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Abstract— This work leverages tools from evolutionary game
theory to solve unconstrained nonconvex optimization prob-
lems. Specifically, we lift such a problem to an optimization over
probability measures, whose minimizers exactly correspond
to the Nash equilibria of a particular population game. To
algorithmically solve for such Nash equilibria, we introduce
approximately Gaussian replicator flows (AGRFs) as a tractable
alternative to simulating the corresponding infinite-dimensional
replicator dynamics. Our proposed AGRF dynamics can be
integrated using off-the-shelf ODE solvers when considering ob-
jectives with closed-form integrals against a Gaussian measure.
We theoretically analyze AGRF dynamics by explicitly charac-
terizing their trajectories and stability on quadratic objective
functions, in addition to analyzing their descent properties. Our
methods are supported by illustrative experiments on a range
of canonical nonconvex optimization benchmark functions.

I. INTRODUCTION

We consider solving unconstrained optimization problems
of the form

inf
x∈Rn

f(x),

where f is generally nonconvex. Such optimization problems
arise naturally across a range of scientific and engineering
disciplines, including computational chemistry [8], computer
vision [21], and medicine [13]. Notably, the classical empiri-
cal risk minimization approach in machine learning amounts
to an unconstrained nonconvex optimization problem [19].

Evolutionary algorithms comprise one popular family of
approaches for solving nonconvex problems. These algo-
rithms stochastically search the parameter space by evolving
a population of candidate solutions according to biologically-
inspired variation and selection operations [29]. Unlike
gradient-based methods like stochastic gradient descent,
practical evolutionary algorithms are generally intractable for
theoretical analysis due to the handcrafted nature of their
update rules. Existing analyses are thus typically limited to
a very simple (1+1)-evolution strategy [12, 27], or a discrete
optimization setting [15]. Conversely, negative results show
that evolutionary algorithms cannot converge exponentially
fast for certain classes of objective functions [30].

Instead of relying on handcrafted evolution heuristics, we
propose an evolutionarily-inspired optimization method that
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naturally arises from a principled recasting of the optimiza-
tion problem as a population game. In doing so, we achieve
the following contributions:

1) We develop a framework for reformulating nonconvex
optimization as a population game, which we show
can be solved to global optimality by simulating the
replicator dynamics for continuous objectives with
unique global minima.

2) We propose approximately Gaussian replicator flows
(AGRFs) as a tractable alternative to simulating the
replicator dynamics, and theoretically analyze the re-
sulting ordinary differential equation’s descent proper-
ties, in addition to determining its explicit solutions for
quadratic objective functions.

3) We provide illustrative experiments using canonical
nonconvex optimization test functions, demonstrating
that our optimization method can escape local minima,
adapt to the optimization landscape, and recover from
poorly conditioned initializations.

A. Related Works

Our work, drawing on the frameworks and tools of pop-
ulation games and evolutionary dynamics [28], is intimately
related to evolutionary algorithms for optimization. Some of
the most classical of such methods are evolution strategies
(ESs), wherein a population of candidate solutions iteratively
evolves according to stochastic mutation and selection rules
[26]. Covariance matrix adaptation evolution strategy (CMA-
ES) extends ESs by allowing the covariance matrix of
the ES sampling distribution to adapt to the geometry of
the objective function [14]. CMA-ES is often considered
the state-of-the-art in evolutionary computation [12], yet it
has also been shown to be subsumed by natural evolution
strategies (NESs) [1].

Unlike the heuristic approach to ES-based update rules,
NES provides a principled optimization method by using
natural gradient descent [2] to minimize the expected objec-
tive loss over a statistical manifold of parameterized prob-
ability distributions [31]. Closely related are estimation of
distribution algorithms (EDAs) [20], which explicitly build,
sample from, and update probability distributions to represent
promising candidate solutions to the optimization, albeit
these distributions are typically constructed via maximum
likelihood estimation. Generalizing ES, CMA-ES, and NES,
the information geometric optimization (IGO) framework
poses optimization as a continuous time natural gradient flow
on a statistical manifold [23]. IGO algorithms are constructed
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by discretizing both time (via Euler’s method) and spatial
integration (via sampling) to approximate the flow.

All of the aforementioned evolutionary algorithms view
the objective f as a black box, and as such, rely on evaluating
f on a finite number of random samples. In practice, the
challenges posed by the objective function f are often
structural and not due to a lack of information, e.g., training
machine learning models often relies on nonconvex and
nonsmooth objectives [19, 10, 3], whose functional forms
are known. Our framework is capable of leveraging closed-
form integrals of nonconvex yet white-box objectives f
against a Gaussian distribution, in order to pose evolutionary
optimization as a deterministic differential equation. That is,
unlike the above stochastic search methods, which often rely
on heuristically designed algorithmic rules and parameters,
our evolutionarily-inspired optimization framework can be
methodically implemented via off-the-shelf ordinary differ-
ential equation (ODE) solvers without random sampling.

Two of the works closest related to ours are Jaćimović
[17, 18]. The authors draw links between the replicator
dynamics and minimization of a bilinear-quadratic objective
function by showing that replicator trajectories are natural
gradient flows for such objectives. This characterization
relies on inverting the Fisher information matrix to evaluate
the flow’s vector field, whereas our approximately Gaussian
replicator flows admit closed-form solutions for general
quadratic functions. Our framework is particularly distinct
due to the fact that our proposed AGRFs allow for using
off-the-shelf ODE solvers whenever the objective is closed-
form integrable against a Gaussian measure, e.g., general
polynomials and sinusoids.

B. Notations

We denote the identity matrix by I , the dimension of
which will always be clear from context. If X is a topological
space, the set of finite signed Borel measures on X is denoted
by M(X), and the set of Borel probability measures is
denoted by P(X). The support of a measure µ ∈ M(X)
is denoted by supp(µ). For µ ∈ M(X) and a measurable
real-valued function f on X , we define ⟨f, µ⟩ :=

∫
X
fdµ,

which we allow to be infinite. The derivative of a measure-
valued mapping µ : [0,∞) → M(X) at t ∈ [0,∞), if it
exists, is the measure µ̇(t) ∈ M(X) defined by

lim
ϵ→0

∥∥∥µ(t+ϵ)−µ(t)
ϵ − µ̇(t)

∥∥∥
TV

= 0,

where ∥·∥TV is the total variation norm on M(X). The Dirac
distribution at x ∈ X is denoted by δx, and the Gaussian
distribution on Rn with mean m ∈ Rn and covariance C ∈
Rn×n is denoted by N (m,C).

II. OPTIMIZATION AS AN INFINITE-STRATEGY GAME

We seek to solve the unconstrained optimization problem

p⋆ := inf
x∈X

f(x), (1)

over the Euclidean space X = Rn with a possibly nonsmooth
and nonconvex objective function f : X → R. We assume
that f is Borel measurable and attains a minimum.

The problem p⋆ is equivalent to an infinite-dimensional
convex optimization problem over probability measures [4]:

p⋆ = p′ := inf
µ∈P(X)

⟨f, µ⟩ . (2)

It is easy to see that p′ also attains a minimizer, and that, if
µ⋆ solves p′, then x⋆ solves p⋆ for all x⋆ ∈ supp(µ⋆). Thus,
our attention may be refocused on solving p′. We now show
that solving p′ amounts to finding a Nash equilibrium of a
certain population game.

A. Turning Optimizers into Nash Equilibria

We briefly recall the key notions used in the study of popu-
lation games and evolutionary dynamics—see Sandholm [28]
for a more thorough treatment.

Consider a large population of strategic individuals playing
a game. The players choose strategies from a strategy set S,
which is assumed to be a topological space. A distribution of
strategy choices employed across the population is encoded
by a probability measure µ ∈ P(S), termed a population
state. Every population state has an associated mean payoff
function Fµ : S → R, assumed to be continuous, with Fµ(s)
giving the payoff to strategy s when the population state is
µ. The mapping F : µ 7→ Fµ is called the population game.
A Nash equilibrium of the game F is a population state µ
such that ⟨Fµ, ν⟩ ≤ ⟨Fµ, µ⟩ for all ν ∈ P(S), and, if the
inequality holds strictly for all ν ̸= µ, then µ is called a
strict Nash equilibrium of F . The set of all Nash equilibria
of F is denoted by NE(F ).

Throughout the remainder of the paper, we consider a
population game where the strategy set is X , and the mean
payoff functions are given by excess payoffs under the
objective function f :

Fµ(x) = ⟨f, µ⟩ − f(x).

Such mean payoff functions can be written as the average of
the relative payoffs g(x, x′) := f(x′)− f(x) with respect to
the population state µ:

Fµ(x) =

∫
X

g(x, x′)dµ(x′).

Note that this is an infinite-strategy population game since
X = Rn is continuous. A key feature of this game is that
it puts optimizers of p′ in one-to-one correspondence with
Nash equilibria:

Proposition 1. A distribution µ ∈ P(X) is a Nash equi-
librium of F if and only if µ is a global minimizer of p′.
Furthermore, µ is a strict Nash equilibrium of F if and only
if µ is the unique global minimizer of p′.

Proof. Let µ ∈ NE(F ). Then, by definition of Nash equi-
libria, it holds for all ν ∈ P(X) that∫

X

∫
X

(f(x′)− f(x))dµ(x′)dν(x)

≤
∫
X

∫
X

(f(x′)− f(x))dµ(x′)dµ(x),



and hence

⟨f, µ⟩ − ⟨f, ν⟩ ≤ ⟨f, µ⟩ − ⟨f, µ⟩ = 0,

proving that ⟨f, µ⟩ ≤ ⟨f, ν⟩. Thus, µ solves p′.
On the other hand, suppose that µ ∈ P(X) solves p′,

so that ⟨f, µ⟩ ≤ ⟨f, ν⟩ for all ν ∈ P(X). Then reversing
the above line of analysis yields that ⟨F (µ), ν⟩ ≤ ⟨F (µ), µ⟩
for all ν ∈ P(X), implying that µ ∈ NE(F ). The second
assertion follows by the same reasoning using the appropriate
strict inequalities.

Another characteristic of this game is that it is monotone,
meaning that ⟨Fµ − Fν , µ− ν⟩ ≤ 0 for all µ, ν ∈ P(X):

Proposition 2. The population game F is monotone.

Proof. Let µ, ν ∈ P(X). Then

⟨Fµ − Fν , µ− ν⟩

=

∫
X

∫
X

(f(x′)− f(x))d(µ− ν)(x′)d(µ− ν)(x)

= 0.

Monotonicity of population games has been found to be a
useful condition for ensuring the convergence of evolutionary
dynamics to Nash equilibria—see, e.g., [16, 11, 24, 6, 5].

B. Replicator Dynamics as an Optimizing Process

The replicator dynamics are one of the most popular evo-
lutionary dynamics models (EDMs). EDMs are processes in
which players continuously revise their strategies according
to a certain revision protocol [28]. Specifically, the replicator
dynamics model the situation in which players choose to
imitate the strategy of a random opponent who currently has
higher payoff, with probability proportional to the current
difference in their payoffs. Mathematically, the replicator
dynamics read

µ̇(t)(B) =

∫
B

(E(δx, µ(t))− E(µ(t), µ(t))) d(µ(t))(x)

(3)
for all Borel sets B and times t ∈ [0,∞), where E : P(X)×
P(X) → R, given by

E(ν, µ) =

∫
X

Fµdν = ⟨f, µ⟩ − ⟨f, ν⟩ ,

encodes the average mean payoff to a population state ν ∈
P(X) relative to a population state µ ∈ P(X) according to
the payoffs of our game F . Our key insight is the following:
if the replicator dynamics converge to a Nash equilibrium
of our game, then simulating them will lead us to a global
minimizer of p′ according to Proposition 1. Indeed, the
following result shows that the monotonicity of our game
ensures that this convergence happens in the case that f is
continuous and has a unique global minimizer, even when f
is nonconvex and nonsmooth.

Theorem 1. Let µ0 ∈ P(X), and let µ : [0,∞) → P(X) be
a solution to the replicator dynamics with initial condition

µ(0) = µ0. If f is continuous and has a unique global
minimizer x⋆ ∈ X , then it holds that µ(t) converges weakly
to µ⋆ := δx⋆ as t → ∞.

Proof. Suppose that f has a unique global minimizer x⋆ ∈
X . Clearly, µ⋆ = δx⋆ is the unique global minimizer of p′.
Thus, µ⋆ is a strict Nash equilibrium of F by Proposition 1
and hence ⟨Fµ⋆ , ν⟩ < ⟨Fµ⋆ , µ⋆⟩ for all ν ∈ P(X) \ {µ⋆}.
By Proposition 2, it holds for all such ν that

⟨Fν , ν⟩ − ⟨Fν , µ
⋆⟩

= ⟨Fµ⋆ , ν⟩ − ⟨Fµ⋆ , µ⋆⟩+ ⟨Fν − Fµ⋆ , ν − µ⋆⟩
< 0.

Thus, µ⋆ is strongly uninvadable with uniform invasion
barrier ϵ = ∞, per Oechssler and Riedel [22, Definition 5].
The result then follows from Oechssler and Riedel [22,
Theorem 3].

C. Simulating the Replicator Dynamics

Theorem 1 shows that we can find a globally optimal
solution to (1) by simulating the replicator dynamics (3)
with our constructed population game F . However, this con-
stitutes solving an infinite-dimensional differential equation
in general. It was shown in Cressman et al. [9] that, if
µ : [0,∞) → P(X) is a solution to the replicator dynamics,
then its mean and covariance

m(t) :=

∫
X

xd(µ(t))(x),

C(t) :=

∫
X

xx⊤d(µ(t))(x)−m(t)m(t)⊤,

evolve according to the finite-dimensional ordinary differen-
tial equations

ṁi(t) = − ∂

∂λi
E(µλ(t), µ(t))

∣∣∣∣
λ=0

,

Ċij(t) =
∂2

∂λi∂λj
E(µλ(t), µ(t))

∣∣∣∣
λ=0

,

for all i, j ∈ {1, . . . , n}, where µλ(t) ∈ P(X) is the measure
defined by

µλ(t)(B) =

∫
B
exp(−λ⊤x)d(µ(t))(x)∫

X
exp(−λ⊤x)d(µ(t))(x)

.

It is easy to show that these ODEs can be rewritten as

ṁi(t) = mi(t)Ex∼µ(t)[f(x)]− Ex∼µ(t)[xif(x)],

Ċij(t) = (Cij(t)−mi(t)mj(t))Ex∼µ(t)[f(x)]

− Ex∼µ(t)[xixjf(x)]

+mi(t)Ex∼µ(t)[xjf(x)]

+mj(t)Ex∼µ(t)[xif(x)].

(4)

Cressman et al. [9] showed that, in the case that the relative
payoff function g takes a bilinear-quadratic form, the set of
Gaussian distributions is invariant under (3), and therefore
these two finite-dimensional ODEs fully characterize the
replicator dynamics. In such cases, it holds that C(t) → 0
as t → ∞, and therefore the trajectory t 7→ µ(t) converges



towards t 7→ δm(t) (in the weak topology). Thus, simulating
the above finite-dimensional ODEs to generate a limiting
Dirac measure δm⋆ naturally gives us a minimizer m⋆ for this
bilinear-quadratic case, through an application of Theorem 1.

In the general case, solving the ODEs (4) is intractable,
as computing the expectations cannot be carried out for an
arbitrary distribution µ(t) and objective function f . To make
the differential equations solvable (using off-the-shelf ODE
solvers), we propose to approximate µ(t) by N (m(t), C(t))
at all times t. This leads to our primary definition:

Definition 1. A solution (m,C) : [0,∞) → Rn × Rn×n to
the system of ordinary differential equations

ṁi(t) = mi(t)Ex∼N (m(t),C(t))[f(x)]

− Ex∼N (m(t),C(t))[xif(x)],

Ċij(t) = (Cij(t)−mi(t)mj(t))Ex∼N (m(t),C(t))[f(x)]

− Ex∼N (m(t),C(t))[xixjf(x)]

+mi(t)Ex∼N (m(t),C(t))[xjf(x)]

+mj(t)Ex∼N (m(t),C(t))[xif(x)],

(5)

is called an approximately Gaussian replicator flow (AGRF)
under f .

The right-hand sides of (5) can be determined explicitly
for any objective functions f for which we can compute
the appropriate Gaussian expectations in closed form. This
class of objective functions, which we refer to as Gaussian-
integrable, includes a wide variety of functions encountered
in practice, as we will now discuss further.

D. Closed-Form AGRF Dynamics

Explicitly writing out the AGRF dynamics (5) requires
computing the expectations of f(x), xif(x), and xixjf(x)
under Gaussian-distributed vectors x. For general objectives
f , these quantities can be approximated using Monte Carlo
schemes. However, evaluating the desired estimates to suf-
ficient resolution with such an approach is computationally
intensive. We thus restrict our focus to Gaussian-integrable
objective functions throughout the remainder of the paper,
with polynomials and sinusoids serving as running examples.

1) Polynomials: For polynomials, the Gaussian expecta-
tions can be symbolically derived in closed-form from the
following well-known identity [7]:

Ex∼N (0,I)[x
α] =

{
π−n

2

∏n
i=1 2

αi
2 Γ
(
αi+1

2

)
αi all even,

0 otherwise,

where xα = xα1
1 · · ·xαn

n is a monomial of order α =
(α1, . . . , αn) and Γ is Euler’s gamma function. This result is
generalized to arbitrary mean and covariance by symbolically
applying an affine transformation to x, and substituting for a
particular mean m and covariance C. The extension from
monomials to polynomials follows trivially from linearity
of integration. Notably, since xif(x) and xixjf(x) are all
polynomials if f(x) is a polynomial, we can integrate all
these expressions using the same approach.

2) Sinusoids: For sinusoids (including cosine), we can
derive closed-form expectations for complex exponentials
x 7→ eia

⊤x by computing the Fourier transform of multi-
variate Gaussian density functions. Straightforward calculus
results in the following expressions, where, here, we use j, k
as indices to reserve the symbol i for the imaginary unit:

Ex∼N (m,C)

[
eia

⊤x
]
= eia

⊤m− 1
2a

⊤Ca =: m,

Ex∼N (m,C)

[
xje

ia⊤x
]
=
(
mj + iC⊤

j a
)
m,

Ex∼N (m,C)

[
xjxke

ia⊤x
]
=
(
Cjk +mjmk − (C⊤

j a)(C⊤
k a)

+ i(mjC
⊤
k a+mkC

⊤
j a)

)
m,

where Cj is the jth row of C. The appropriate expectations
for sinusoids are then derived using Euler’s formula.

Remark 1. Our proposed approach for deterministically ap-
proximating the replicator dynamics using AGRFs intimately
relies on the closed-form computation of the ODE deriva-
tives, which requires Gaussian-integrable objective functions.
We highlight two potential extensions to more complex
objectives which are not as well-behaved. The first consists
of estimating expectations using a Monte Carlo scheme and
leveraging ODE integration methods which are better suited
for noisy derivatives. The second avenue involves using
existing approximation techniques to locally represent the
objective in a Gaussian-integrable form, e.g., Taylor expan-
sions for polynomials, or Fourier series for sinusoids. Given
such a local approximation, the ODE derivatives are again
evaluable in closed-form. Investigating these extensions is an
exciting area of future work.

III. THEORETICAL ANALYSIS OF AGRFS

We now theoretically analyze our proposed approximately
Gaussian replicator flows. Our analysis emphasizes AGRFs
for quadratic objective functions, which serves to provide
insight into the AGRF behavior in the vacinity of local
minima of more general twice continuously differentiable
functions. We begin by explicitly characterizing the govern-
ing equations of the AGRF for a quadratic objective function.

A. Explicit Characterization of Quadratic Flows

The following theorem is similar to Cressman et al. [9,
Theorem 1], albeit their result is restricted to evolutionary
games with bilinear-quadratic payoffs of the form g(x, x′) =
−x⊤x + x⊤Qx′, and thus cannot directly be used for our
purposes where g(x, x′) = f(x′)− f(x).

Theorem 2. Consider f : Rn → R given by f(x) = x⊤Ax+
b⊤x + c with A ∈ Rn×n symmetric. The AGRF under f is
given by

ṁ(t) = −2C(t)Am(t)− C(t)b

Ċ(t) = −2C(t)AC(t).
(6)

Proof. Let i, j ∈ {1, . . . , n}. Using the formulas for Gaus-
sian expectations of linear, quadratic, and cubic forms from



Petersen et al. [25] and Jaćimović [18], we have that

ṁi(t) = mi(t)Ex∼N (m(t),C(t))[x
⊤Ax+ b⊤x+ c]

− Ex∼N (m(t),C(t))[xi(x
⊤Ax+ b⊤x+ c)]

= mi(t)
(
tr(AC(t)) +m(t)⊤Am(t) + b⊤m(t) + c

)
−mi(t)m(t)⊤Am(t)− 2e⊤i C(t)Am(t)

−mi(t) tr(AC(t))−mi(t)b
⊤m(t)

− e⊤i C(t)b−mi(t)c

= −2e⊤i C(t)Am(t)− e⊤i C(t)b.

We repeat a similar computation for the covariance matrix.
For conciseness, we drop the time argument t for both C
and m:

Ċij = (Cij −mimj)Ex∼N (m,C)[x
⊤Ax+ b⊤x+ c]

− Ex∼N (m,C)[xixj(x
⊤Ax+ b⊤x+ c)]

+miEx∼N (m,C)[xj(x
⊤Ax+ b⊤x+ c)]

+mjEx∼N (m,C)[xi(x
⊤Ax+ b⊤x+ c)]

= (Cij −mimj)
(
tr(AC) +m⊤Am+ b⊤m+ c

)
− 2e⊤i CACej − 2m⊤AC(mjei +miej)

−
(
tr(AC) +m⊤Am

)
(Cij +mimj)

−mimjb
⊤m−

(
mie

⊤
j +mje

⊤
i

)
Cb− b⊤mCij

− c (mimj + Cij)

+mi

(
mjm

⊤Am+ 2e⊤j CAm+mj tr(AC)

+mjb
⊤m+ e⊤j Cb+mjc

)
+mj

(
mim

⊤Am+ 2e⊤i CAm+mi tr(AC)

+mib
⊤m+ e⊤i Cb+mic

)
.

After simplification, we conclude that

Ċij(t) = −2e⊤i C(t)AC(t)ej .

The ODE governing C in (6) is autonomous, and inde-
pendent of m. Its solution is known in closed-form:

Proposition 3 (Jaćimović [17]). Consider f : Rn → R given
by f(x) = x⊤Ax+b⊤x+c with A ∈ Rn×n symmetric. Then
C : [0,∞) → Rn×n given by

C(t) =
(
C(0)−1 + 2tA

)−1
,

if it exists for all t ∈ [0,∞), solves the ODE Ċ(t) =
−2C(t)AC(t) of the AGRF under f given by (6).

The inverse matrix (C(0)−1+2tA)−1 exists for all t when-
ever C(0) is positive definite and A is positive semidefinite.

Next, we identify a closed-form solution to the remaining
part of the AGRF for quadratic f , namely, the solution of
the ODE governing m. Such a solution was not previously
determined in Cressman et al. [9] or Jaćimović [17].

Proposition 4. Consider f : Rn → R given by f(x) =
x⊤Ax+b⊤x+c with A ∈ Rn×n symmetric. Let C : [0,∞) →

Rn×n solve the ODE Ċ(t) = −2C(t)AC(t) of the AGRF
under f given by (6). Then m : [0,∞) → Rn given by

m(t) = C(t)
(
C(0)−1m(0)− tb

)
(7)

solves the ODE ṁ(t) = −2C(t)Am(t)−C(t)b of the AGRF
under f given by (6).

Proof. First, notice that the proposed solution m, given by
(7), satisfies the required initial condition:

m(0) = C(0)
(
C(0)−1m(0)− 0 · b

)
= m(0).

Next, for the proposed solution m, we find that

ṁ(t) =
d

dt

(
C(t)

(
C(0)−1m(0)− tb

))
= Ċ(t)

(
C(0)−1m(0)− tb

)
− C(t)b

= −2C(t)AC(t)(C(0)−1m(0)− tb)− C(t)b

= −2C(t)Am(t)− C(t)b,

where we used the fact that C solves Ċ(t) = −2C(t)AC(t).
Hence, m indeed solves the desired ODE.

We now discuss the limiting behavior of AGRFs under
quadratic objectives. Consider the mean trajectory (7). When
A is positive definite, we have that

lim
t→∞

(C(0)−1 + 2tA)−1 = 0,

lim
t→∞

t(C(0)−1 + 2tA)−1 =
1

2
A−1,

implying that m stabilizes to

lim
t→∞

m(t) = lim
t→∞

(
C(0)−1 + 2tA

)−1 (
C(0)−1m(0)− tb

)
= −1

2
A−1b.

This is precisely the solution to the optimization

inf
x∈Rn

f(x) = inf
x∈Rn

(
x⊤Ax+ b⊤x+ c

)
,

so indeed, AGRFs exactly solve convex quadratic optimiza-
tion problems.

Notice that one may write the dynamics for m as a
preconditioned gradient flow:

ṁ(t) = −
(
C(0)−1 + 2tA

)−1
(2Am(t) + b)

= −
(
C(0)−1 + t∇2f(m(t))

)−1 ∇f(m(t)).

For small t, the dynamics resemble a gradient flow that is
weighted according to the initial covariance at small times,
representing the initial uncertainty in where a minimum
resides. As time evolves, the flow begins to more closely
resemble Newton’s method. Jaćimović [17] showed that such
replicator dynamics evolving under quadratic functions f and
restricted to the statistical manifold of Gaussian distributions
follow a natural gradient flow with respect to the Fisher in-
formation metric. However, they did not explicitly determine
the mean trajectory m, nor was the flow’s preconditioning
matrix identified as having the form we determined above.



B. Descent of Flows

In this section, we study when AGRFs descend the objec-
tive’s landscape. We begin by showing that descent always
occurs for AGRFs on a convex quadratic objective.

Proposition 5. Consider f : Rn → R given by f(x) =
x⊤Ax + b⊤x + c with A ∈ Rn×n symmetric. If C(0) is
positive definite, A is positive semidefinite, and (m,C) is the
AGRF under f , then the velocity ṁ(t) is a descent direction
of f for all t ∈ [0,∞), i.e.,

d

dt
f(m(t)) = ∇f(m(t))⊤ṁ(t) < 0.

Proof. Since ∇f(x) = 2Ax+ b, we find from Proposition 3
that

∇f(m(t))⊤ṁ(t)

= −(2Am(t) + b)(C(0)−1 + 2tA)−1(2Am(t) + b)

< 0

whenever m(t) is not a minimizer of f .

Proposition 5 indicates that AGRF will converge to a local
minimum of a general twice continuously differentiable func-
tion f when the bulk of the Gaussian measure N (m(t), C(t))
is concentrated in a neighborhood around the minimum that
locally looks like a strictly convex quadratic. However, such
descent need not always occur, as we now illustrate.

Example 1. Consider f : R → R defined by f(x) = 3
2x

4 −
1
4x

3 − 3x2 + 3
4x + 1. It is easy to verify that f has one

local minimum at x = 1 with f(1) = 0, a global minimum
at x = −1 with f(−1) = −1, and a local maximum in
between. A simple computation gives that the AGRF mean
satisfies

ṁ(t) = −C(t)

(
6m(t)3 − 3

4
m(t)2 − 6m(t) +

3

4

)
− C(t)2

(
18m(t)− 3

4

)
= −C(t)f ′(m(t))− 1

2
C(t)2f ′′′(m(t)).

The first term, −C(t)f ′(m(t)), incentivizes the AGRF to
perform local exploitation (descent along the gradient),
whereas the second term, − 1

2C(t)2f ′′′(m(t)), incentivizes
the AGRF to explore for a better minimum. In particular,
we may view the second term as descending along the
gradient of f ′′; this term attempts to find a point where f
has the steepest negative curvature, i.e., a sharp peak. With
a large enough covariance C(t), this term dominates and as
such results in a hill-climbing effect, so that the flow can
effectively look for better minima.

The above example shows that AGRFs are capable of
escaping local minima in order to reach a global minimum.
We empirically verify such beneficial behavior in Section IV.

We now discuss the descent behavior of AGRFs for more
general functions f . For the remainder of this section, we will

assume that f has been adequately shifted so that f(x) > 0
for all x ∈ X , for convenience. The descent condition reads

d

dt
f(m(t)) = ∇f(m(t))⊤ṁ(t)

= Ex∼N (m(t),C(t))[f(x)∇f(m(t))⊤(m(t)− x)]

< 0.

If the covariance C(t) is small enough, then x ∼
N (m(t), C(t)) is close to m(t) with high probability. For
such points x that are close to m(t), the first-order Taylor
estimate ∇f(m(t))⊤(m(t)−x) ≈ f(m(t))−f(x) serves as a
good approximation. Therefore, the above descent condition
is well-approximated by

Ex∼N (m(t),C(t))[f(x)(f(m(t))− f(x))] < 0 (8)

for small C(t). The approximate descent condition (8) re-
quires that, on average (weighted by the function f ), it holds
that f(m(t)) < f(x), according to our current distribution of
strategies N (m(t), C(t)), which one may view as reflecting
our “trust” in where the optimizer is. From this perspective,
it makes sense for the dynamics to descend the objective,
since it is believed that, on average, the current mean is a
good one, and hence we should exploit it and trust a local
descent. On the contrary, if f(m(t)) > f(x) on average, then
the approximate descent condition is violated. This indicates
a situation in which our current distribution N (m(t), C(t))
believes that the mean m(t) performs worse than the average
of the other strategies, and therefore ascent occurs in order
to explore for alternatives.

We conclude this section by remarking that (nonconstant)
convex functions f always satisfy the approximate descent
condition (8), since

Ex∼N (m(t),C(t))[f(x)]f(m(t))− Ex∼N (m(t),C(t))[f(x)
2]

≤ Ex∼N (m(t),C(t))[f(x)]
2 − Ex∼N (m(t),C(t))[f(x)

2]

< 0

by Jensen’s inequality and the positivity of the variance of
f(x) under x ∼ N (m(t), C(t)).

IV. EXPERIMENTS

This section illustrates our methods with proof-of-concept
nonconvex optimization experiments. We use canonical test
functions, commonly used for evaluating optimization algo-
rithms, to showcase the qualitative features of AGRFs.

Implementation. We compute mean and covariance time
derivatives using the formulae in Section II-C. The resulting
AGRF ODEs are integrated using an off-the-shelf Runge-
Kutta 2-3 (RK23) solver. All optimizations are executed
for a maximum of T = 30 seconds of simulated time,
terminating early when the covariance matrix determinant
is smaller than ϵ = 0.0001. We emphasize that, unlike
most other optimization algorithms, our framework requires
no hyperparameter choices beyond the initial conditions
m(0), C(0) and the simulation stopping time T , which are
standard inputs required by off-the-shelf ODE solvers.
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Fig. 1: First two images visualize mean (black dots) and covariance (circles) versus ODE time (light gray is first solver
iteration, black is last solver iteration). (a) Styblinski-Tang objective with a small initial covariance. (b) Styblinski-Tang with
a large initial covariance. (c) Objective value with respect to ODE iteration for trajectory in (b).

A. Escaping Local Minima

Figure 1 illustrates the local minima-escaping behavior
of our dynamics. We consider the Styblinski-Tang function,
shifted to be more easily visualized on a log scale:

f(x) = 78.43 +
1

2

(
n∑

i=1

x4
i − 16x2

i + 5xi

)
.

We let n = 2, which gives rise to a global minimum at
(−2.903,−2.903) and three other local minima that are not
global.

We fix an initial mean m(0) = (3, 2) near the top-right lo-
cal minimum. Figure 1a initializes C(0) = 2I , and Figure 1b
initializes C(0) = 30I . Larger initial covariance intuitively
helps the ODE “see” over the hump to eventually find
the global minimum (Figure 1c). While the true replicator
dynamics evolving over general probability measures would
be guaranteed to find the global minimum by Theorem 1, we
observe in Figure 1a that with a small initial covariance the
ODE remains stuck in a local minimum. This arises from
constraining our measures to be strictly Gaussian over the
entire ODE trajectory.

Our framework naturally handles any Gaussian-integrable
objective function, including the Styblinski-Tang polynomial
objective. We show that sinusoids are also tractable by
considering the classical Rastrigin function:

f(x) = 10n+

n∑
i=1

(
x2
i − 10 cos(2πxi)

)
.

As seen in Figure 2a, our algorithm replicates the local
minima-escaping behavior observed above for a sufficiently
large initial covariance of C(0) = 10I and initial mean of
m(0) = (4, 4).

B. Optimization Landscape Adaptation

Figure 2b analyzes the tendency of the covariance dynam-
ics to accelerate along directions of slow descent. Here, we
consider the bivariate quadratic objective function given by

f(x) = (x1 − 3)2 + 4(x2 − 3)2,

which exhibits a smaller gradient along the x1-direction.
The AGRF dynamics naturally stretch the covariance matrix

along this direction, accelerating convergence (Figure 2b).
This is reminiscent of inverse Hessian preconditioning in
Newton’s method, and the effect of momentum in stochastic
gradient descent-based optimization.

C. Recovery from Poor Initialization
Figure 2c and Figure 2d illustrate the robustness of our

approach to poorly conditioned initial points. The objective
is a classic three-hump camel function:

f(x) = 2x2
1 − 1.05x4

1 +
x6
1

6
+ x1x2 + x2

2.

The unique global minimum of this function lies at the
origin, with a local minimum on each side. At points with
sufficiently large x1-values, this function exhibits an ill-
conditioned Hessian and a large-magnitude gradient that
is nearly orthogonal to the x2-direction. We test such a
poorly conditioned initial mean of m(0) = (4, 4), with
initial covariance matrices of C(0) = 10I for Figure 2c and
C(0) = 100I for Figure 2d. In both cases, the ODE succeeds
in recovering from the poor initialization and converges
to the global minimum. This suggests that our approach
successfully leverages the adaptive step size capabilities of
the underlying RK23 ODE solver.

V. CONCLUSION

This work proposes a framework for recasting noncon-
vex optimization as an evolutionary game. Since simulat-
ing the resulting infinite-dimensional replicator dynamics is
intractable, we propose to approximate the evolution by a
trajectory of Gaussian distributions, termed an approximately
Gaussian replicator flow. We theoretically characterize the
flow’s descent behavior and ability to ascend from local min-
ima, in addition to fully determining the flow on quadratic
objectives. Our proof-of-concept experiments on polynomial
and sinusoidal nonconvex benchmark objectives demonstrate
the potential of our method for finding global optima using
off-the-shelf ODE solvers, without the need for heuristic
algorithm design choices. Our results demonstrate that even a
Gaussian approximation to the replicator dynamics exhibits
a range of desirable phenomenon, including the ability to
escape local minima, adapt to the optimization landscape,
and recover from poor initialization.
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Fig. 2: Plots visualize mean (black dots) and covariance (circles) versus ODE time (light gray is first solver iteration, black
is last solver iteration). (a) Rastrigin objective. (b) Quadratic objective f(x) = (x1 − 3)2 + 4(x2 − 3)2. (c) Three-hump
objective with m(0) = (4, 4) and C(0) = 10I . (d) Three-hump objective with m(0) = (4, 4) and C(0) = 100I .
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