlying noise distribution of the actual input may be different in practice from the samples used in the
robustness certification procedure. Despite these sources of modeling error, our scenario-based approach can
be modified into a distributionally robust variant to still give high-probability robustness certificates in the
case that the distribution of the input is contained in a finite set of possible distributions.

As mentioned in Section 1.1, the scenario approach was used recently in reachable set estimation for
dynamical systems [25]. We remark that (6) recovers the scenario optimization of [25] in the special case
that the objective is re-scaled to 1

λ r̂(θ)− v(θ) and λ→∞, the regularizer v(θ) equals the volume of the set
h(θ), and H is the norm ball class. This reduction amounts to finding the tightest norm ball ε-cover of Y,
without regard to optimizing the lower bound (4) of interest. In Section 6.2, we demonstrate the necessity
for the more general formulation (6) by giving an example where reducing to the special case of [25] causes
robustness certification to fail, despite finding the tightest ε-cover of Y.

Although the scenario approach has eliminated the chance constraint from (5), there remain two problems
to consider. First, it is not immediately clear whether (6) is convex or computationally tractable, as it has
an inherent max-min optimization structure. However, it is important to ensure the problem’s convexity,
since no a priori guarantees can be made regarding the feasibility of θ∗ for the original chance constraint in
the general case of nonconvex scenario optimization [34]. In Section 4.1, we leverage results from parametric
optimization to develop conditions on our choice of Θ and h(·) to ensure that (6) is convex. Second, the
solution of (6) gives a random approximation to the solution of (5), which optimizes the bound (4) on r̄(ε).
In Section 4.2 we develop formal guarantees showing that the solution of (6) maintains a lower bound on
r̄(ε) with high probability, provided that N is sufficiently large.

4.1 Conditions for Convex Optimization

In this section, we consider the choices of the parameter set Θ and the set-valued function h(·) on lower-
bounding r̄(ε), and on the tractability of the resulting scenario problem (6). A key insight is this: an ε-cover
of Y may in general be much larger than Y itself. This is because regions of an ε-cover that do not intersect
with Y also do not count towards the coverage proportion 1 − ε. Therefore, if the class H from which
we choose an ε-cover does not have high enough complexity, then the ε-covers within H may need to be
exceedingly large in order to achieve ε-coverage.

The problem with unnecessarily large ε-covers is that the feasible set in the optimization defining r̂(θ)
includes many vectors y that may not be actual outputs in Y. In this case, r̂(θ) is small, even though r̄(ε)
may be large. To avoid this problem, our choice of Θ and h(·) should ensure that the class H has high enough
complexity. However, our choices should also yield a scenario problem (6) that is convex. Indeed, Theorem
1 gives sufficient conditions for the convexity of the scenario problem. Before presenting these conditions,
let us recall a fundamental definition for set-valued functions.
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Definition 2. A set-valued function h : Rp → P(Rny ) is said to be convex on a convex set Θ ⊆ Rp if(
λh(θ1) + (1− λ)h(θ2)

)
⊆ h(λθ1 + (1− λ)θ2)

for all θ1, θ2 ∈ Θ and all λ ∈ [0, 1]. The function h(·) is said to be concave on Θ if

h(λθ1 + (1− λ)θ2) ⊆
(
λh(θ1) + (1− λ)h(θ2)

)
for all θ1, θ2 ∈ Θ and all λ ∈ [0, 1]. Finally, the function h(·) on Θ is said to be affine if it is both convex
and concave.

Example 4. Consider the norm ball class H given in Example 3. It is easily verified by Definition 2 that
the set-valued function h(·) defining the class H is affine on Θ = Rny × R++.

With tools for defining and proving convexity of set-valued functions now in place, we can present
conditions under which the scenario optimization (6) is convex, and therefore easily solvable. In Theorem
2, we will also rely on this convexity to guarantee with high probability that h(θ∗) is an ε-cover of Y and
that our desired lower bound r̂(θ∗) ≤ r̄(ε) holds. Generating such guarantees is in general not possible for
nonconvex scenario optimization [34], further illustrating the importance of Theorem 1 below.

Theorem 1. Consider the scenario problem (6). Suppose that Θ takes the form

Θ = {θ ∈ Rp : gi(θ) ≤ 0 for all i ∈ {1, 2, . . . ,m}},

where every gi : Rp → R is convex. Furthermore, suppose that h(·) is a concave set-valued function that takes
the form

h(θ) = {y ∈ Rny : hi(y, θ) ≤ 0 for all i ∈ {1, 2, . . . , n}},

where hi : Rny ×Rp → R and hi(y, ·) is convex for all y ∈ Rny . Then, (6) is a convex optimization problem.

Proof. See Appendix A.

Remark 2. Theorem 1 is easily extended to include affine equality constraints in the forms taken by Θ and
h(θ). Additionally, if hi(y, θ) in Theorem 1 is jointly convex in (y, θ) for all i, one can show that h(·) is an
affine set-valued function, and therefore r̂(·) in (6) is affine (see, e.g., Proposition 4.2 of [35]). Therefore, if
v(·) is also affine, the scenario problem (6) has an affine objective.

Theorem 1 precisely answers our earlier inquiry: the class H should be complex enough to contain tight
ε-covers of the output set Y, but at the same time Θ should be defined by convex constraints and h(·) should
be taken as a concave set-valued function also defined by convex constraints. Note that these conditions on
h(·) are not as restrictive as they may seem. In particular, Example 4 shows for the norm ball class that
h(·) is affine (and therefore concave) and defined by convex constraints, and that this holds for all norms
on Rny , even though norm functions themselves are not affine. Therefore, Theorem 1 guarantees that the
scenario optimization (6) using the norm ball class is a convex problem. We verify this fact in the following
example.

Example 5. Recall the norm ball class of Examples 3 and 4. We show that (6) using this class is convex.
Indeed, the approximate robustness level is

r̂(ȳ, r) = inf
‖y−ȳ‖≤r

a>y + b = a>ȳ − r‖a‖∗ + b,

which is affine in the optimization variable θ = (ȳ, r). Hence, the scenario problem reduces to

maximize
(ȳ,r)∈Rny×R++

b+ a>ȳ − r‖a‖∗ − λv(ȳ, r)

subject to ‖yj − ȳ‖ ≤ r for all j ∈ {1, 2, . . . , N},
(7)

which is a convex problem since v(·) is convex.
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4.2 High-Probability Guarantees

We now turn to consider the randomness of the scenario problem’s optimal value. In particular, we ask the
following question: Does the random solution to (6) maintain a certified lower bound on r̄(ε)? In Theorem
2, we show that the answer is affirmative with high probability, provided that the problem is convex and a
large enough number of samples is used.

Theorem 2. Let ε, δ ∈ [0, 1]. Assume that the scenario optimization (6) is convex and is attained by a
solution θ∗ ∈ Rp. If N ≥ 2

ε

(
log 1

δ + p
)
, then the following inequalities hold:

1. Pθ∗(PX(f(X) ∈ h(θ∗)) ≥ 1− ε) ≥ 1− δ;

2. Pθ∗(r̂(θ∗) ≤ r̄(ε)) ≥ 1− δ.

Proof. See Appendix A.

The conclusions of Theorem 2 assert that, with overwhelming probability, h(θ∗) is an ε-cover of Y and that
the probabilistic robustness level is lower-bounded as r̂(θ∗) ≤ r̄(ε). This gives high-probability guarantees
for the simultaneous localization and safety certification of the output Y = f(X).

In Theorem 2, randomness of a solution θ∗ to (6) is taken care of by the 1 − δ probability bound. In
particular, h(θ∗) may not actually be an ε-cover, albeit with probability at most δ. For this reason, we
slightly abuse terminology and call h(θ∗) the optimal ε-cover. The additional layer of uncertainty embedded
into the parameter δ is precisely the price paid for replacing the intractable chance-constrained problem
(5) with the tractable scenario problem (6). However, Theorem 2 shows that the additional randomness is
not an issue, since the requirement on N scales as log 1

δ . Therefore, we can select a small value for δ while
maintaining a reasonable sample size N .

Remark 3. The guarantees in Theorem 2 are of the probably approximately correct (PAC) form. In the
language of PAC learning, the surrogate output set h(θ∗) is the hypothesis of the learner, which is selected
from the concept class H = {h(θ) : θ ∈ Θ}. Theorem 2 asserts that the hypothesis is probably approximately
correct, where approximately correct means the hypothesis (which is a set) contains the random output
Y = f(X) with probability at least 1− ε, and where probably means the hypothesis (which is selected based
on the specific instances x1, x2, . . . , xN ) is approximately correct (for general X) with probability at least
1− δ. Since this PAC guarantee holds whenever the scenario problem is convex, Theorem 1 gives sufficient
conditions for the concept class H to be PAC learnable, and our proposed method can be viewed as learning
robustness using the framework of PAC learning.

5 Exploiting Network Structure

In this section, we show how to exploit the structure of deep neural networks to reduce the time complexity
of our method. The basic idea is to utilize adversarial bounds on the deep layers to replace f with a shallower
neural network, in effect developing a hybrid adversarial-probabilistic certification scheme. We assume that
the network takes the form

f = σ(K) ◦ A(K−1) · · · ◦ σ(1) ◦ A(0),

where σ(k) : Rnk → Rnk is the kth layer’s activation function and A(k) : Rnk → Rnk+1 is the affine map given
by A(k)(z) = W (k)z + b(k). Note that n0 = nx and nK = ny.

Now, suppose that fL, fU : Rnx → Rny are two functions satisfying

fL(x) ≤ f(x) ≤ fU (x) for all x ∈ X ,

which are to be determined. Then, define the function f ′ : Rnx → Rny by

f ′i(x) =

{
(fL(x))i if ai ≥ 0,

(fU (x))i if ai < 0,
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for all i ∈ {1, 2, . . . , ny} and all x ∈ Rnx . It is immediately clear that a>f ′(x)+ b ≤ a>f(x)+ b for all x ∈ X ,
so f(x) ∈ S for all x ∈ X such that f ′(x) ∈ S. This shows that

PX(f ′(X) ∈ S) ≤ PX(f(X) ∈ S).

Therefore, to certify the probabilistic robustness of f , it suffices to apply our certification procedure to the
function f ′. By bounding the deep layers’ activations in f by affine functions, we will reduce the problem
to analyzing a simpler and shallower network f ′ that allows for faster sampling of the outputs yj . For
notational simplicity, we let φ(k) = σ(k) ◦A(k−1) ◦ · · · ◦ σ(1) ◦A(0) for all k ∈ {1, 2, . . . ,K}, so that φ(k)(x) is
the activation at layer k corresponding to the input x. Let φ(0) be the identity map on Rnx . We now recall
the notion of preactivation bounds, and make two assumptions.

Definition 3. A vector l(k) ∈ Rnk satisfying l(k) ≤ A(k−1) ◦ φ(k−1)(x) for all x ∈ X is called a kth layer
preactivation lower bound. A vector u(k) ∈ Rnk satisfying A(k−1) ◦ φ(k−1)(x) ≤ u(k) for all x ∈ X is called a
kth layer preactivation upper bound.

Assumption 1. For all k ∈ {1, 2, . . . ,K}, there exist kth layer preactivation lower and upper bounds l(k)

and u(k), respectively.

Assumption 2. For all k ∈ {1, 2, . . . ,K}, there exist functions L(k),U (k) : Rnk → Rnk given by

L(k)(z) = W
(k)
L z + b

(k)
L , U (k)(z) = W

(k)
U z + b

(k)
U ,

that satisfy L(k)(z) ≤ σ(k)(z) ≤ U (k)(z) for all z ∈ [l(k), u(k)].

Definition 3 and Assumptions 1 and 2 are standard in the adversarial robustness literature. Notice that
in many common architectures, n1 > n0 and the rank of A(0) is n0, and in this case Assumption 1 requires
the input set X to be bounded. For most common activation functions and input sets, there exist a variety
of methods for computing the above preactivation bounds and affine bounding functions—see, e.g., [36].

The following lemma transforms our affine bounds on each activation function σ(k) into affine bounds
relating the activation of one layer to the activation of the next layer.

Lemma 1. Suppose that Assumptions 1 and 2 hold. For all k ∈ {1, 2, . . . ,K}, it holds for all x ∈ X that

W̃
(k)
L φ(k−1)(x) + b̃

(k)
L ≤ φ(k)(x) ≤ W̃ (k)

U φ(k−1)(x) + b̃
(k)
U ,

where
W̃

(k)
L = W

(k)
L W (k−1), b̃

(k)
L = W

(k)
L b(k−1) + b

(k)
L ,

W̃
(k)
U = W

(k)
U W (k−1), b̃

(k)
U = W

(k)
U b(k−1) + b

(k)
U .

(8)

Proof. See Appendix A.

Next, we use the affine bounds between each neighboring layer in Lemma 1 to develop one overall affine
bound relating the activation at some layer k∗ to the output φ(K)(x) of the neural network. The proof
technique follows the idea developed in [10,36], albeit allows for more general activation functions and allows
us to “start” the affine bounding within the interior of the neural network architecture.

Proposition 2. Suppose that Assumptions 1 and 2 hold, and assume that K ≥ 3. Let k∗ ∈ {1, 2, . . . ,K−2}
and define M = K − k∗. Consider the matrices W̃

(k)
L , W̃

(k)
U and vectors b̃

(k)
L , b̃

(k)
U defined in (8). Define

E1 = W̃
(k∗+1)
L , F1 = b̃

(k∗+1)
L , G1 = W̃

(k∗+1)
U , and H1 = b̃

(k∗+1)
U . Also, for n ∈ {2, 3, . . . ,M}, define

En = min{0, W̃ (k∗+n)
L }Gn−1 + max{0, W̃ (k∗+n)

L }En−1,

Fn = min{0, W̃ (k∗+n)
L }Hn−1 + max{0, W̃ (k∗+n)

L }Fn−1 + b̃
(k∗+n)
L ,

Gn = max{0, W̃ (k∗+n)
U }Gn−1 + min{0, W̃ (k∗+n)

U }En−1,

Hn = max{0, W̃ (k∗+n)
U }Hn−1 + min{0, W̃ (k∗+n)

U }Fn−1 + b̃
(k∗+n)
U .

Then, for all x ∈ X , it holds that

EMφ
(k∗)(x) + FM ≤ φ(K)(x) ≤ GMφ(k∗)(x) +HM .
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Proof. See Appendix A.

Since φ(K)(x) = f(x), Proposition 2 shows that we may take the functions fL, fU to be fL = AL ◦ φ(k∗)

and fU = AU ◦ φ(k∗), where AL(z) = EMz + FM and AU (z) = GMz + HM . In this case, our function f ′

becomes

f ′i(x) =

{(
AL ◦ φ(k∗)(x)

)
i

if ai ≥ 0,(
AU ◦ φ(k∗)(x)

)
i

if ai < 0.

This function f ′ is a new neural network with the same first k∗ < K nonlinear layers as f , and with one final
affine transformation. Thus, a lower bound on the probabilistic robustness level of this shallow surrogate
network f ′ is also a lower bound on the probabilistic robustness level of the deep original network f .

When k∗ is chosen to be small, the depth of this surrogate network is reduced, making it more efficient to
sample outputs from it. As k∗ increases, our method incorporates more of the underlying nonlinear nature of
the network f into the samples that we use to assess f ’s robustness, meaning that the robustness certificate
becomes tighter, but at the expense of increased sampling time. Specifically, in the common setting where
every activation σ(k) is an element-wise operator with the time complexity O(nk), the time complexity of
the sampling procedure for f is O(N(n0n1 + n1n2 + · · · + nK−1nK)), whereas the time complexity for f ′

is O(N(n0n1 + n1n2 + · · · + nk∗−1nk∗ + nk∗nK)). If, for example, every number nk is of order O(n), then
f would have the sampling time complexity O(NKn2), whereas f ′ would be of order O(Nk∗n2), giving a
factor of k∗/K reduction in time complexity. As we will see in Section 6.4, this reduced time complexity is
particularly helpful in deep neural network settings.

6 Numerical Experiments

6.1 Illustrative Example

We consider the distributed linear system x(t + 1) = Ax(t) + Bu(t) for times t ∈ {0, 1, . . . , T}, T = 20, as
constructed in [4]. The system has n = 10 nodes, with a single state and input associated with every node;
x(t), u(t) ∈ Rn. The system and control matrices A,B respect the underlying graph topology of the system,
encoded by the support matrix S—see [4].

The control law is defined by a graph neural network:

u(t) = Φ(x(t), S) :=

K−1∑
k=0

h
(2)
k+1S

kσ

J−1∑
j=0

h
(1)
j+1S

jx(t)

 ,

with σ(·) = ReLU(·), K = J = 3, h(1) = ( 1
2 ,

1
2 ,

1
2 ), and h(2) = (1, 1, 1). This neural network controller,

defined in terms of S, respects the distributed nature of the system [4]. In this experiment, we consider
the case where the graph support of the control law may be randomly perturbed, so that u(t) = Φ(x(t), S′)
for some S′ ∈ Rn×n with S′ij = XSij , where X is a Bernoulli random variable equal to 1 with probability
0.8; the controller loses an edge in its support graph with probability 0.2. We fix a (normal random) initial
condition x(0) ∈ Rn, and we consider the map f : Rn×n → R2 given by f(S′) = (x1(T ), x2(T )), where x(T )
is the terminal state of the system under the control law given by u(t) = Φ(x(t), S′). The safe set is defined
by S1 = {y ∈ R2 : a>y+ b ≥ 0}, where a = (1, 0) and b = 0.05. We seek to certify that the first two elements
of the (random) terminal state are safe even under the perturbed control support S′, i.e., that f(S′) ∈ S1.

The norm ball class H of Examples 3, 4, and 5 is employed with ‖ · ‖ being the `2-norm, and with
probability levels ε = 0.05 and δ = 10−5. We set N =

⌈
2
ε (log 1

δ + p)
⌉

= 581, then sample N inputs S′j and
compute their corresponding outputs f(S′j) by running the system. As shown in Example 4, h(·) is an affine
set-valued function, and therefore Θ and h(·) satisfy the conditions of Theorem 1. We choose the regularizer
for the scenario problem (7) to be the square of the norm ball radius, i.e., v(ȳ, r) = r2. The optimization
problem is convex as guaranteed by Theorem 1. We solve the scenario problem first without regularization,
and then with two different levels of regularization: λ1 = 1 and λ2 = 100. The respective solutions are
denoted by θ∗, θ∗λ1

, and θ∗λ2
. Each instance takes approximately 15 seconds to solve using CVX in Matlab

on a standard laptop with a 2.6 GHz dual-core i5 processor. The resulting approximate robustness levels are
r̂(θ∗) = 0.0058, r̂(θ∗λ1

) = 0.0054, and r̂(θ∗λ2
) = −0.0061. In the instances without regularization and with
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regularization level λ1, Theorem 2 guarantees that the perturbed terminal state (x1(T ), x2(T )) has a safety
level of 0.005 with our prescribed high probability, granting the probablistic robustness certificate we seek.
On the other hand, since r̂(θ∗λ2

) < 0, the scenario problem using regularization level λ2 is not able to certify
the safety of the terminal state. This is due to the inherent tradeoff between localization and certification,
which we now discuss.

The optimal ε-covers h(θ∗), h(θ∗λ1
), and h(θ∗λ2

) are shown in Figure 1. The unregularized set h(θ∗) is
massively over-conservative due to the choice λ = 0, which corresponds to pure robustness certification.
Indeed, h(θ∗) is the ε-cover from our class of sets that is furthest from the boundary of the safe set, making
r̂(θ∗) the tightest lower bound on r̄(ε). On the other hand, the optimal ε-covers using λ = λ1 and λ = λ2

are seen to give tighter localizations of the terminal state (x1(T ), x2(T )). The approximate robustness level
using regularization λ1 is only slightly lower than the unregularized value, but the regularization λ2 is large
enough to cause the approximate robustness level r̂(θ∗λ2

) to become negative at the expense of localization.
This shows how overemphasizing localization may harm the certification aspect of robustness assessment,
and empirically demonstrates why output set estimation methods may not be adequate for issuing robustness
certificates. This is explored further in Section 6.2.

Figure 1: Optimal `2-norm ball ε-covers for safe set S1.

We repeat the experiment with the more complicated safe set S2 = {y ∈ R2 : Ay + b ≥ 0}, where
A =

[
1 0
−1 0

]
and b = (0.05, 0), applying our method to each row of S2 individually. To do so, we set

ε′ = ε/2, δ′ = δ/2, and N ′ = d 2
ε′

(
log 1

δ′ + p
)
e = 1217. For each of the two half-spaces defining S2, we

solve the scenario problem using N ′ independent and identically distributed samples, and then intersect
the two resulting ε′-covers. Doing so, we obtain an ε-cover with probability at least 1 − δ. We repeat this
process again using regularization levels λ1 = 1 and λ2 = 100, and we find that each scenario problem
takes approximately 30 seconds to solve. As seen in Figure 2, some samples may reside outside the resulting
intersection ε-covers—this is valid, and the robustness certificates still hold.

Again, we find robustness certificates for λ = 0 and λ = λ1. However, for λ = λ2, the optimal ε-covers
corresponding to both half-spaces are found to intersect the unsafe region of the state space, due to the
increased emphasis on localization. Interestingly, the overall localization after intersecting the two ε′-covers
for λ = λ2 is in a sense looser than that of the case λ = λ1, indicating that moderate regularization levels,
like λ1 in this experiment, may simultaneously perform best for both localization and certification in the
case of safe sets defined by more than one half-space. Optimizing λ in general poses an interesting problem
for future research.
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Figure 2: Optimal ε-covers amongst intersections of two `2-norm ball ε
2 -covers for safe set S2.

6.2 Comparison to Output Set Estimation

In this example, we compare our proposed method to an alternate approach. In the second approach, we first
estimate the output set of the neural network using the scenario-based reachability analysis in [25]. We then
use the resulting output set estimate to assess robustness. Recall that our proposed scenario optimization
(6) generalizes the reachability analysis of [25]. In addition to localizing the network outputs, our approach
directly takes the goal of robustness certification into account, whereas the estimation technique of [25] does
not.

To illustrate our comparison, consider a simple ReLU neural network given by f : R2 → R2, where
fi(x) = max{0, xi} for i ∈ {1, 2}. The noisy input X is distributed uniformly on the input set X = {x ∈
R2 : ‖x− x̄‖1 ≤ 1}, where x̄ = (1, 0). The safe set is given as S = {y ∈ R2 : a>y + b ≥ 0}, where a = (0, 1)
and b = 0.5. It is straightforward to show that the output set is the top-half of the input set, namely,
Y = X ∩ {y ∈ R2 : y2 ≥ 0}. Hence, if y ∈ Y then a>y + b = y2 + b ≥ b ≥ 0. Therefore, Y ⊆ S, and so the
random output Y = f(X) is safe with probability one.

We now perform the two assessments at hand, computing our proposed solution first. We choose the
`2-norm ball class for our candidate ε-covers and draw sufficiently many output samples {yj}Nj=1 according

to Theorem 2 with ε = 0.1 and δ = 10−5. Next, we choose the regularizer v(ȳ, r) = r2 with λ = 0.1 and solve
the scenario problem (7) for the `2-norm ball class. The solution correctly certifies that network outputs are
safe with high probability; see the blue set in Figure 3.

We now turn to the alternative method. We use the same `2-norm ball class as above and solve for the
minimum volume ε-cover using the same N sampled outputs. The estimated output set is shown in red in
Figure 3. Despite being a tighter localization, a substantial portion of the estimated output set exits the
safe set, meaning that this approach cannot certify the robustness of the network, even though the random
output is truly safe with probability one. This comparison shows that a good estimate of the output set may
not be the most informative set to use for assessing output safety. This observation endorses our proposed
method, which simultaneously encodes both goals of certification and localization.

6.3 Comparison to PROVEN

In this experiment, we compare our approach using the half-space class H =
{
{y ∈ Rny : c>y + d ≥ 0} :

(c, d) ∈ Rny×R
}

, for which we solve the scenario problem using its closed-form solution (see Appendix D), to
the state-of-the-art algorithm, PROVEN [20], for assessing robustness against random input noise. Through-
out, we use open-source neural network models provided in [20]. The underlying framework of PROVEN
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Figure 3: The tightest ε-cover of the output set (red) does not correctly certify robustness. Our approach
(blue) correctly certifies robustness and maintains reasonable localization.

relies on bounding a classifier’s margin function by affine functions. PROVEN uses the affine functions to
give closed-form bounds on the misclassification probability. We remark that, since PROVEN does not rely
on sampling, their lower bound on r̄(ε) is deterministic, whereas our bound holds with probability 1 − δ,
which is taken to be 1− 10−5 = 0.99999 in this experiment. The results in this section are computed using
TensorFlow in Python on a standard laptop with a 2.6 GHz dual-core i5 processor.

We first consider a variety of pre-trained MNIST digit classification networks with ReLU activation
functions [37]. A network model with m hidden layers, each having n neurons, is denoted by m × [n]. We
model the noisy input X as being distributed uniformly on X = {x ∈ Rnx : ‖x − x̄‖∞ ≤ εx}. For 10
randomly selected nominal inputs x̄, we compute a lower bound r̂(θ∗) on the probabilistic robustness level
r̄(ε). The robustness level of a network (for a particular pair (ε, εx)) is evaluated by computing the average
robustness level lower bound across the 10 inputs.5 This is done for probability levels ε ∈ {0.001, 0.1, 0.25}
(with corresponding sample sizes N ∈ {25026, 251, 101}) and for a variety of noise levels εx. We include the
certified adversarial radius computed using [36], which is a lower bound on the smallest radius such that X
contains an input that yields an unsafe output. The targeted class i, which defines the margin function gi
relative to the nominal input’s true class i∗, is randomly chosen for each input tested. See Examples 1 and
2 for more information on this application. The average lower bound values computed using our approach
(denoted Ours) and PROVEN’s (denoted PRVN) are shown in Table 1.

As seen in Table 1, our method is able to certify larger input sets than PROVEN for every network tested.
Although PROVEN’s lower bound is tighter for small radii, at large radii our bound is significantly tighter
than PROVEN’s, particularly for the larger networks in Tables 1c and 1d. This indicates that our method is
especially powerful for certifying deep neural networks. The end-to-end affine bounding scheme in PROVEN
tends to become looser as the network becomes deeper and as the input set becomes larger [20]. The
technique comes from the adversarial robustness literature, and therefore it being embedded into PROVEN
is likely the reason why PROVEN fails for radii larger than the certified adversarial radius. Our method
bypasses this preliminary bound altogether. We also remark that our method certifies much larger input
set radii (sometimes up to 20 times larger) compared to the certified adversarial radii (italicized) computed

5Despite r̄(ε) being an input-specific quantity, we follow the literature’s standard practice and average our robustness metric
over a collection of test inputs. This standard was popularized in [5], where model robustness is evaluated using average certified
input set radii. Our average robustness level lower bound immediately gives an average certified input set radius when the
bound is nonnegative. In the probabilistic setting, it can be more natural to evaluate models in terms of misclassification
probability, like our bounds do, instead of in terms of certified input set radii, see, e.g., [13, 17,23,24].
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Table 1: Average probabilistic robustness level lower bounds r̂(θ∗) for MNIST ReLU networks subject to
uniform noise over `∞-norm ball. All values are averaged over 10 nominal inputs with randomly chosen
target classes i. Lower bounds giving certified robustness (on average) are bolded, and the average certified
adversarial radii computed using [36] are italicized.

(a) 2 × [20] network.

Radius
ε = 0.001 ε = 0.1 ε = 0.25

PRVN Ours PRVN Ours PRVN Ours

0.01
24.51 14.11 24.79 14.26 24.88 14.28
1.491 s 0.605 s 1.405 s 0.004 s 1.370 s 0.003 s

0 .027
14.71 13.36 15.45 13.77 15.68 13.85
1.434 s 0.599 s 1.540 s 0.004 s 1.427 s 0.003 s

0.05
−1.33 12.34 0.02 13.11 0.44 13.26

1.511 s 0.597 s 1.468 s 0.004 s 1.423 s 0.003 s

0.1
−42.09 10.25 −39.43 11.66 −38.61 12.00
1.485 s 0.623 s 1.437 s 0.004 s 1.437 s 0.002 s

0.5
−404.42 −7.21 −391.05 −0.05 −386.96 1.71

1.525 s 0.645 s 1.472 s 0.004 s 1.432 s 0.002 s

(b) 3 × [20] network.

Radius
ε = 0.001 ε = 0.1 ε = 0.25

PRVN Ours PRVN Ours PRVN Ours

0.01
29.24 17.28 29.59 17.45 29.70 17.49
1.416 s 0.380 s 1.345 s 0.003 s 1.388 s 0.001 s

0 .022
18.80 16.65 19.49 17.02 19.71 17.10
1.382 s 0.362 s 1.345 s 0.003 s 1.364 s 0.001 s

0.05
−22.31 15.19 −20.67 16.00 −20.17 16.19
1.377 s 0.345 s 1.325 s 0.003 s 1.374 s 0.001 s

0.1
−114.83 12.57 −111.59 14.19 −110.60 14.58

1.351 s 0.372 s 1.343 s 0.003 s 1.340 s 0.002 s

0.5
−866.28 −9.36 −857.82 −0.55 −855.22 0.36

1.385 s 0.368 s 1.351 s 0.003 s 1.336 s 0.003 s

(c) 2 × [1024] network.

Radius
ε = 0.001 ε = 0.1 ε = 0.25

PRVN Ours PRVN Ours PRVN Ours

0.01
51.07 27.73 51.40 27.87 51.50 27.93
0.899 s 1.102 s 0.877 s 0.008 s 0.874 s 0.004 s

0 .032
30.34 26.69 31.37 27.13 31.69 27.32
0.869 s 1.202 s 0.858 s 0.008 s 0.846 s 0.004 s

0.05
6.95 25.83 8.59 26.53 9.09 26.82

0.846 s 1.125 s 0.851 s 0.008 s 0.844 s 0.004 s

0.1
−77.53 23.46 −74.13 24.84 −73.09 25.42
0.861 s 1.137 s 0.854 s 0.008 s 0.881 s 0.004 s

0.5
−914.36 4.83 −900.22 11.79 −895.89 14.45

0.869 s 1.159 s 0.883 s 0.008 s 0.868 s 0.004 s

(d) 3 × [1024] network.

Radius
ε = 0.001 ε = 0.1 ε = 0.25

PRVN Ours PRVN Ours PRVN Ours

0.01
68.87 36.86 69.28 37.06 69.41 37.12
2.535 s 1.782 s 2.382 s 0.015 s 2.464 s 0.009 s

0 .024
44.14 35.97 45.18 36.44 45.50 36.58
2.434 s 2.026 s 2.448 s 0.013 s 2.510 s 0.008 s

0.05
−111.09 34.32 −108.25 35.32 −107.39 35.59

2.739 s 2.258 s 2.671 s 0.013 s 2.761 s 0.007 s

0.1
−729.24 31.10 −723.45 33.10 −721.68 33.69

3.081 s 2.325 s 2.916 s 0.014 s 2.912 s 0.007 s

0.5
−6872.3 6.89 −6849.5 15.85 −6842.5 18.56

2.877 s 1.955 s 2.996 s 0.014 s 3.012 s 0.007 s

using the state-of-the-art worst-case analysis [36]. The exact minimum adversarial radii (averaged across
the 10 inputs) for the 2× [20] and 3× [20] ReLU networks are efficiently computed to be around 0.07 using
mixed-integer linear programming [38]. With the tolerance ε = 0.001, our method certifies radii over 0.1
for these networks. This evidences the claim that worst-case approaches, including exact ones, are over-
conservative when applied to settings where a small amount of risk may be tolerable, in effect justifying our
data-driven framework.

In Table 2, we repeat the experiment using three variants in the neural network model. Model 1 is
an MNIST classifier with tanh(·) activation functions of size 4 × [1024]. On the other hand, Model 2 is a
CIFAR-10 network with ReLU activations of size 5× [2048]. We see that both Model 1 and Model 2 exhibit
the same behavior as before; for small input set radii, the lower bounds provided by PROVEN and our
method are similar and both yield high-probability robustness certificates. For larger radii, our lower bound
significantly outperforms PROVEN’s. Since the affine bounds in PROVEN are relatively tight for small
input sets radii, we suspect the PROVEN bound to closer match our bound for large input set radii in the
special case of linear classification networks.

Model 3 is a linear classifier, i.e., of the form f(x) = Wx + b, with 50 inputs, 10 outputs, and weights,
biases, and nominal input all chosen randomly with elements uniform on [0, 1]. We computed lower bounds
on r̄(ε) for 100 such models and averaged the results. Table 2 shows that indeed the PROVEN bound closely
matches our bound for every radius tested in this special case, and that the two methods succeed and fail
to issue robustness certificates simultaneously. These results show that the worst-case bounding techniques
used in the adversarial robustness literature may work satisfactorily for simple models with random inputs,
such as linear classifiers, but that these bounds are too loose for general nonlinear networks.

6.4 Exploiting Network Structure

In this experiment, we implement the complexity-reducing method of Section 5. We consider networks
with 10 inputs, 10 outputs, and 250 neurons in every hidden layer. The number of layers K varies from 3

15



Table 2: Average probabilistic robustness level lower bounds r̂(θ∗) for various other models. Values for
Models 1 and 2 are averaged over 10 inputs, and for Model 3 they are averaged over 100 network realizations.
Lower bounds giving certified robustness (on average) are bolded, and the average certified adversarial radii
computed using [36] are italicized.

Model 1 Model 2 Model 3
Radius PRVN Ours Radius PRVN Ours Radius PRVN Ours

0.005 7.81 19.01 0.001 48.80 33.26 0.01 1.96 1.97
0 .0068 2.20 18.96 0 .0023 10.90 33.17 0.05 1.71 1.79
0.01 −26.31 18.88 0.003 −91.20 33.12 0.1 1.40 1.56
0.05 −1769.97 17.83 0.005 −1056.85 32.98 0.5 −1.06 −0.29
0.1 −4493.02 16.48 0.01 −8717.05 32.62 1.0 −4.13 −2.60

to 25. The weights and biases for every architecture are chosen randomly (with Gaussian elements, then
normalized). Every activation function σ(k) is chosen to be ReLU, with preactivation and affine bounds
derived according to [10]. We consider (randomly chosen Gaussian) clean inputs x̄ with uniform additive
random noise on the `∞-norm ball with radius εx = 0.1, so that the noisy inputs X are distributed uniformly
on {x ∈ Rnx : ‖x− x̄‖∞ ≤ εx}.

For every architecture, we lower-bound the probabilistic robustness level for 50 different realizations of the
weights, biases, and inputs, where for each realization we solve the scenario optimization problem using the
class H =

{
{y ∈ Rny : c>y + d ≥ 0} : (c, d) ∈ Rny × R

}
of half-spaces with N = 1000 sampled inputs. This

is done both using our baseline methodology, maintaining the full nonlinearity of each deep network, as well
as using the shallow surrogate networks proposed in Section 5. Figure 4 displays the ratio Tf ′/Tf between
the sampling time Tf ′ (averaged over all realizations of a given depth) for the shallow surrogate network
f ′ and the sampling time Tf (again, averaged) for the deep network f . We see that, when k∗ = O(K),
meaning that the majority of nonlinearity is maintained in f ′, the sampling times remain roughly the same.
On the other hand, when k∗ = O(1), meaning the majority of nonlinearity is replaced by affine bounds, the
sampling time is reduced by nearly two orders of magnitude, and the reduction follows the expected rate
of k∗/K = O(1/K). For in-between surrogate architectures using k∗ = O(logK) and k∗ = O(

√
K), we

find respectable time complexity reductions, nearing an order of magnitude decrease in sampling time. The
decreases in the lower bound on the probabilistic robustness level are also shown in Figure 4. The average
lower bound rf without exploiting structure is 0.1. Therefore, the degradation of the bound incurred by
using the shallow surrogate networks is relatively constant and minimal. The experiment results in the same
conclusions when using tanh activation functions, and when using smaller and larger input set radii εx.

7 Conclusions

In this paper, we propose a data-driven method for certifying the robustness of neural networks against
random input noise. Sufficient conditions are developed for the convexity of the resulting optimization, as
well as on the number of samples to issue a high-probability guarantee for the safety of the output. The
method applies to general neural networks and general input noise distributions. In cases where the activation
functions can be affinely bounded, we show how to exploit the network structure to reduce sample complexity.
The unified framework allows the user to balance the strength of the robustness bound with the tightness
of the resulting output set estimate. Our numerical experiments show that the proposed method gives less
conservative robustness bounds than the prior state-of-the-art techniques, as it is capable of certifying larger
input uncertainty regions on synthetic, MNIST, and CIFAR-10 networks. In situations where neural network
failure modes may exist but are unlikely and hence robustness amounts to achieving tolerable risk, these
results suggest that re-tooling worst-case analysis techniques from the adversarial robustness literature results
in overly conservative bounds. We conclude that taking a data-driven approach to generate probabilistic
robustness guarantees, as developed in this paper, is the better option in these contexts.
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Figure 4: Ratio between the average sampling time of the shallow surrogate network f ′ and that of the deep
original network f , and the corresponding decrease in the lower bound on the probabilistic robustness level.

A Proofs

In this appendix, we recall and prove the results stated in the main body of the paper.

Proposition 1. Let Ŷ be an arbitrary subset of Rny . If Ŷ is an ε-cover of Y = f(X ), then

r̂(Ŷ) ≤ r̄(ε). (4)

Proof of Proposition 1. Note that y ∈ Ŷ implies that a>y + b ≥ r̂(Ŷ) by (2). Therefore, it holds that
PX(f(X) ∈ Ŷ) ≤ PX(a>f(X) + b ≥ r̂(Ŷ)). Since Ŷ is an ε-cover of Y, we have that PX(f(X) ∈ Ŷ) ≥ 1− ε.
Hence,

1− ε ≤ PX(f(X) ∈ Ŷ) ≤ PX(a>f(X) + b ≥ r̂(Ŷ)).

This shows that r̂(Ŷ) is feasible for the optimization (3). Therefore, r̂(Ŷ) ≤ r̄(ε), as desired.

Theorem 1. Consider the scenario problem (6). Suppose that Θ takes the form

Θ = {θ ∈ Rp : gi(θ) ≤ 0 for all i ∈ {1, 2, . . . ,m}},

where every gi : Rp → R is convex. Furthermore, suppose that h(·) is a concave set-valued function that takes
the form

h(θ) = {y ∈ Rny : hi(y, θ) ≤ 0 for all i ∈ {1, 2, . . . , n}},

where hi : Rny ×Rp → R and hi(y, ·) is convex for all y ∈ Rny . Then, (6) is a convex optimization problem.

Proof of Theorem 1. Since (6) is a maximization problem, we must show that under the assumptions on Θ
and h(·), the objective is concave on Θ and the constraints are convex.

Let us first consider the objective r̂(θ)− λv(θ), where r̂(θ) = inf{a>y + b : y ∈ h(θ)}. Since

1. g(y, θ) := a>y + b is jointly concave on Rny ×Θ;

2. h(·) is a concave set-valued function on Θ;

3. and Θ is a convex set;
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Proposition 3.1 of [35] gives that r̂(·) is a concave function on Θ. Since v(·) is assumed to be convex on Θ
and λ ≥ 0, we conclude that the objective is concave.

Now, let us consider the constraints. The constraints gi(θ) ≤ 0 are convex, so θ ∈ Θ is a convex constraint.
Next, the random constraint yj ∈ h(θ) is equivalent to the constraint on θ that hi(yj , θ) ≤ 0 for all i. Since
hi(yj , ·) is a convex function, the constraint is convex. Since this holds for all i ∈ {1, 2, . . . , n} and all
j ∈ {1, 2, . . . , N}, we conclude that all of the constraints in (6) are convex.

Theorem 2. Let ε, δ ∈ [0, 1]. Assume that the scenario optimization (6) is convex and is attained by a
solution θ∗ ∈ Rp. If N ≥ 2

ε

(
log 1

δ + p
)
, then the following inequalities hold:

1. Pθ∗(PX(f(X) ∈ h(θ∗)) ≥ 1− ε) ≥ 1− δ;

2. Pθ∗(r̂(θ∗) ≤ r̄(ε)) ≥ 1− δ.

Proof of Theorem 2. Since the scenario problem is convex and N ≥ 2
ε

(
log 1

δ + p
)
, Theorem 1 of [32] gives

that, with probability at least 1 − δ, the solution θ∗ is feasible for the chance-constrained problem (5).
Therefore, Pθ∗(PX(f(X) ∈ h(θ∗)) ≥ 1− ε) ≥ 1− δ, which proves the first conclusion.

To prove the second conclusion, recall the law of total probability: for an arbitrary event A ∈ Fθ∗ and
an arbitrary partition {B1, B2} ⊆ Fθ∗ of Ωθ∗ such that Ωθ∗ = B1 ∪ B2, B1 ∩ B2 = ∅, and Pθ∗(Bi) > 0 for
i ∈ {1, 2}, we have that

Pθ∗(A) = Pθ∗(A|B1)Pθ∗(B1) + Pθ∗(A|B2)Pθ∗(B2),

where Pθ∗(A|B1) = Pθ∗ (A∩B1)
Pθ∗ (B1) denotes the probability of event A conditioned on event B1, and simi-

larly for B2. Choose the particular events A = {ω ∈ Ωθ∗ : r̂(θ∗(ω)) ≤ r̄(ε)}, B1 = {ω ∈ Ωθ∗ :
h(θ∗(ω)) is an ε-cover of Y}, and B2 = Ωθ∗ \ B1. Then, Proposition 1 shows that B1 ⊆ A, so Pθ∗(A|B1) =
Pθ∗ (B1)
Pθ∗ (B1) = 1. Furthermore, by the first conclusion proved above, Pθ∗(B1) = Pθ∗(PX(f(X) ∈ h(θ∗)) ≥ 1−ε) ≥
1− δ. Hence, the law of total probability gives that

Pθ∗(A) ≥ 1− δ + Pθ∗(A|B2)Pθ∗(B2) ≥ 1− δ,

which proves the second conclusion.

Lemma 1. Suppose that Assumptions 1 and 2 hold. For all k ∈ {1, 2, . . . ,K}, it holds for all x ∈ X that

W̃
(k)
L φ(k−1)(x) + b̃

(k)
L ≤ φ(k)(x) ≤ W̃ (k)

U φ(k−1)(x) + b̃
(k)
U ,

where
W̃

(k)
L = W

(k)
L W (k−1), b̃

(k)
L = W

(k)
L b(k−1) + b

(k)
L ,

W̃
(k)
U = W

(k)
U W (k−1), b̃

(k)
U = W

(k)
U b(k−1) + b

(k)
U .

(8)

Proof of Lemma 1. Let k ∈ {1, 2, . . . ,K} and let x ∈ X . Define z = A(k−1) ◦ φ(k−1)(x). Then, since
z ∈ [l(k), u(k)], it holds that L(k)(z) ≤ σ(k)(z) ≤ U (k)(z). Expanding this inequality using the matrix-vector
representation of the affine maps L(k),U (k),A(k−1), we obtain

W
(k)
L (W (k−1)φ(k−1)(x) + b(k−1)) + b

(k)
L ≤ σ(k)(A(k−1) ◦ φ(k−1)(x)) ≤W (k)

U (W (k−1)φ(k−1)(x) + b(k−1)) + b
(k)
U ,

which gives the desired result upon substituting the definitions of W̃
(k)
L , W̃

(k)
U , b̃

(k)
L , b̃

(k)
U and using the fact

that σ(k)(A(k−1) ◦ φ(k−1)(x)) = φ(k)(x).

Lemma 2. Suppose that A1x1 + B1 ≤ x2 ≤ C1x1 + D1 and A2x2 + B2 ≤ x3 ≤ C2x2 + D2 for vectors
xk, Bk, Dk and matrices Ak, Ck, all of compatible dimensions. Then

E2x1 + F2 ≤ x3 ≤ G2x1 +H2,

where

E2 = min{0, A2}C1 + max{0, A2}A1,

F2 = min{0, A2}D1 + max{0, A2}B1 +B2,

G2 = max{0, C2}C1 + min{0, C2}A1,

H2 = max{0, C2}D1 + min{0, C2}B1 +D2.
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Proof of Lemma 2. Let (z)i denote the ith element of a vector z and (Z)ij denote the (i, j)th element of a
matrix Z. It holds for all indices i that

(x3)i ≤ (C2x2 +D2)i

=
∑
j

(C2)ij(x2)j + (D2)i

=
∑

j:(C2)ij≥0

(C2)ij(x2)j +
∑

j:(C2)ij<0

(C2)ij(x2)j + (D2)i

≤
∑

j:(C2)ij≥0

(C2)ij(C1x1 +D1)j +
∑

j:(C2)ij<0

(C2)ij(A1x1 +B1)j + (D2)i

=
∑
j

(max{0, (C2)ij}(C1x1 +D1)j + min{0, (C2)ij}(A1x1 +B1)j) + (D2)i

=
(

max{0, C2}(C1x1 +D1) + min{0, C2}(A1x1 +B1) +D2

)
i
,

so
x3 ≤ (max{0, C2}C1 + min{0, C2}A1)x1 + max{0, C2}D1 + min{0, C2}B1 +D2 = G2x1 +H2,

which proves the upper bound on x3.
To prove the lower bound on x3, note that −x3 ≤ (−A2)x2 + (−B2), so the above analysis yields that

−x3 ≤ (max{0,−A2}C1 + min{0,−A2}A1)x1 + max{0,−A2}D1 + min{0,−A2}B1 −B2

= −(min{0, A2}C1 + max{0, A2}A1)x1 − (min{0, A2}D1 + max{0, A2}B1 +B2)

= −E2x1 − F2,

which concludes the proof.

Lemma 3. Let M ∈ N, M > 1. Suppose that

Anxn +Bn ≤ xn+1 ≤ Cnxn +Dn

for all n ∈ {1, 2, . . . ,M}, where the vectors xn, Bn, Dn and the matrices An, Cn are all of compatible dimen-
sions. For all n ∈ {2, 3, . . . ,M}, define

En = min{0, An}Gn−1 + max{0, An}En−1,

Fn = min{0, An}Hn−1 + max{0, An}Fn−1 +Bn,

Gn = max{0, Cn}Gn−1 + min{0, Cn}En−1,

Hn = max{0, Cn}Hn−1 + min{0, Cn}Fn−1 +Dn,

where E1 = A1, F1 = B1, G1 = C1, and H1 = D1. Then

Enx1 + Fn ≤ xn+1 ≤ Gnx1 +Hn (9)

holds for all n ∈ {1, 2, . . . ,M}.

Proof of Lemma 3. The result holds for n = 1 by assumption. We prove the result for n ∈ {2, 3, . . . ,M} by
induction on n. Lemma 2 shows that the result holds for the base case n = 2. Now, suppose that the result
holds for some arbitrary n ∈ {2, 3, . . . ,M − 1}, so that

Enx1 + Fn ≤ xn+1 ≤ Gnx1 +Hn. (10)

Make the following definitions:

x′1 = x1, x′2 = xn+1, x′3 = xn+2,

A′1 = En, B′1 = Fn, C ′1 = Gn, D′1 = Hn,

A′2 = An+1, B′2 = Bn+1, C ′2 = Cn+1, D′2 = Dn+1.
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Then by the assumption that An+1xn+1 +Bn+1 ≤ xn+2 ≤ Cn+1xn+1 +Dn+1 it holds that

A′2x
′
2 +B′2 ≤ x′3 ≤ C ′2x′2 +D′2. (11)

Also, by the induction hypothesis (10), it holds that

A′1x
′
1 +B′1 ≤ x′2 ≤ C ′1x′1 +D′1. (12)

Therefore, (11) and (12) together with Lemma 2 give that

E′2x
′
1 + F ′2 ≤ x′3 ≤ G′2x′1 +H ′2, (13)

where

E′2 = min{0, A′2}C ′1 + max{0, A′2}A′1,
F ′2 = min{0, A′2}D′1 + max{0, A′2}B′1 +B′2,

G′2 = max{0, C ′2}C ′1 + min{0, C ′2}A′1,
H ′2 = max{0, C ′2}D′1 + min{0, C ′2}B′1 +D′2.

Substituting our earlier definitions for these values gives that E′2 = En+1, F ′2 = Fn+1, G′2 = Gn+1, and
H ′2 = Hn+1, and therefore in light of the fact that x′1 = x1 and x′3 = xn+2, (13) becomes

En+1x1 + Fn+1 ≤ xn+2 ≤ Gn+1x1 +Hn+1,

so the induction step has been proven. Thus, the result (9) holds for all n ∈ {1, 2, . . . ,M}.

Proposition 2. Suppose that Assumptions 1 and 2 hold, and assume that K ≥ 3. Let k∗ ∈ {1, 2, . . . ,K−2}
and define M = K − k∗. Consider the matrices W̃

(k)
L , W̃

(k)
U and vectors b̃

(k)
L , b̃

(k)
U defined in (8). Define

E1 = W̃
(k∗+1)
L , F1 = b̃

(k∗+1)
L , G1 = W̃

(k∗+1)
U , and H1 = b̃

(k∗+1)
U . Also, for n ∈ {2, 3, . . . ,M}, define

En = min{0, W̃ (k∗+n)
L }Gn−1 + max{0, W̃ (k∗+n)

L }En−1,

Fn = min{0, W̃ (k∗+n)
L }Hn−1 + max{0, W̃ (k∗+n)

L }Fn−1 + b̃
(k∗+n)
L ,

Gn = max{0, W̃ (k∗+n)
U }Gn−1 + min{0, W̃ (k∗+n)

U }En−1,

Hn = max{0, W̃ (k∗+n)
U }Hn−1 + min{0, W̃ (k∗+n)

U }Fn−1 + b̃
(k∗+n)
U .

Then, for all x ∈ X , it holds that

EMφ
(k∗)(x) + FM ≤ φ(K)(x) ≤ GMφ(k∗)(x) +HM .

Proof of Proposition 2. Let x ∈ X . Then, by Lemma 1, it holds that

W̃
(k)
L φ(k−1)(x) + b̃

(k)
L ≤ φ(k)(x) ≤ W̃ (k−1)

U φ(k−1)(x) + b̃
(k)
U (14)

for all k ∈ {1, 2, . . . ,K}. For all n ∈ {1, 2, . . . ,M + 1}, define

xn = φ(k∗+n−1)(x).

Also, for all n ∈ {1, 2, . . . ,M}, define

An = W̃
(k∗+n)
L , Bn = b̃

(k∗+n)
L , Cn = W̃

(k∗+n)
U , Dn = b̃

(k∗+n)
U .

Then it holds that E1 = A1, F1 = B1, G1 = C1, H1 = D1, and

En = min{0, An}Gn−1 + max{0, An}En−1,

Fn = min{0, An}Hn−1 + max{0, An}Fn−1 +Bn,

Gn = max{0, Cn}Gn−1 + min{0, Cn}En−1,

Hn = max{0, Cn}Hn−1 + min{0, Cn}Fn−1 +Dn,
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for n ∈ {2, 3, . . . ,M}. Also, (14) gives that

Anxn +Bn ≤ xn+1 ≤ Cnxn +Dn

for all n ∈ {1, 2, . . . ,M}, so by Lemma 3, we conclude that

Enx1 + Fn ≤ xn+1 ≤ Gnx1 +Hn

for all n ∈ {1, 2, . . . ,M}. In particular, for n = M , this yields the following bound on xM+1 = φ(K)(x) in
terms of x1 = φ(k∗)(x):

EMφ
(k∗)(x) + FM ≤ φ(K)(x) ≤ GMφ(k∗)(x) +HM ,

which is the desired result.

B Extension to General Polyhedral Safe Sets

In this section, we explicitly walk through the steps of generalizing our proposed assessment method to the
case where the safe set is a general polyhedral set defined by the intersection of finitely many half-spaces.

Consider the polyhedral safe set S = {y ∈ Rny : Ay + b ≥ 0}, where A ∈ Rns×ny and b ∈ Rns . Denote
the ith row of A by a>i and the ith element of b by bi. In this setting, the condition y ∈ S is equivalent to
mini∈{1,2,...,ns} a

>
i y + bi ≥ 0. Therefore, the deterministic robustness level is naturally formulated as

r∗ = inf
y∈Y

min
i∈{1,2,...,ns}

a>i y + bi,

so that r∗ ≥ 0 certifies that Y = f(X) is safe with probability one. Then the approximate robustness level
using a surrogate output set Ŷ becomes

r̂(Ŷ) = inf
y∈Ŷ

min
i∈{1,2,...,ns}

a>i y + bi.

Moreover, the condition that f(X) has safety level at least r with high probability is naturally encoded in
the following probabilistic robustness level:

r̄(ε) = sup

{
r ∈ R : PX

(
min

i∈{1,2,...,ns}
a>i f(X) + bi ≥ r

)
≥ 1− ε

}
.

With our robustness levels defined for the general polyhedral safe set, we now outline the procedure
to generalize our main results from the single half-space case presented in the paper. To this end, start
by prescribing probability levels ε, δ ∈ [0, 1] close to zero, and define ε′ = ε/ns and δ′ = δ/ns. Then,
for all i ∈ {1, 2, . . . , ns}, perform the proposed assessment method for the single half-space setting using
the parameters ε′, δ′, ai, and bi in place of ε, δ, a, and b, respectively. In particular, for every i, use
N ′ ≥ 2

ε′

(
log 1

δ′ + p
)

independent and identically distributed samples in the scenario problem (6), ensuring
that the samples across different values of i are also independent. Notice that the sample size N ′ grows with
ns like ns log(ns), so the increase in the number of samples used for each scenario problem is modest, as it is
nearly linear. However, the total number of samples needed across all ns scenario problems grows with ns like
n2
s log(ns), and therefore the computational cost may become prohibitive in the case the safe set is defined

by a large number of half-spaces. To remedy this, one may first compute a polyhedral inner-approximation
of S with a much smaller number of half-spaces, and then apply the methods outlined in this section.

Now, let θ∗i denote the solution to the scenario problem (6) corresponding to row i of the safe set. Remark
that the solutions θ∗i are all random, although they are not necessarily defined on the same probability space,
as their distributions depend on the particular values for ai and bi used to compute them. For notational
convenience, denote the probability distribution of θ∗i by Pi, and denote by P the product probability measure
associated with (θ∗1 , θ

∗
2 , . . . , θ

∗
ns). Then, Theorem 2 gives for all i that, with probability at least 1 − δ′, the

set h(θ∗i ) is an ε′-cover of Y = f(X ). That is,

Pi(PX(f(X) ∈ h(θ∗i )) ≥ 1− ε′) ≥ 1− δ′.

21



Note that if Ŷi are ε
nc

-covers of Y for all i ∈ {1, 2, . . . , nc}, then
⋂nc
i=1 Ŷi is an ε-cover, since

PX

(
f(X) ∈

nc⋂
i=1

Ŷi

)
= 1− PX

(
f(X) ∈

nc⋃
i=1

Ŷci

)

≥ 1−
nc∑
i=1

PX(f(X) ∈ Ŷci )

= 1−
nc∑
i=1

(1− PX(f(X) ∈ Ŷi))

≥ 1−
nc∑
i=1

ε

nc

= 1− ε,

where Ŷci denotes the complement Rny \Ŷi. Using the monotonicity and subadditivity of the product measure
P, we can apply this result to the sets h(θ∗i ) to find that

P

(
PX

(
f(X) ∈

ns⋂
i=1

h(θ∗i )

)
≥ 1− ε

)
≥ P(PX (f(X) ∈ h(θ∗i )) ≥ 1− ε′ for all i)

= 1− P(PX(f(X) ∈ h(θ∗i )) < 1− ε′ for some i)

≥ 1−
ns∑
i=1

Pi(PX(f(X) ∈ h(θ∗i )) < 1− ε′)

= 1−
ns∑
i=1

(1− Pi(PX(f(X) ∈ h(θ∗i )) ≥ 1− ε′))

≥ 1−
ns∑
i=1

δ′

= 1− δ.

Therefore, we conclude that
⋂ns
i=1 h(θ∗i ) is an ε-cover of Y with probability at least 1− δ.

Note that every individual h(θ∗i ) is an ε-cover of Y with probability at least 1 − δ as well, since it is
an ε′-cover with probability at least 1 − δ′ ≥ 1 − δ by construction, and an ε′-cover is certainly an ε-cover
since ε′ ≤ ε. However, it is important to remark that the intersection

⋂ns
i=1 h(θ∗i ) is clearly a tighter ε-cover

than any of the individual covers h(θ∗i ), and therefore it gives better probabilistic localization of the output.
Furthermore, recall that the ε-cover is used as a surrogate output set to compute the approximate robustness
level in order to lower-bound the probabilistic robustness level. Therefore, we’d like to choose the ε-cover so
that the approximate robustness level is maximal. Since

r̂

(
ns⋂
i=1

h(θ∗i )

)
= inf

{
s(y) : y ∈

ns⋂
i=1

h(θ∗i )

}

≥ inf

ns⋂
i=1

{s(y) : y ∈ h(θ∗i )}

≥ max
i∈{1,2,...,ns}

inf{s(y) : y ∈ h(θ∗i )}

= max
i∈{1,2,...,ns}

r̂(h(θ∗i )),

where s(y) = mini∈{1,2,...,ns} a
>
i y + bi is the safety level of y with respect to the general polyhedral safe set

S, it is clear that using the intersection
⋂ns
i=1 h(θ∗i ) will give a tighter bound on the probabilistic robustness

level than any of the individual covers h(θ∗i ).
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Since we know that
⋂ns
i=1 h(θ∗i ) is an ε-cover with probability 1−δ, the only result that remains to be gener-

alized is the second conclusion from Theorem 2, i.e., we want to formally guarantee that r̂
(⋂ns

i=1 h(θ∗j )
)
≤ r̄(ε)

with probability 1 − δ. This follows readily from the fact that P (PX (f(X) ∈
⋂ns
i=1 h(θ∗i )) ≥ 1− ε) ≥ 1 − δ

together with Proposition 1 and the law of total probability, just as in the proof of Theorem 2 in Appendix
A.

Finally, note that when the classH of surrogate output sets is designed so that h(θ) is convex for all θ ∈ Θ,
the value r̂ (

⋂ns
i=1 h(θ∗i )) = infy∈

⋂ns
j=1 h(θ∗j ) mini∈{1,2,...,ns} a

>
i y + bi = mini∈{1,2,...,ns} infy∈

⋂ns
j=1 h(θ∗j ) a

>
i y + bi

is easily computable, as it involves ns minimizations of affine functions over the convex set
⋂ns
i=1 h(θ∗i ). This

completes the generalization of our assessment method to the case with a general polyhedral safe set.

C Distributionally Robust Extension

In this section, we formulate a distributionally robust variant of the proposed assessment procedure. Consider
the case where the neural network input X has a finite number of known possible probability distributions
P1,P2, . . . ,Pq, but that at any point in time, the true input distribution PX is unknown. For simplicity, we
use the notation Pk(P (X)), where P is a mathematical predicate, to mean the probability of the event P (X)
when X is distributed according to Pk. Naturally, we formulate the following distributionally robust variant
to the chance-constrained problem (5):

maximize
θ∈Θ

r̂(θ)− λv(θ)

subject to min
k∈{1,2,...,q}

Pk(f(X) ∈ h(θ)) ≥ 1− ε.

As we did before, we consider a scenario-based approximation to the above chance-constrained problem.
However, instead of directly analyzing the above problem, consider treating each distribution separately.
That is, let δ′ = δ/q, and for all k ∈ {1, 2, . . . , q}, formulate the scenario problem

maximize
θ∈Θ

r̂(θ)− λv(θ)

subject to yj,k ∈ h(θ) for all j ∈ {1, 2, . . . , N ′},

where we take the sample size to be N ′ = d 2
ε

(
log 1

δ′ + p
)
e, the samples x1,k, x2,k, . . . , xN ′,k are drawn

independently and identically from Pk, and yj,k = f(xj,k). Denote the solution to the kth such scenario
problem as θ∗k and its associated probability distribution as Pθ∗k . Also, denote by Pθ∗ the product probability
measure associated with (θ∗1 , θ

∗
2 , . . . , θ

∗
q ). Then by Theorem 2, we have for all k that Pθ∗k(Pk(f(X) ∈ h(θ∗k)) ≥

1− ε) ≥ 1− δ′. Therefore, performing a similar line of analysis as in Appendix B, we find that

Pθ∗
(
PX

(
f(X) ∈

q⋃
k=1

h(θ∗k)

)
≥ 1− ε

)
≥ Pθ∗

(
Pj

(
f(X) ∈

q⋃
k=1

h(θ∗k)

)
≥ 1− ε for all j

)
≥ Pθ∗

(
Pj(f(X) ∈ h(θ∗j )) ≥ 1− ε for all j

)
= 1− Pθ∗

(
Pj(f(X) ∈ h(θ∗j )) < 1− ε for some j

)
≥ 1−

q∑
j=1

Pθ∗j
(
Pj(f(X) ∈ h(θ∗j )) < 1− ε

)
≥ 1−

q∑
j=1

δ′

= 1− δ.

Therefore, the set
⋃q
k=1 h(θ∗k) is an ε-cover of Y with probability at least 1−δ. Note that this distributionally

robust approach naturally leads to the union of precomputed covers, in contrast to the intersection found in
Appendix B. This is to be expected, since each set h(θ∗k) in the current discussion brings new information
about where outputs could be located when the input is distributed according to Pk, and this new information
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should be included in the final ε-cover so as to ensure good localization of the output in a distributionally
robust sense. In contrast, since all of the samples in Appendix B come from the same distribution, it is
reasonable to intersect the resulting output set estimates and still obtain a good estimate of the true output
set Y with high-probability localization guarantees.

Now, following the same analysis as in Appendix B, it is easy to see that, with probability 1 − δ, the
probabilistic robustness level is lower-bounded as r̂ (

⋃q
k=1 h(θ∗k)) ≤ r̄(ε), where r̂(·) and r̄(·) are as defined

in (2) and (3), respectively. Finally, note that computing r̂ (
⋃q
k=1 h(θ∗k)) is simple, since

r̂

(
q⋃

k=1

h(θ∗k)

)
= inf

{
a>y + b : y ∈

q⋃
k=1

h(θ∗k)

}

= inf

q⋃
k=1

{a>y + b : y ∈ h(θ∗k)}

= min
k∈{1,2,...,q}

inf{a>y + b : y ∈ h(θ∗k)}

= min
k∈{1,2,...,q}

r̂(θ∗k),

and the values r̂(θ∗k) have already been computed using convex optimization.

D Special Case: Class of Half-Spaces

In this section, we consider the special case of the scenario problem (6) where λ = 0, Θ = Rny × R, and
h : Θ→ P(Rny ) is given by h(c, d) = {y ∈ Rny : c>y + d ≥ 0}. Then H is the class of all half-spaces within
the output space Rny . We will show that, 1) the scenario problem has a closed-form solution, and 2) the
scenario problem coincides with the optimization obtained by applying the scenario approach directly to the
definition of r̄(ε).

Under the given conditions, the approximate robustness level becomes r̂(c, d) = inf{a>y+b : c>y+d ≥ 0}.
The Lagrangian for this minimization problem is

L(y, µ) = a>y + b− µ(c>y + d) = (a− µc)>y + b− µd,

where µ ≥ 0 denotes the Lagrange multiplier. Since the Lagrangian is affine in y, the dual function is

g(µ) = inf
y∈Rny

L(y, µ) =

{
b− µd if a = µc,

−∞ otherwise.

Therefore, the dual problem corresponding to the primal minimization over y becomes

maximize
µ∈R

b− µd

subject to a = µc, µ ≥ 0.

Now, since the primal problem over y is a feasible linear program, we have that strong duality holds [39].
Hence, r̂(c, d) = sup{b− µd : a = µc, µ ≥ 0}. Therefore, the scenario optimization problem (6) reduces to

maximize
c∈Rny , d,µ∈R

b− µd

subject to a = µc, µ ≥ 0,

c>yj + d ≥ 0 for all j ∈ {1, 2, . . . , N}.

(15)

We now solve the scenario problem (15) in closed form. First, under the assumption that the safe set
is nontrivial, i.e., a 6= 0, we remark that the constraint a = µc implies that µ 6= 0, and therefore can be
rewritten as c = 1

µa. Eliminating c, the optimization becomes

maximize
d,µ∈R

b− µd

subject to µ > 0,
1

µ
a>yj + d ≥ 0, j ∈ {1, 2, . . . , N}.
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Defining r̃ = b− µd, the problem further reduces to

maximize
r̃∈R

r̃

subject to a>yj + b ≥ r̃ for all j ∈ {1, 2, . . . , N}.
(16)

It is clear that the reduced scenario problem (16) matches the formulation obtained by directly applying
the scenario approach to estimate r̄(ε) = sup{r ∈ R : PX(a>f(X) + b ≥ r) ≥ 1 − ε}. In fact, since the
optimization defining r̄(ε) is univariate, whereas the scenario problem (15) over Θ is (ny + 1)-dimensional,
the number of samples indicated by Theorem 2 is conservative for this problem. Instead of 2

ε (log 1
δ +ny + 1)

samples, only N ≥ 2
ε (log 1

δ + 1) samples are needed to obtain the high-probability guarantees provided by
Theorem 2. We also note that the optimization (16) is a univariate linear program, and is clearly solved in
closed-form by r̃∗ = minj∈{1,2,...,N} a

>yj + b. This derivation results in the following proposition:

Proposition 3. Let ε, δ ∈ [0, 1], N ≥ 2
ε (log 1

δ + 1), and {xj : j ∈ {1, 2, . . . , N}} be a set of N independently
and identically distributed samples drawn from PX . Let yj = f(xj) for all j ∈ {1, 2, . . . , N}. Then with
probability 1− δ, the probabilistic robustness level r̄(ε) is lower-bounded by r̃∗ = minj∈{1,2,...,N} a

>yj + b.

Despite being derived from our general framework, this special case reduces to a solution that is remark-
ably simple and coincides with a heuristic one may first try using in practice. That is, upon choosing H to
be the class of half-spaces, the optimal sample-based method for lower-bounding the probabilistic robustness
level via the approximate robustness level is to compute the minimum safety level amongst the collection of
sampled outputs. If sufficiently many samples are used and the minimum safety level is nonnegative, then
we certify with high probability that the unknown random output Y = f(X) is safe in practice. Although
this special case does not yield meaningful localization of the outputs and uses a crude class of surrogate
output sets, it certainly provides a fast analytical method for certifying the network’s robustness against
random input noise. Furthermore, our derivation mathematically justifies the use of this otherwise heuristic
method, and, contrarily, the natural intuition behind this statistical estimator validates our framework that
generalizes it.

E Alternate Illustrative Example

In this section, we showcase an illustrative example similar to that in Section 6.1, albeit now we consider the
multilayer perceptron proposed in Example 2 in [40]. The network uses a tanh(·) activation function and
has two inputs and two outputs, making the visualization of the input and output sets possible. See [40]
for more details of the network. The noisy input is distributed uniformly on X = {x ∈ R2 : |x1 − 0.5| ≤
1.5, |x2− 0.5| ≤ 0.1}, where x̄ = (0.5, 0.5) is the nominal input. The safe set is S1 = {y ∈ R2 : a>y+ b ≥ 0},
where a = (1, 0) and b = 3.7.

The norm ball class H of Examples 3, 4, and 5 is employed with ‖ · ‖ being the `2-norm. The probability
levels are chosen as ε = 0.1 and δ = 10−5. We set N =

⌈
2
ε (log 1

δ + p)
⌉

= 291, then uniformly sample N inputs
xj from X and compute their corresponding outputs yj . As shown in Example 5, the scenario problem takes
the form given in (7). We choose the regularizer to be the square of the norm ball radius, i.e., v(ȳ, r) = r2.
The optimization problem is convex as guaranteed by Theorem 1.

We solve the scenario problem first without regularization, and then with two different levels of reg-
ularization: λ1 = 0.001 and λ2 = 1. The respective solutions are denoted by θ∗, θ∗λ1

, and θ∗λ2
. Each

instance takes approximately 5 seconds to solve using CVX in Matlab on a standard laptop with a 2.6 GHz
dual-core i5 processor. The resulting approximate robustness levels are r̂(θ∗) = 0.423, r̂(θ∗λ1

) = 0.419,
and r̂(θ∗λ2

) = −1.107. In the instances without regularization and with regularization level λ1, Theorem
2 guarantees that the probabilistic robustness level r̄(0.1) is at least 0.4 with probability at least 0.99999.
In other words, the random output Y = f(X) has a safety level of 0.4 with high probability, granting the
probablistic robustness certificate we seek. On the other hand, since r̂(θ∗λ2

) < 0, the scenario problem using
regularization level λ2 is not able to certify the safety of the output. This is due to the inherent tradeoff
between localization and certification, which we now discuss further.

The optimal ε-covers h(θ∗), h(θ∗λ1
), and h(θ∗λ2

) are shown in Figure 5. The unregularized set h(θ∗) is
massively over-conservative due to the choice λ = 0, which corresponds to pure robustness certification.
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Indeed, h(θ∗) is the ε-cover from our class of sets that is furthest from the boundary of the safe set, making
r̂(θ∗) the tightest lower bound on r̄(ε). On the other hand, the optimal ε-covers using λ = λ1 and λ = λ2

are seen to give tighter localizations of the output Y . The approximate robustness level using regularization
λ1 is only slightly lower than the unregularized value, but the regularization λ2 is large enough to cause
the approximate robustness level r̂(θ∗λ2

) to become negative at the expense of localization. This shows
how overemphasizing localization may actually harm the certification aspect of robustness assessment, and
empirically demonstrates why output set estimation methods may not be adequate for issuing robustness
certificates.

Figure 5: Optimal `2-norm ball ε-covers for safe set S1.

We now repeat the same experiment with a more complicated safe set. In particular, we add an additional
constraint to the safe set to match Example 2 given in [40], so that it now takes the form S2 = {y ∈ R2 :
Ay+ b ≥ 0}, where A =

[
1 0
−1 0

]
and b = (3.7,−1.5). In this case, we apply our proposed method to each row

of the safe set individually. To do so, we set ε′ = ε/2 and δ′ = δ/2, then define N ′ = d 2
ε′

(
log 1

δ′ + p
)
e = 609.

For each of the two half-spaces defining the safe set, we solve the scenario problem using N ′ independent
and identically distributed input-output samples, and then we take the intersection of the two resulting
ε′-covers. Doing so, we obtain an ε-cover of the output set with probability at least 1 − δ. We repeat this
process again using regularization levels λ1 = 0.001 and λ2 = 1, and we find that each scenario problem
takes approximately 11 seconds to solve. The resulting covers are shown in Figure 6.

We find that the approximate robustness levels corresponding to λ = 0 and λ = λ1 are strictly positive
for both half-spaces, certifying that the random output Y is safe with the prescribed probability. However,
for λ = λ2, the optimal ε-covers corresponding to both half-spaces are found to intersect the unsafe region
of the output space, due to the increased emphasis on localization. Interestingly, the overall localization
after intersecting the two ε′-covers for λ = λ2 is in a sense looser than that of the case λ = λ1, indicating
that moderate regularization levels, like λ1 in this experiment, may simultaneously perform best for both
localization and certification in the case of general polyhedral safe sets defined by more than one half-space.
Optimizing λ in general poses an interesting problem for future research.

F Comparison to DeepPAC

In this experiment, we use the half-space special case of our proposed robustness certification method, as
presented in Section D. Recall that this method uses all optimization efforts to certify the robustness of
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Figure 6: Optimal ε-covers amongst intersections of two `2-norm ball ε
2 -covers for safe set S2.

the network; the outputs are not localized within the output space. For this example, we append a ReLU
layer with normal random weights and biases to the neural network presented in Section 6.1, maintaining
ny = 2, and we consider the resulting network as a classifier. Ten nominal inputs are chosen randomly at
which we will perform robustness certification. The noisy input X is distributed uniformly on the input set
X = {x ∈ R2 : ‖x− x̄‖ ≤ εx}, where the radius εx is varied from 0.1 to 1. We set the probabilistic confidence
levels to be ε = 0.1 and δ = 10−5.

For each nominal input and input set radius, we compute a lower bound on the probabilistic robustness
level r̄(ε) first using our proposed methodology, and then using the scenario-based approach presented in [26],
termed DeepPAC.6 Solving for such a lower bound using DeepPAC first entails solving a scenario linear
program for an affine bound on the classifier’s margin function, and then requires optimizing this bound over
the input set. We remark that DeepPAC requires more samples (and therefore optimization constraints)
than our approach, specifically, DeepPAC requires N ≥ 2

ε (log 1
δ + (nx + 1)(ny − 1) + 1), and therefore we

restrict our comparison to DeepPAC to this moderately sized example for computational convenience. See
Section 6.3 for applications of our approach to large MNIST and CIFAR-10 networks.

After computing the lower bounds on r̄(ε) using both methods, we average the values over the nominal
inputs, independently for each input set radius. The results are shown in Figure 7. As seen, the lower bounds
between the two methods remain close for small input set radii, but our approach offers a tighter lower bound
as the radii increase. At input set radius εx = 0.4, our approach is able to issue a high-probability robustness
certificate on average, whereas DeepPAC fails. These observations are explained as follows.

DeepPAC works by using samples to learn an affine approximation to the nonlinear margin function over
X , so that high-probability bounds on the margin function values at noisy inputs can be made using the
learned affine function. Using affine functions to bound the margin function is a technique that naturally
applies when considering worst-case or adversarial inputs (e.g., [10,36]). However, as the input set becomes
larger, affine approximations are no longer able to accurately capture the nonlinearities of the margin func-
tion. Consequently, DeepPAC’s high-probability affine bounds on the margin function values become loose,
resulting in a looser lower bound on the probabilistic robustness level. Our approach avoids this worst-case
analysis technique by directly learning a set in the output space instead of learning a mapping from the

6Like our robustness certificates, those given by DeepPAC are of the probably approximately correct form (see Remark 3),
hence the name DeepPAC.
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input to the output space. This behavior is also seen in the experiment of Section 6.3.

Figure 7: Our lower bound closely matches that of DeepPAC for small input set radii, but becomes noticeably
tighter than DeepPAC as the input set becomes larger.

G Comparison to Direct Bayesian Certification

In this section, we repeat the experiment of Section 6.3 using the sample-based certification method given
in [17]. Recall that [17] imposes a Bayesian framework on the problem by directly assuming that the failure
probability follows a uniform prior distribution. In doing so, [17] is able to certify with probability 1 − δ
that PX(f(X) ∈ S) ≥ 1− ε, so long as the number of samples used is N ≥ 1

ε log 1
δ − 1 and f(xj) ∈ S for all

sampled inputs xj , j ∈ {1, 2, . . . , N}. In comparing our method to [17], two important remarks should be
made. First, our method is much more general, as we are able to localize the outputs in arbitrary surrogate
output sets, so long as they satisfy the assumptions of Theorem 1, yielding a convex scenario optimization
problem, whereas the method of [17] is only able to certify whether or not the outputs are contained in
the safe half-space. Thus, to compare the methods, we restrict our method to the special case of half-space
surrogate output sets from Appendix D. Second, for the same amount of samples (O( 1

ε log 1
δ )), our method

provides more information regarding the robustness of the network than [17] does. In particular, we lower
bound the probabilistic robustness level r̄(ε) with a continuous value, whereas [17] is only able to issue a
binary certificate asserting whether or not outputs are contained in the safe set with high probability. With
this in mind, our method is the only one of the two that is able to quantify how safe the outputs are by
certifying a continuous-valued safety margin.

The results of the experimental comparison are given in Table 3. It is observed that our method is
always able to issue a robustness certificate whenever [17] does, and furthermore, our lower bounds on the
probabilistic robustness level are generally much less conservative than those granted by [17] (which are
binary; either a lower bound of 0, or failure to issue a certificate altogether). This emphasizes that, for
the same number of samples, a special case of our method is strictly more informative as [17], and always
succeeds in issuing a robustness certificate whenever their method does.
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Table 3: Average probabilistic robustness level lower bounds r̂(θ∗) for MNIST ReLU networks subject to
uniform noise over `∞-norm ball. All values are averaged over 10 nominal inputs with randomly chosen target
classes i. Also reported are the percentages of inputs that each method is able to certify. Lower bounds
giving certified robustness (on average) are bolded, and the average certified adversarial radii computed
using [36] are italicized.

(a) 2 × [20] network.

Radius
ε = 0.001 ε = 0.1 ε = 0.25
[17] Ours [17] Ours [17] Ours

0.01
0.00 14.11 0.00 14.26 0.00 14.28

100% 100% 100% 100% 100% 100%

0 .027
0.00 13.36 0.00 13.77 0.00 13.85

100% 100% 100% 100% 100% 100%

0.05
0.00 12.34 0.00 13.11 0.00 13.26

100% 100% 100% 100% 100% 100%

0.1
0.00 10.25 0.00 11.66 0.00 12.00

100% 100% 100% 100% 100% 100%

0.5
N/A −7.21 N/A −0.05 N/A 1.71
20% 20% 40% 40% 50% 50%

(b) 3 × [20] network.

Radius
ε = 0.001 ε = 0.1 ε = 0.25
[17] Ours [17] Ours [17] Ours

0.01
0.00 17.28 0.00 17.45 0.00 17.48

100% 100% 100% 100% 100% 100%

0 .022
0.00 16.65 0.00 17.02 0.00 17.10

100% 100% 100% 100% 100% 100%

0.05
0.00 15.19 0.00 16.00 0.00 16.19

100% 100% 100% 100% 100% 100%

0.1
0.00 12.57 0.00 14.19 0.00 14.58

100% 100% 100% 100% 100% 100%

0.5
N/A −9.36 N/A −0.55 N/A 0.36

0% 0% 50% 50% 62.5% 62.5%

(c) 2 × [1024] network.

Radius
ε = 0.001 ε = 0.1 ε = 0.25
[17] Ours [17] Ours [17] Ours

0.01
0.00 27.73 0.00 27.87 0.00 27.93

100% 100% 100% 100% 100% 100%

0 .032
0.00 26.69 0.00 27.13 0.00 27.32

100% 100% 100% 100% 100% 100%

0.05
0.00 25.83 0.00 26.53 0.00 26.82

100% 100% 100% 100% 100% 100%

0.1
0.00 23.46 0.00 24.84 0.00 25.42

100% 100% 100% 100% 100% 100%

0.5
N/A 4.83 0.00 11.79 0.00 14.45
80% 80% 100% 100% 100% 100%

(d) 3 × [1024] network.

Radius
ε = 0.001 ε = 0.1 ε = 0.25
[17] Ours [17] Ours [17] Ours

0.01
0.00 36.86 0.00 37.06 0.00 37.12

100% 100% 100% 100% 100% 100%

0 .024
0.00 35.97 0.00 36.44 0.00 36.58

100% 100% 100% 100% 100% 100%

0.05
0.00 34.32 0.00 35.32 0.00 35.59

100% 100% 100% 100% 100% 100%

0.1
0.00 31.10 0.00 33.10 0.00 33.69

100% 100% 100% 100% 100% 100%

0.5
N/A 6.89 N/A 15.85 0.00 18.56
80% 80% 90% 90% 100% 100%
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[29] H. Sartipizadeh, A. P. Vinod, B. Açikmeşe, and M. Oishi, “Voronoi partition-based scenario reduction
for fast sampling-based stochastic reachability computation of linear systems,” in 2019 American Control
Conference (ACC). IEEE, 2019, pp. 37–44.

[30] A. Nemirovski and A. Shapiro, “Convex approximations of chance constrained programs,” SIAM Journal
on Optimization, vol. 17, no. 4, pp. 969–996, 2007.

[31] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for Analysis and Control of Uncertain
Systems. Springer Science & Business Media, 2012.

[32] M. C. Campi, S. Garatti, and M. Prandini, “The scenario approach for systems and control design,”
Annual Reviews in Control, vol. 33, no. 2, pp. 149–157, 2009.

[33] J. Luedtke and S. Ahmed, “A sample approximation approach for optimization with probabilistic con-
straints,” SIAM Journal on Optimization, vol. 19, no. 2, pp. 674–699, 2008.

[34] M. C. Campi, S. Garatti, and F. A. Ramponi, “A general scenario theory for nonconvex optimization
and decision making,” IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4067–4078, 2018.

[35] A. V. Fiacco and J. Kyparisis, “Convexity and concavity properties of the optimal value function in
parametric nonlinear programming,” Journal of Optimization Theory and Applications, vol. 48, no. 1,
pp. 95–126, 1986.

[36] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient neural network robustness
certification with general activation functions,” in Advances in Neural Information Processing Systems,
2018, pp. 4939–4948.

[37] Y. LeCun, “The MNIST database of handwritten digits,” http://yann. lecun. com/exdb/mnist/, 1998.

[38] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed integer
programming,” in International Conference on Learning Representations, 2019.

[39] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[40] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set estimation and verification for multi-
layer neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 11,
pp. 5777–5783, 2018.

31


	Introduction
	Related Works
	Contributions
	Outline
	Notations

	Problem Statement
	Network Description, Safe Set, and Safety Level
	Various Notions of Robustness
	Deterministic Robustness Level
	Approximate Robustness Level
	Probabilistic Robustness Level


	Formulating the Certificate
	Bounding the Probabilistic Robustness Level
	Optimizing the Bound

	Data-Driven Reformulation
	Conditions for Convex Optimization
	High-Probability Guarantees

	Exploiting Network Structure
	Numerical Experiments
	Illustrative Example
	Comparison to Output Set Estimation
	Comparison to PROVEN
	Exploiting Network Structure

	Conclusions
	Proofs
	Extension to General Polyhedral Safe Sets
	Distributionally Robust Extension
	Special Case: Class of Half-Spaces
	Alternate Illustrative Example
	Comparison to DeepPAC
	Comparison to Direct Bayesian Certification

