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Abstract

Randomized smoothing is a leading approach
to producing certifiably robust classifiers. The
goal of optimal randomized smoothing is to max-
imize the average certified radius over the space
of smoothing distributions. We theoretically
study this problem through the lens of infinite-
dimensional optimization over measure spaces,
and prove that the nonconvex infinite program is
lower-bounded by a conic linear program wherein
the classifier’s confidence acts as a surrogate ob-
jective to optimize. A semi-infinite linear pro-
gramming approximation to the problem is pre-
sented, whose sub-problems are proven to attain
nontrivial strong duality. A proof-of-concept ex-
periment demonstrates the effectiveness of the
proposed approach.

1. Introduction
Neural networks have proliferated across a range of safety-
critical applications, from autonomous driving (Bojarski
et al., 2016; Wu et al., 2017) to power systems control (Kong
et al., 2017) and medical diagnostics (Kang et al., 2021).
It is therefore especially concerning that these models are
vulnerable to adversarial inputs: human-imperceptible per-
turbations that can cause failures such as misclassification
(Biggio et al., 2013; Szegedy et al., 2014). Heuristic de-
fenses against such inputs have often been subsequently de-
feated by stronger attacks (Carlini & Wagner, 2017; Kurakin
et al., 2017; Athalye et al., 2018), motivating classifiers with
provable robustness properties.

Randomized smoothing, popularized by Lecuyer et al.
(2019); Li et al. (2019); Cohen et al. (2019), remains one of
the state-of-the-art methods to provably robustify classifiers.
The idea of randomized smoothing is as follows: instead

1University of California, Berkeley, USA. Correspondence to:
Brendon G. Anderson <bganderson@berkeley.edu>.

1 st Workshop on Formal Verification of Machine Learning, Bal-
timore, Maryland, USA. Colocated with ICML 2022. Copyright
2022 by the author(s).

of directly classifying an input at test time, random pertur-
bations of the input are classified, and the most probable
class amongst the perturbed inputs is the class assigned to
the input. Intuitively, this procedure acts to average out
any problematic but unlikely perturbations near the input.
This is illustrated in Figure 1, where the classifier decision
boundaries are smoothed out, resulting in a larger robust
region around the test input.
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Figure 1. Randomized smoothing removes jagged regions where
adversarial inputs reside and provably robustifies classifiers.

A line of work has been developed to prove certified safe
radii for various input noise distributions. For example, Co-
hen et al. (2019) gives `2-norm safe radii using Gaussian
smoothing and Teng et al. (2020) gives `1-norm safe radii
using Laplacian smoothing. Norm ball robustness is fur-
ther generalized by Yang et al. (2020a) under a range of
smoothing distributions. Most works have only considered
smoothing distributions that are fixed and unbiased, mean-
ing the distribution of random noise is independent of the
test input and has zero mean. These restrictions lead to con-
servative robustness guarantees, since a good distribution
for an input far from the decision boundary is one with high
variance (so as to maximize the certified radius), whereas a
good distribution for an input close to the decision bound-
ary is one with low variance and a potential bias (so as to
maintain accuracy).

Recent works, such as Alfarra et al. (2020); Wang et al.
(2021); Eiras et al. (2021); Chen et al. (2021), attempt to de-
velop input-dependent smoothing schemes, but most restrict
themselves to Gaussian noise, and their robustness certifi-
cates often do not hold for the actual classifier used at test
time (Anderson & Sojoudi, 2022). In this work, we consider
generalizing randomized smoothing to allow for arbitrary
input-dependent smoothing schemes, and we theoretically



Towards Optimal Randomized Smoothing

study the problem of finding such a scheme that optimizes
the average certified radius over the data distribution.

1.1. Preliminaries

Throughout, we allow ‖ · ‖ to denote an arbitrary norm.
We use the notation ‖ · ‖∞ to represent both the element-
wise maximum norm for finite-dimensional vectors, as well
as the supremum norm for real-valued bounded functions.
The domain of a norm will always be clear from context.
The interior of a set X is denoted by intX . The set of
nonnegative real numbers is denoted by R+. The vector
in Rd with all elements equal to 1 is written 1d. For a
Lipschitz continuous map ϕ between metric spaces, we
denote its Lipschitz constant by Lip(ϕ). Given a function
h on Rd and a point y ∈ Rd, we define the function τyh on
Rd by τyh(x) = h(x+ y).

Let X be a subset of Rd. Define B(X) to be the Borel σ-
algebra onX and (M(X), ‖·‖TV) to be the Banach space of
finite signed measures on the measurable space (X,B(X))
equipped with the total variation norm. The Lebesgue mea-
sure of B ∈ B(X) is denoted m(B). DefineM(X)+ =
{µ ∈ M(X) : µ ≥ 0} to be the convex cone of finite pos-
itive measures and P(X) = {µ ∈ M(X)+ : µ(X) = 1}
to be the set of probability measures. If X is compact, then
denote by (C(X), ‖ · ‖∞) the Banach space of real-valued
continuous functions on X equipped with the supremum
norm. Define C(X)+ = {h ∈ C(X) : h ≥ 0} to be the
convex cone of nonnegative continuous functions on X . Re-
call the bilinear form 〈·, ·〉 : C(X) ×M(X) → R given
by 〈h, µ〉 =

∫
X
h(x)dµ(x) for all (h, µ) ∈ C(X)×M(X).

When h is a continuous function defined on all of Rd, we use
the notation 〈h, µ〉 to mean 〈h|X , µ〉, i.e., the integration
is restricted to X . For a vector-valued h : Rd → Rn, we
use 〈h, µ〉 to denote component-wise integration; 〈h, µ〉 =
(〈h1, µ〉 , 〈h2, µ〉 , . . . , 〈hn, µ〉). If µ is a probability mea-
sure, we may sometimes write its bilinear evaluation on
h as an expectation: Eε∼µh(ε) = 〈h, µ〉. The set of all
real-valued continuously differentiable functions on Rd is
denoted by C1(Rd). We denote the normal distribution on
Rd with mean x and covariance Σ by N(x,Σ). The distri-
bution function of N(0, 1) on R is denoted by Φ, which we
recall has a well-defined inverse.

Proofs are deferred to the appendices.

2. Problem Formulation
2.1. Conventional Smoothing

Let d, n ∈ N and consider the n-class classifier f : Rd →
Y , where Y = {1, 2, . . . , n}, defined by f(x) ∈
arg maxi∈Y gi(x) with associated soft classifier g : Rd →
[0, 1]n. Conventional randomized smoothing performs a
Gaussian averaging operation on g that smooths the deci-

sion boundaries of f so as to eradicate adversarial inputs
which exist near “sharp” regions of the decision boundary.
Formally, the soft classification rule is replaced by the fol-
lowing smoothed soft classifier:

gσ(x) = Eε∼N(0,σ2Id)g(x+ ε) =

∫
Rd

g(x+ ε)φσ(ε)dε,

where φσ : Rd → R is the density function of N(0, σ2Id).
The prediction is then assigned according to fσ(x) ∈
arg maxi∈Y g

σ
i (x). Gaussian randomized smoothing has

been shown to yield certified radii within which the
(smoothed) prediction rule remains constant:
Theorem 1 (Cohen et al., 2019; Zhai et al., 2020). Let
σ2 > 0. Consider a point x ∈ Rd and let y = fσ(x) ∈
arg maxi∈Y g

σ
i (x) and y′ ∈ arg maxi∈Y\{y} g

σ
i (x). Then

fσ(x+ δ) = y for all δ ∈ Rd such that

‖δ‖2 ≤ rσ(x) :=
σ

2

(
Φ−1(gσy (x))− Φ−1(gσy′(x))

)
.

Theorem 1 asserts that an adversarial perturbation δ of `2-
norm radius less than rσ(x) cannot alter the prediction of
the nominal input x upon using the smoothed classifica-
tion scheme. Recent works have attempted optimizing over
the smoothing variance σ2 to maximize the certified radius
rσ(x). However, some inputs may require a small σ2 to
maintain a correct prediction, whereas other inputs may
permit a large σ2 that yields a large certified radius, and
therefore keeping σ2 uniform with respect to x is overly
conservative in general. To overcome this limitation, some
works have allowed σ2 to vary with x, but their proposed
robustness certificates do not reflect the actual classifica-
tion scheme being used at test time (Anderson & Sojoudi,
2022). To make their certificates valid, these works restrict
themselves to using locally constant variances.

2.2. Generalized Smoothing

In this paper, we consider the generalized setting where the
smoothing measure is allowed to vary with the input and
is not necessarily Gaussian, and we seek to choose such a
measure so as to maximize the average certified radius with
respect to the data distribution. To this end, let X be a fixed
subset of Rd. For a measure-valued map µ : Rd → P(X),
we consider the smoothing scheme given by

gµ(x) = Eε∼µ(x)g(x+ ε) =

∫
X

g(x+ ε)d(µ(x))(ε),

fµ(x) ∈ arg max
i∈Y

gµi (x).

Of course, the set X over which we smooth the classifier is
our choice. We will keep X arbitrary and fixed, albeit we
impose the following assumption:
Assumption 1. The set X is compact, contains 0 ∈ Rd,
and has positive Lebesgue measure.
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Assumption 1 is natural with respect to our goal; such a set
implies that the smoothing operation is non-negligible and
being done locally around the input x of interest. Notice that,
even with Gaussian smoothing, the smoothing is effectively
performed on a compact set, since the Gaussian density
function is nearly zero outside of some compact set. Using
our notations, we see that gµ(x) = 〈τxg, µ(x)〉, which
explicitly shows the linearty of gµ(x) in µ.

It is not only important to maximize the size of the neighbor-
hood around an input on which the classifier is constant (for
robustness purposes), but also it is imperative to ensure that
the classifier prediction is actually correct. We encode the
correctness as follows: given a particular input-label pair
(x, y) ∈ Rd × Y , the certified radius is

rµ(x, y) = inf
{
‖x′ − x‖ : fµ(x′) 6= y, x′ ∈ Rd

}
. (1)

Under this definition, if fµ(x) 6= y, then rµ(x, y) = 0;
the radius of robustness is zero whenever the smoothed
classifier does not predict the label y correctly. We define
our metric of interest to be the average certified radius
E(x,y)∼Dr

µ(x, y), where D is the data distribution. Our
problem now consists of solving the optimization

p? := sup
µ∈F

E(x,y)∼Dr
µ(x, y), (2)

where F is the feasible set, which we leave as an arbitrary
subset of all maps µ : Rd → P(X) for the time being.
Not only is the outer maximization in (2) a challenging
infinite-dimensional problem in general, but also the inner
minimization (1) is nonconvex. Thus, finding µ to attain the
maximum p? is intractable, and instead we propose a more
amenable lower bound on the average certified radius, and
then maximize this lower bound over µ.

3. Lower-Bounding the Certified Radius
In this section, we incorporate appropriate Lipschitz continu-
ity conditions into the base soft classifier g and feasible set
F to develop a lower bound on the certified radius that is lin-
ear in the variable µ. This will allow us to lower-bound p? by
an infinite linear program, as we will soon see. To this end,
let ρ denote the metric induced by ‖ ·‖; ρ(x′, x) = ‖x′−x‖
for all x′, x ∈ Rd. Then the first such Lipschitz condition is
formalized in the following assumption.

Assumption 2. Every component function gi, as a map
from

(
Rd, ρ

)
to [0, 1] equipped with the metric induced by

the absolute value | · | : R→ [0,∞), is Lipschitz continuous.

There exist many methods in the literature to numerically
solve for upper bounds on the Lipschitz constants in As-
sumption 2—see, e.g., Weng et al. (2018); Fazlyab et al.
(2019); Zhang et al. (2019); Jordan & Dimakis (2020). Al-
ternatively, it suffices to replace the base classifier with one

that has been preemptively smoothed using conventional
randomized smoothing and to then employ the methods we
present, as the Lipschitz constant of every gi would then be
given in closed-form by Salman et al. (2019).

We now make concrete the feasible set of measure-valued
maps that we consider. In particular, we fix a constant
K ≥ 0 and let

F = {µ : Rd → P(X) : Lip(µ) ≤ K}. (3)

Notice that the metric on P(X) is that induced by the total
variation norm. The feasible set F restricts the smooth-
ing scheme to those that do not yield drastically different
smoothing measures for two distinct nearby inputs. This is
precisely the condition that is missing from many works on
input-dependent randomized smoothing, and without this
condition, the resulting robustness certificates fail to hold in
practice since no relation is granted between the smoothing
distribution used at the nominal input and that used at a
perturbed input, which is the one applied in reality. In gen-
eral, directly enforcing the constraint in (3) is intractable, so
we will later derive a tractable inner-approximation of the
constraint set F that maintains certified radii in Section 4.1.

We are now in a position to lower-bound the certified radius,
which depends on µ in a “nasty” way, by a quantity that is
linear in µ.

Lemma 1. Let µ ∈ F , and let L(i) ∈ R+ be such that
Lip(gi) ≤ L(i) for all i ∈ Y . Then, for all i ∈ Y , it
holds that gµi is Lipschitz continuous with constant C :=
max{L(i) : i ∈ Y}+K.

Lemma 2. Let (x, y) ∈ Rd × Y be a fixed input-label pair,
and let µ be a measure-valued map from Rd into P(X). Let
y′ ∈ arg maxi∈Y\{y} g

µ
i (x). If gµi is Lipschitz continuous

with constant C ∈ R+ for all i ∈ Y , then

1

2C

(
gµy (x)− gµy′(x)

)
≤ rµ(x, y).

Proposition 1. Let (x, y) ∈ Rd × Y be a fixed input-label
pair and let µ ∈ F . Let y′ ∈ arg maxi∈Y\{y} g

µ
i (x). Then

1

2C

(
gµy (x)− gµy′(x)

)
≤ rµ(x, y),

where C is as in Lemma 1.

Intuitively, Proposition 1 shows that, for sufficiently con-
tinuous classifiers, the relative confidence between the two
top-ranking classes provides an estimate of the certified ra-
dius. Lemma 1 reveals that the Lipschitz constant of the
smoothed classifier may actually increase relative to that of
the base classifier. We emphasize that this is not at odds
with the goal of robustification; smoothness of decision
boundaries is not always a good surrogate notion for ro-
bustness, and indeed decreasing the Lipschitz constant too
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much may cause a drop in classification accuracy (Yang
et al., 2020b; Anderson & Sojoudi, 2022). Figure 2 illus-
trates this phenomenon, where a linear classifier with a low
Lipschitz constant is less robust than a nonlinear classifier
with a higher Lipschitz constant—the extent of nonlinearity
should be determined based on the data distribution, not by
the assumption that smoothness yields robustness.

Figure 2. The nonlinear classifier (high Lipschitz constant) is more
robust than the linear one (low Lipschitz constant).

The lower bound in Propostion 1 depends nonlinearly on µ
since the runner-up class y′ may depend on µ. To overcome
this hurdle, we introduce the following standard assumption:

Assumption 3. The image of g is a probability simplex;∑n
i=1 gi(x) = 1 for all x ∈ Rd.

Under Assumption 3, we obtain our final lower bound on
the certified radius that is linear in µ:

Proposition 2. Let (x, y), µ, and C be as in Proposition 1.
Then

1

2C

(
2gµy (x)− 1

)
≤ rµ(x, y). (4)

4. Surrogate Optimization
With our lower bound (4) on the certified radius in place,
we may formulate the following optimization as a surrogate
for p?:

sup
µ∈F

E(x,y)∼D
1

2C

(
2gµy (x)− 1

)
≤ p?, (5)

where we recall that C = max{L(i) : i ∈ Y} + K and
L(i) ∈ R+ are such that Lip(gi) ≤ L(i) for all i ∈ Y .

Now, although the feasible set F in (5) is convex, it is
defined by an intractable constraint. We propose to over-
come this challenge by relaxing the constraint to ones that
maintain a lower bound on the certified radius and permit
a tractable inner-approximation. This inner-approximation,
defined by conic linear constraints, is derived in the next
section.

4.1. Inner-Approximating the Lipschitz Constraint

We start by relaxing (5). In particular, notice that F is a
subset of

F ′ := {µ : Rd → P(X) : Lip(gµi ) ≤ C for all i ∈ Y},
(6)

as proven in Lemma 1. But also, by Lemma 2, we know
that µ ∈ F ′ maintains a lower bound on the certified radius,
and hence we find that

sup
µ∈F

E(x,y)∼D
1

2C

(
2gµy (x)− 1

)
≤ sup
µ∈F ′

E(x,y)∼D
1

2C

(
2gµy (x)− 1

)
≤ p?.

Hence, we may focus our attention on the feasible set
F ′, and in particular, we seek to derive a tractable inner-
approximation of this set. Let us first recall a few basic facts
from analysis.

Lemma 3. Let ‖ · ‖ be a norm on Rd and let ‖ · ‖∗ be
its corresponding dual norm. Assume that h : Rd → R is
differentiable. Then Lip(h) ≤ supx∈Rd ‖∇h(x)‖∗.
Lemma 4 (Folland, 1999, Chapter 5). All norms on Rd are
equivalent. In particular, there exists C∗,∞ ∈ R+ such that
‖x‖∗ ≤ C∗,∞‖x‖∞ for all x ∈ Rd.

It is well-known for the common cases of ‖ · ‖ = ‖ · ‖1,
‖·‖ = ‖·‖2, and ‖·‖ = ‖·‖∞ that the equivalence constant
in Lemma 4 can be taken as C∗,∞ = 1, C∗,∞ =

√
d, and

C∗,∞ = d, respectively.

Going forward, we make the following assumption.1

Assumption 4. The base classifier g is continuously differ-
entiable; i.e., gi ∈ C1(Rd) for all i ∈ Y .

Now, let F0 be the class of maps µ : Rd →M(X)+ with
the following properties:

1. µ(x) has nonnegative density φx ∈ C1(intX) with
respect to Lebesgue measure for all x ∈ Rd, and

2. the density gradients are uniformly bounded with con-
stant C0 ≤ C

m(X) , i.e., supε∈intX ‖∇xφx(ε)‖∗ ≤ C0

for all x ∈ Rd, and

3. (µ(x))(X \ intX) = 0 for all x ∈ Rd.

The first property merely restricts attention to “nice” smooth-
ing distributions with well-defined densities. The second
property restricts those densities to ones that do not vary too

1It is easily seen that Assumption 4 can be relaxed to the as-
sumption that g is continuously differentiable almost everywhere
with respect to Lebesgue measure, making our results hold in most
practical settings, including for ReLU neural networks.
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rapidly with respect to the base classifier—this is natural,
for if supε∈intX ‖∇φx(ε)‖∗ were too large, the distribu-
tion would nearly resemble a Dirac measure, resulting in
a trivial shift of the classifier input upon smoothing. The
third property is a benign technical condition that requires
the measures to nullify the boundary of the set X . This is
satisfied when the measure µ(x) is absolutely continuous
with respect to Lebesgue measure. We now present our
inner-approximation to the feasible set F ′.
Proposition 3. For all i ∈ Y and x ∈ Rd, let
Ai(x, ·) : M(X) → R2d+1 be the linear operator defined
by

Ai(x, η) = 〈(τx∇gi,−τx∇gi, 1), η〉 ,

and let bi ∈ R2d+1 be the vector bi = (Cb1d, Cb1d,−1),
where Cb := C−C0m(X)

C∗,∞
≥ 0, C is as in Lemma 1, and

C∗,∞ is as in Lemma 4. DefineK ⊆ R2d+1 to be the convex
cone K = Rd+ × Rd+ × {0}. Then, it holds that

F̂ :=

n⋂
i=1

{
µ ∈ F0 : Ai(x, µ(x)) + bi ∈ K for all x ∈ Rd

}
is a subset of the feasible set (6).

The inner-approximation F̂ is defined by affine conic con-
straints on µ, and is therefore much more amenable than
directly constraining Lipschitz constants. If a map µ : Rd →
M(X)+ satisfies these conic constraints and the regularity
properties defining F0, then Proposition 3 shows that the
confidence gµy (x) can be used to certifiably lower-bound the
radius of robustness rµ(x, y).

In practice, one may enforce that µ ∈ F0 by instantiating a
particular parameterization of the smoothing measures. For
example, one may consider thresholded Gaussian densities
with a fixed lower bound on the variance parameter, and
consider the set of all maps corresponding to summations
of k such densities for some fixed k ∈ N. Alternatively, one
may choose an adequately smooth class of neural networks
to generate the parameterization.

4.2. Semi-Infinite Approximation

Let (x1, y1), . . . , (xN , yN ) ∼ D be data to be used in the
empirical risk optimization. The optimization, using the
inner-approximation of Proposition 3, becomes

p̂ := sup

{
1

CN

N∑
j=1

(〈
τxj

gyj , µ(xj)
〉
− 1/2

)
:

A(x, µ(x)) + b ∈ Kn for all x ∈ Rd, µ : Rd →M(X)+

}
.

where A(x, ·) = (A1(x, ·), . . . , An(x, ·)) for all x, b =
(b1, . . . , bn), and Kn = K × · · · × K. The “for all x ∈ Rd”

makes the problem infinite; the search space is infinite-
dimensional and there are infinitely many constraints. To
make the problem semi-infinite, we take the common dis-
cretization approach for infinite programs and consider

p̂′ :=
1

CN

N∑
j=1

sup
{ 〈
τxj

gyj , µj
〉
− 1/2 :

A(xj , µj) + b ∈ Kn, µj ∈M(X)+
}
.

Theoretical guarantees for the convergence of such dis-
cretization approaches to solutions of the original infinite
program can be found in the the literature on solving general
capacity problems, e.g., Lai & Wu (1992); Wu et al. (2001).

Now, for all j ∈ {1, 2, . . . , N}, denote the jth subproblem
in the above summation by

p̂′j := sup
{ 〈
τxjgyj , µj

〉
− 1/2 :

A(xj , µj) + b ∈ Kn, µj ∈M(X)+
}
. (7)

Every subproblem (7) is a canonical semi-infinite linear
program; the objective is affine, the search space is infinite-
dimensional as the decision variable is a measure, and the
constraints are affine conic ones.

To generate an approximate solution for p̂, we may solve (7)
for µ?j for all j, and then extend the measure-valued map
to Rd by means of inverse-distance weighted interpolation,
e.g., using Shepard’s method (Shepard, 1968).

4.3. Solving the Subproblems

The subproblem (7) has an infinite-dimensional variable
with finitely many constraints. More commonly considered
is robust linear programming in finite-dimensional search
spaces; problems with a finite-dimensional variable but in-
finitely many constraints. Indeed, the latter has readily
available solution methods, e.g., discretizations and penalty
methods, with associated convergence guarantees (Fang &
Wu, 1994; Reemtsen & Görner, 1998; Fang, 2018). Fortu-
nately, these types of semi-infinite linear programs are duals
of one another. Following Shapiro (2001), the dual of (7) is

d̂′j := inf
{
− b>λ− 1/2 :

A∗(xj , λ)− τxjgyj ∈ C(X)+, λ ∈ −Kn∗
}
, (8)

where A∗(x, ·) is the adjoint of the linear operator A(x, ·),
and whereKn∗ is the dual cone ofKn. The dual problem (8)
is a linear program with a finite-dimensional search space,
but infinitely many constraints in the form of a nonnega-
tive functional constraint. Now, a key challenge is that, in
general, strong duality does not hold for semi-infinite linear
programs (Shapiro, 2001). If this were the case for our
problem, then p̂′j < d̂′j , which would void the lower bound
on the certified radius. However, we can show that for the
specific problem at hand, strong duality does indeed hold:
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Theorem 2. For all j ∈ {1, 2, . . . , N}, if p̂′j is feasible,
then strong duality holds; p̂′j = d̂′j .

We emphasize that the duality theory given in Theorem 2
is nontrivial, and relies intimately on the topology of the
feasible set of our particular semi-infinite program. The
optimal value of the dual consequently yields an immediate
certified radii around the given data in the case that the
smoothing scheme satisfies our inner-approximation:
Corollary 1. Let µ?j solve p̂′j for all j ∈ {1, 2, . . . , N}, and
let µ ∈ F̂ be such that µ(xj) = µ?j for all such j. Then
1
C d̂
′
j = 1

C p̂
′
j ≤ rµ(xj , yj).

Corollary 1 gives a simple way of estimating how subopti-
mal the certificate of a (possibly naively designed) smooth-
ing scheme may be around various data points. In particular,
if ν : Rd → P(X) is a smoothing scheme with known cer-
tified radius rν(xj , yj) � d̂′j , then Corollary 1 shows the
existence of an alternative smoothing scheme µwith a larger
certified radius attainable by solving (7).

5. Experiment
Consider a 3-layer ReLU neural network g with 10 neurons
per hidden layer, 2 outputs, and 2 inputs for the purposes
of visualization. The weights and biases are randomly ini-
tialized using normally distributed entries. We consider
N = 2 data points x1 = (3, 0), x2 = (−3, 0), shown in red
in Figure 3, with associated classes y1 = y2 = 2, which
corresponds to the blue decision regions. Clearly, g mis-
classifies x1 and x2. We perform conventional Gaussian
smoothing with σ = 0.5 to arrive at the modified classifier
gσ in the middle of Figure 3. Since conventional smooth-
ing is data-blind, it still misclassifies x1 and x2, albeit the
decision boundaries have been smoothed. Finally, we ap-
ply our approach by solving (7) with µj parameterized by
truncated Gaussians with supportX = [−5, 5]2, and then in-
terpolate between these measures for general x ∈ R2 using
the inverse-distance weighted Shepard’s method (Shepard,
1968) with respect to x1, x2 to construct gµ. As shown at
the bottom of Figure 3, our method is able to correctly ma-
nipulate the decision boundary locally around the given data
without compromising the general global behavior of the
base classifier. In Appendix C, we give additional details
and plots, including the recovery of the density of the op-
timal smoothing measure via the dual (8), and the use of
Corollary 1 to quantify the suboptimality of conventional
randomized smoothing.

6. Conclusions and Future Work
In this paper, we theoretically study optimal randomized
smoothing using the framework of infinite-dimensional op-
timization. We derive a lower bound on the certified radius
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Figure 3. Plots of g (top), gσ (middle), and gµ (bottom). Optimal
gµ correctly learns how to manipulate decision boundary.

of the smoothed classifier that is linear in the smoothing
measure being optimized over. We prove that the bound is
maintained upon replacing the problem’s intractable Lip-
schitz constraints with more amenable conic linear con-
straints. A discretization approach is proposed as a means
for numerically approximating the resulting problem by
semi-infinite linear programs, which are then proven to en-
joy nontrivial strong duality. An exploratory case study
demonstrates that the theory developed offers a viable ap-
proach for solving general optimal randomized smoothing
problems. Three avenues of future research are of primary
interest: 1) further developing numerical tools for efficiently
solving for and sampling from optimal smoothing distribu-
tions, 2) establishing a relationship between the dual (8) and
the similar-looking problem of attacking a base classifier,
and 3) connecting our semi-infinite programming approach
to the related, yet more established topics of generalized
moment problems and discounted optimal control using
occupation measures.
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A. Supplementary Materials for Section 3 (Lower-Bounding the Certified Radius)
In this section, we prove the results given in Section 3.

Lemma 1. Let µ ∈ F , and let L(i) ∈ R+ be such that Lip(gi) ≤ L(i) for all i ∈ Y . Then, for all i ∈ Y , it holds that gµi is
Lipschitz continuous with constant C := max{L(i) : i ∈ Y}+K.

Proof. Let i ∈ Y . By Lipschitz continuity of gi, it holds that |gi(x′ + ε)− gi(x+ ε)| ≤ L(i)‖x′ − x‖ for all x′, x ∈ Rd.
Furthermore, by Lipschitz continuity of µ, it holds that ‖µ(x′)− µ(x)‖TV ≤ K‖x′ − x‖ for all x′, x ∈ Rd. Therefore, for
all x′, x ∈ Rd, it holds that

|gµi (x′)− gµi (x)| = |〈τx′gi, µ(x′)〉 − 〈τxgi, µ(x)〉|
≤ |〈τx′gi − τxgi, µ(x′)〉|+ |〈τxgi, µ(x′)− µ(x)〉|

≤
∫
X

|gi(x′ + ε)− gi(x+ ε)| d(µ(x′))(ε) + ‖τxgi‖∞‖µ(x′)− µ(x)‖TV

≤ L(i)‖x′ − x‖+ ‖gi‖∞‖µ(x′)− µ(x)‖TV

≤
(
L(i) +K

)
‖x′ − x‖

≤
(

max{L(i) : i ∈ Y}+K
)
‖x′ − x‖,

where we used the fact that ‖τxgi‖∞ = ‖gi‖∞ and that |gi| ≤ 1. Thus, gµi is indeed Lipschitz continuous with the claimed
constant.

Lemma 2. Let (x, y) ∈ Rd × Y be a fixed input-label pair, and let µ be a measure-valued map from Rd into P(X). Let
y′ ∈ arg maxi∈Y\{y} g

µ
i (x). If gµi is Lipschitz continuous with constant C ∈ R+ for all i ∈ Y , then

1

2C

(
gµy (x)− gµy′(x)

)
≤ rµ(x, y).

Proof. First, note that, if y /∈ arg maxi∈Y g
µ
i (x), then gµy (x) − gµy′(x) ≤ 0, so the result trivially holds due to the

nonnegativity of rµ(x, y). Therefore, we assume without loss of generality that y ∈ arg maxi∈Y g
µ
i (x).

Now, let x′ ∈ Rd be such that ‖x′ − x‖ ≤ 1
2C

(
gµy (x)− gµy′(x)

)
. Such x′ exists since y ∈ arg maxi∈Y g

µ
i (x). This,

together with Lipschitz continuity of gµy , gives that

|gµy (x′)− gµy (x)| ≤ 1

2

(
gµy (x)− gµy′(x)

)
,

which implies that

gµy (x′) ≥ 1

2

(
gµy (x) + gµy′(x)

)
.

On the other hand, for i 6= y, Lipschitz continuity of gµi gives that

|gµi (x′)− gµi (x)| ≤ 1

2

(
gµy (x)− gµy′(x)

)
,

which implies that

gµi (x′) ≤ gµi (x) +
1

2

(
gµy (x)− gµy′(x)

)
≤ 1

2

(
gµy (x) + gµy′(x)

)
≤ gµy (x′).

Therefore, fµ (x′) = y for all x′ ∈ Rd such that ‖x′ − x‖ ≤ 1
2C

(
gµy (x)− gµy′(x)

)
, which implies that

1

2C

(
gµy (x)− gµy′(x)

)
≤ inf{‖x′ − x‖ : fµ(x′) 6= y, x′ ∈ Rd} = rµ(x, y),

which proves the result.
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Proposition 1. Let (x, y) ∈ Rd × Y be a fixed input-label pair and let µ ∈ F . Let y′ ∈ arg maxi∈Y\{y} g
µ
i (x). Then

1

2C

(
gµy (x)− gµy′(x)

)
≤ rµ(x, y),

where C is as in Lemma 1.

Proof. This follows directly from Lemmas 1 and 2.

Proposition 2. Let (x, y), µ, and C be as in Proposition 1. Then

1

2C

(
2gµy (x)− 1

)
≤ rµ(x, y). (4)

Proof. By Assumption 3 and linearity of the Lebesgue integral, we have that

n∑
i=1

gµi (x) =

n∑
i=1

Eε∼µ(x)gi(x+ ε) = Eε∼µ(x)

n∑
i=1

gi(x+ ε) = 1.

Hence, for y′ ∈ arg maxi∈Y\{y} g
µ
i (x), it holds that

gµy′(x) = max
i∈Y\{y}

gµi (x) ≤
∑
i 6=y

gµi (x) = 1− gµy (x).

Therefore, by Proposition 1
1

2C

(
2gµy (x)− 1

)
≤ 1

2C

(
gµy (x)− gµy′(x)

)
≤ rµ(x, y).

B. Supplementary Materials for Section 4 (Surrogate Optimization)
In this section, we prove the results given in Section 4.

Lemma 3. Let ‖ · ‖ be a norm on Rd and let ‖ · ‖∗ be its corresponding dual norm. Assume that h : Rd → R is differentiable.
Then Lip(h) ≤ supx∈Rd ‖∇h(x)‖∗.

Proof. Let x′, x ∈ Rd. By the mean-value theorem, we have that h(x′) = h(x) +∇h(x)>(x′ − x) for some x ∈ Rd on the
line segment between x and x′. Therefore,

|h(x′)− h(x)| = |∇h(x)>(x′ − x)| ≤ ‖∇h(x)‖∗‖x′ − x‖ ≤ sup
y∈Rd

‖∇h(y)‖∗‖x′ − x‖.

Since x′, x ∈ Rd are arbitrary, we conclude that h is Lipschitz continuous with constant supx∈Rd ‖∇h(x)‖∗.

Proposition 3. For all i ∈ Y and x ∈ Rd, let Ai(x, ·) : M(X)→ R2d+1 be the linear operator defined by

Ai(x, η) = 〈(τx∇gi,−τx∇gi, 1), η〉 ,

and let bi ∈ R2d+1 be the vector bi = (Cb1d, Cb1d,−1), where Cb := C−C0m(X)
C∗,∞

≥ 0, C is as in Lemma 1, and C∗,∞ is
as in Lemma 4. Define K ⊆ R2d+1 to be the convex cone K = Rd+ × Rd+ × {0}. Then, it holds that

F̂ :=

n⋂
i=1

{
µ ∈ F0 : Ai(x, µ(x)) + bi ∈ K for all x ∈ Rd

}
is a subset of the feasible set (6).
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Proof. Let µ ∈ F̂ . Let x ∈ Rd and consider the density φx ∈ C1(intX) of µ(x). Let i ∈ Y . Then

gµi (x) =

∫
X

gi(x+ ε)d(µ(x))(ε) =

∫
intX

gi(x+ ε)φx(ε)dε.

Now, by the definition of F0 and a standard application of the dominated convergence theorem together with the mean-value
theorem (see, e.g., Folland (1999, Theorem 2.27) and the discussion thereafter), we may interchange differentiation with
Lebesgue integration:

∇x
∫
intX

gi(x+ ε)φx(ε)dε =

∫
intX

∇x (gi(x+ ε)φx(ε)) dε.

Hence, by the product rule for differentiation,

∇gµi (x) =

∫
intX

((∇xgi(x+ ε))φx(ε) + gi(x+ ε)∇xφx(ε)) dε

=

∫
X

∇gi(x+ ε)d(µ(x))(ε) +

∫
intX

gi(x+ ε)∇xφx(ε)dε

= 〈τx∇gi, µ(x)〉+

∫
intX

τxgi(ε)∇xφx(ε)dε.

Therefore, by Lemma 4 and the fact that |gi| ≤ 1,

‖∇gµi (x)‖∗ ≤ ‖ 〈τx∇gi, µ(x)〉 ‖∗ +

∫
intX

|τxgi(ε)|‖∇xφx(ε)‖∗dε

≤ C∗,∞‖ 〈τx∇gi, µ(x)〉 ‖∞ +

∫
intX

sup
ε∈intX

‖∇xφx(ε)‖∗dε

≤ C∗,∞‖ 〈τx∇gi, µ(x)〉 ‖∞ + C0m(X).

By the definitions of Ai and bi, together with the fact that Ai(x, µ(x)) + bi ∈ K, it holds that

‖ 〈τx∇gi, µ(x)〉 ‖∞ ≤ Cb =
C − C0m(X)

C∗,∞
,

which therefore implies that
‖∇gµi (x)‖∗ ≤ C.

Hence, by Lemma 3, we have that Lip(gµi ) ≤ C, which proves that F̂ is a subset of (6) as desired.

Theorem 2. For all j ∈ {1, 2, . . . , N}, if p̂′j is feasible, then strong duality holds; p̂′j = d̂′j .

Proof. Throughout the proof, we use the following notations for a normed vector space (X , ‖ · ‖). The closed unit ball of
radius r ≥ 0 centered at y ∈ X is denoted by BX (y, r) = {x ∈ X : ‖x− y‖ ≤ r}. The dual space of X is denoted by X ∗,
and the operator norm on X ∗ is denoted by ‖ · ‖X∗ .

Let j ∈ {1, 2, . . . , N} and recall the primal and dual of interest:

p̂′j = sup
{〈
τxj

gyj , µj
〉
− 1/2 : A(xj , µj) + b ∈ Kn, µj ∈M(X)+

}
,

d̂′j = inf
{
−b>λ− 1/2 : A∗(xj , λ)− τxj

gyj ∈ C(X)+, λ ∈ −Kn∗
}
.

Assume that p̂′j is feasible. For every µj feasible for p̂′j , it must be that |
〈
τxj

, gyj , µj
〉
| ≤ ‖τxj

gyj‖∞‖µj‖TV ≤ 1 since
|gi| ≤ 1 for all i and µj ∈ P(X). Therefore, since p̂′j is feasible, the optimal value of the primal maximization is finite.
Hence, by Shapiro (2001, Proposition 2.6), it suffices to prove that the convex cone

M :=
{

(λ, α) ∈ Rn(2d+1) × R : λ = ν −A(xj , µj), α =
〈
−τxj

gyj , µj
〉
, µj ∈M(X)+, ν ∈ Kn

}
=
{(
ν −A(xj , µj),

〈
−τxj

gyj , µj
〉)
∈ Rn(2d+1) × R : µj ∈M(X)+, ν ∈ Kn

}
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is closed with respect to the product topology on Rn(2d+1) × R. To this end, let {(λ(k), α(k)) ∈M : k ∈ N} be a sequence
in M such that (λ(k), α(k)) → (λ, α) as k → ∞ for some (λ, α) ∈ Rn(2d+1) × R. We will prove that M is closed by
proving that (λ, α) ∈M .

First, note by definition of M that there exists {(µ(k)
j , ν(k)) ∈M(X)+ ×Kn : k ∈ N} such that λ(k) = ν(k) −A(xj , µ

(k)
j )

and α(k) =
〈
− τxj

gyj , µ
(k)
j

〉
for all k ∈ N. Since ν(k) ∈ Kn for all k ∈ N, it holds that ν(k)2d+1 = 0 for all such k and

therefore
λ
(k)
2d+1 = ν

(k)
2d+1 −A(xj , µ

(k)
j )2d+1 = −

〈
1, µ

(k)
j

〉
→ λ2d+1

as k →∞. Hence,
lim
k→∞

‖µ(k)
j ‖TV = lim

k→∞
µ
(k)
j (X) = lim

k→∞

〈
1, µ

(k)
j

〉
= −λ2d+1.

Let ε > 0 be fixed. Then the above sequential convergence implies that there exists k? ∈ N such that ‖µ(k)
j ‖TV ≤ |λ2d+1|+ε

for all k ≥ k?. Thus,
µ
(k)
j ∈ BM(X)(0, r) = {µj ∈M(X) : ‖µj‖TV ≤ r}

for all k ≥ k?, where r = |λ2d+1|+ ε. In other words, the scaled measure µ(k)
j /r is in the closed unit ball BM(X)(0, 1) =

{µj ∈M(X) : ‖µj‖TV ≤ 1} for all k ≥ k?. Since X is a compact subset of the Hausdorff space Rd, we have that the map
ϕ : M(X) → C(X)∗ defined by ϕ(µj)(`) =

∫
X
`dµj is an isometric isomorphism fromM(X) to C(X)∗ by the Riesz

representation theorem (Folland, 1999, Theorem 7.17). Therefore,

ϕ(µ
(k)
j /r) ∈ BC(X)∗(0, 1) = {I ∈ C(X)∗ : ‖I‖C(X)∗ ≤ 1}

for all k ≥ k?. By the Banach-Alaoglu theorem (Folland, 1999, Theorem 5.18), the ball BC(X)∗(0, 1) is compact in
the weak-∗ topology on C(X)∗. Moreover, since X is compact, the space C(X) is separable, so the ball BC(X)∗(0, 1) is
metrizable (Hernández-Lerma & Lasserre, 2012, Lemma 1.3.2), and therefore BC(X)∗(0, 1) is sequentially compact in the
weak-∗ topology. Therefore, the sequence {ϕ(µ

(k)
j /r) : k ≥ k?} ⊆ BC(X)∗(0, 1) has a convergent subsequence, i.e., there

exists {kl ≥ k? : l ∈ N} and I ∈ BC(X)∗(0, 1) such that

ϕ(µ
(kl)
j /r)→ I

in the weak-∗ topology as l→∞. Since ϕ is an isometric isomorphism fromM(X) to C(X)∗, this implies that

µ
(kl)
j → µj := rϕ−1(I) ∈ BM(X)(0, r)

in the weak-∗ topology onM(X) (induced by ϕ−1 on C(X)∗) as l → ∞, i.e.,
〈
`, µ

(kl)
j

〉
→
〈
`, µ
〉

for all ` ∈ C(X). In

particular,
〈
− τxjgyj , µ

(kl)
j

〉
→
〈
− τxjgyj , µ

〉
as `→∞. Since

〈
− τxjgyj , µ

(k)
j

〉
= α(k) → α as k →∞, it must be that

α =
〈
− τxjgyj , µ

〉
.

Similarly, we have that A(xj , µ
(kl)
j )→ A(xj , µ) as l→∞. Since ν(k) −A(xj , µ

(k)
j ) = λ(k) → λ, as k →∞, it must be

that νkl → λ+A(xj , µ) =: ν as l→∞. That is,

λ = lim
l→∞

(ν(kl) −A(xj , µ
(kl)
j )) = ν −A(xj , µ).

SinceM(X)+ is closed in the weak-∗ topology (Klerk & Laurent, 2019), we have that µ ∈M(X)+. Furthermore, since
ν(k) ∈ Kn for all k ∈ N and Kn is closed in Rn(2d+1), it holds that ν ∈ Kn. Thus, we have proved that (λ, α) ∈M , so M
is closed, which concludes the proof.

C. Supplementary Materials for Section 5 (Experiment)
In this section, we present additional results from the experimental setup of Section 5.

We consider solving the dual problem (8) using a discretization of X with 1002 uniformly spaced points. For guarantees
on the convergence of such discretizations to the true solution of this robust linear program, we refer the interested
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reader to the literature on algorithms for semi-infinite linear programming, e.g., Fang & Wu (1994); Reemtsen & Görner
(1998); Fang (2018). The resulting problem is a finite-dimensional linear program with n(2d + 1) = 10 variables and
2dn + 1002 = 10008 constraints. We solve this problem and return an optimal solution for the associated double-dual,
i.e., the dual of the discretization of (8). We denote the optimal double-dual variables associated to the discretization
of the constraint A∗(xj , λ) − τxj

gyj ∈ C(X)+ by φ̂?j ∈ R1002 . Now, the ith element of φ̂?j is the value of the density
function corresponding to µ?j at the ith point of the discretization of X , and thus we may visualize (a discretization-based
approximation of) the optimal measure µ?j that solves (7) by plotting a properly reshaped version of φ̂?j . This is done for
xj = (0, 0) with yj = 1 and shown in Figure 4. As expected, the optimization learns to place the measure’s density in the
region associated with class yj = 1. We remark that the shape of the density φ̂?j is non-Gaussian and nontrivial, indicating
that Gaussian smoothing is likely to be suboptimal around this input. We quantitatively characterize this suboptimality next.

!5 !4 !3 !2 !1 0 1 2 3 4 5
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Figure 4. Double-dual density φ̂?j over X associated to xj = (0, 0) with class yj = 1.

Our goal is to demonstrate the potential suboptimality of conventional Gaussian randomized smoothing by considering
locally optimized smoothing measures that satisfy Corollary 1 for their respective data points. We then compare our lower
bound 1

C d̂
′
j on the certified radius at xj , computed via the dual (8), to that of Gaussian randomized smoothing (denoted

rσ(xj)) over a range of variances. One technical nuance to be noted is that Corollary 1 requires the existence of a measure-
valued map µ ∈ F̂ such that µ(xj) = µ?j . Such µ always exists by simply taking µ(x) = µ?j for all x ∈ Rd, and in this
case, our comparisons amount to quantifying how suboptimal Gaussian smoothing is at the point xj relative to the optimal
smoothing measure at xj , in a pointwise sense. To extend this assessment to multiple inputs, we sample inputs xj uniformly
at random over the domain of Figure 3 all with class yj = 1, and compute the average of the difference d̂′j/C − rσ(xj) over
these samples. We remark that the Lipschitz constant of the Gaussian-smoothed classifier gσi using variance σ is given in

closed-form as
√

2
πσ2 (Salman et al., 2019; Li, 2019), and therefore in what follows, we take C =

√
2
πσ2 as the maximum

allowable Lipschitz constant of gµi so as to ensure a fair comparison between the certified radius using our method and that
using Gaussian smoothing with variance σ.

Figure 5 demonstrates an interesting trend: at low values of σ, we find that, on average, the Gaussian smoothing certified
radius is better than the lower bound given by the dual optimal value d̂′j , and that this is likely an artifact of the lower bound
in Corollary 1 not being tight due to the reliance on the global Lipschitz constant C (which is large since σ is small). This
points to a possible direction for future work in which the lower bounds utilize local Lipschitz constants, in effect tightening
the gap between the semi-infinite linear programming bounds and the true certified radius rµ(xj , yj). On the other hand,
as σ increases, we see that our lower bound on the certified radius becomes increasingly large relative to that of Gaussian
smoothing, indicating that Gaussian smoothing becomes increasingly suboptimal (in a pointwise sense) as the variance
being used becomes larger. This provides quantitative evidence that, unlike Gaussian smoothing that flattens the confidence
of the classifier towards a constant function in an uninformed manner as σ increases, an optimal (data-informed) smoothing
scheme has the ability to learn where to allocate density in order to maintain large certified radii even as the Lipschitz
constant of the smoothed classifier is required to decrease.
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Figure 5. Gap between optimized certified radius via dual (8) and certified radius of Gaussian smoothing.


