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Abstract— In this paper, we consider finite-strategy approxi-
mations of infinite-strategy evolutionary games. We prove that
such approximations converge to the true dynamics over finite-
time intervals, under mild regularity conditions which are
satisfied by classical examples, e.g., the replicator dynamics.
We identify and formalize novel characteristics in evolutionary
games: choice mobility, and its complement choice paralysis.
Choice mobility is shown to be a key sufficient condition for the
long-time limiting behavior of finite-strategy approximations to
coincide with that of the true infinite-strategy game. An illustra-
tive example is constructed to showcase how choice paralysis
may lead to the infinite-strategy game getting “stuck,” even
though every finite approximation converges to equilibrium.

I. INTRODUCTION

Evolutionary games are models in which a (typically
large) number of players strategically interact and revise their
strategies, in order to maximize their own expected payoffs.
Such models arise in a variety of applications ranging
from traffic congestion to economic markets [27]. Extensive
rigorous analyses of these models have been developed in the
case that the players have access to finitely many strategies,
with a particular focus on (often control-theoretic) stability
guarantees ensuring that the population of players converges
to a (Nash) equilibrium state [3, 12, 16, 20]. However, many
realistic games have a continuum of choices available to
players, e.g., in reinforcement learning [21], optimization
[1], power system pricing and generation [24], and games
of timing [4]. The study of such infinite-strategy evolu-
tionary games becomes significantly more challenging, as
the dynamics amount to an infinite-dimensional differential
equation in the space of probability measures [2].

A handful of works have analyzed infinite-strategy models
with specific dynamics—most commonly the replicator dy-
namics [6, 7, 9, 10, 14, 15, 22, 23], but also the Brown-von
Neumann-Nash, pairwise comparison, logit, and perturbed
best response dynamics [8, 17–19], among others. However,
even such special cases of infinite-strategy evolutionary
games cannot be explicitly solved or numerically simulated,
requiring the use of finite-strategy approximations as a
tractable surrogate. Unfortunately, such approximations are
in general unreliable, as the finite-dimensional dynamics may
exhibit asymptotic stability, even though the true infinite-
strategy dynamics are unstable [2, 23].

In this paper, we study when finite-strategy approxima-
tions of infinite-strategy evolutionary dynamics can and
cannot be trusted, both over finite-time intervals and in
the long-time limit (e.g., convergence to equilibria). A few
works have considered finite-strategy approximations for
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computing Nash equilibria of static infinite-strategy games
[13, 26]. Though, to the best of our knowledge, the only
work to consider the dynamics of finite approximations
of evolutionary games is Oechssler and Riedel [23], who
show that approximations of the replicator dynamics with
compact real number interval strategy sets weakly converge
to the true dynamics over finite-time intervals. Our work
studies the problem for more general dynamics and strategy
sets—recovering Oechssler and Riedel [23, Theorem 4] as
a special case of our Theorem 1—and we provide novel
characterizations of approximations in the long-time limit.
Specifically, our primary contributions are as follows.

A. Contributions

1) We prove that, under mild regularity conditions,
the trajectories of finite-dimensional approximations
weakly converge to the true infinite-dimensional evo-
lutionary dynamics on compact time intervals.

2) We introduce the key notion of choice mobility, and
its complement choice paralysis.

3) We prove that choice mobility is sufficient to ensure
coincidence between the long-time limiting behavior
of finite approximations and the infinite-dimensional
dynamics (again under mild regularity assumptions).

4) We show that choice paralysis arises if strategy switch-
ing rates decrease as more strategies are introduced.

5) We construct an example demonstrating that choice
paralysis may manifest in convergence of every fi-
nite approximation to equilibrium, despite the infinite-
strategy game being stuck at a different state.

Proofs are deferred to the appendix.

II. INFINITE-STRATEGY EVOLUTIONARY GAMES

We consider a game in which a large population of players
choose strategies from an infinite compact metric space S
with metric dS . The sets of Borel probability measures and
continuous real-valued functions on S are denoted by P(S)
and C(S), respectively. The Borel σ-algebra on S is B(S).
The state of the population is encoded by a probability
measure, µ ∈ P(S), over the strategy set S, representing
the frequency with which each strategy is played. The game,
F : P(S) → C(S), is defined by average payoffs (F (µ))(s)
to strategies s ∈ S when the population is at state µ.

The population state evolves according to an evolutionary
dynamics model (EDM) [2, 25] taking the form

µ̇(t) = v(µ(t), ρ(t)), ρ(t) = F (µ(t)), (1)

where v : P(S) × C(S) → TP(S), with TP(S) being the
tangent space of P(S), defines the dynamics, and ρ encodes
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the game’s payoffs that steer the dynamics. The EDM (1)
can be viewed as a state feedback control system with v
defining the open-loop dynamics, and F being the controller.
The time-derivative µ̇(t) is defined in the Fréchet sense.
Throughout, we assume that (1) admits a unique and weakly
continuous solution µ : [0,∞) → P(S).

We consider a general class of dynamics, termed mean
dynamics [8, 27], where the dynamics map v takes the form

v(µ, ρ)(B) =

∫
S

∫
B

φ(s, s′, µ, ρ)dλ(s′)dµ(s)

−
∫
S

∫
B

φ(s′, s, µ, ρ)dµ(s′)dλ(s)

(2)

for some reference probability measure λ ∈ P(S) and some
adequately integrable map φ : S×S×P(S)×C(S) → R+,
with R+ denoting the set of nonnegative real numbers. The
map φ is known as the revision protocol, as it characterizes
the rate at which players switch from one strategy to another,
given a particular state and payoff profile of the game. The
first term in v(µ, ρ)(B) represents the “inflow” of mass
into the strategies within B ∈ B(S), and the second term
represents the corresponding “outflow.”

Example 1. Popular examples of mean dynamics include the
replicator dynamics [6, 7, 22, 23], the Brown-von Neumann-
Nash (BNN) dynamics [17], and the pairwise comparison dy-
namics [8]. Specifically, the replicator dynamics correspond
to setting λ = µ and φ(s, s′, µ, ρ) = max{0, ρ(s′) − ρ(s)}.
The BNN and pairwise comparison dynamics correspond to
a fixed-in-time λ (typically uniform), and are respectively
defined by φ(s, s′, µ, ρ) = max

{
0, ρ(s′)−

∫
S
ρdµ

}
and

φ(s, s′, µ, ρ) = γ(s, s′, ρ) for some function γ independent
of µ, assumed to satisfy sign-preservation: the switch rate is
positive if and only if the new strategy has higher payoff than
the old strategy, i.e., sign(γ(s, s′, ρ)) = sign(max{0, ρ(s′)−
ρ(s)}) for all s, s′ ∈ S and all ρ ∈ C(S). The pairwise
comparison dynamics are called impartial if, for all s′ ∈ S,
there exists a continuous function ϕs′ : R → R+ satisfying
γ(s, s′, ρ) = ϕs′(ρ(s

′)−ρ(s)) for all s ∈ S and all ρ ∈ C(S).

The EDM (1) is an infinite-dimensional differential equa-
tion evolving in the space of probability measures, and hence
cannot be tractably solved in general. This motivates the
problem studied in this paper: introduce and analyze finite
approximations, and characterize when such approximations
accurately reflect the true behavior of the evolutionary game.

III. FINITE-STRATEGY APPROXIMATIONS

A. Formulation

We now explicitly formulate finite-dimensional approxi-
mations of the EDM (1) with the mean dynamics map (2).
Consider n ∈ N, and let λn, µn(0) ∈ P(S) be discrete
measures with respect to some reference measure ν on S
(e.g., Lebesgue measure when S is a subset of Euclidean
space). Suppose that supp(λn) = supp(µn(0)) = Sn :=
{s1, . . . , sn} ⊆ S, so that λn =

∑n
i=1 λn(si)δsi and

µn(0) =
∑n

i=1(µn(0))(si)δsi . Here, we write λn(si) to
mean λn({si}) and similarly for other measures evaluated on

singleton sets. Let µn : [0,∞) → P(S) denote the solution
to the EDM with reference measure λn and initial state
µn(0). The measures λn and µn(t) respectively serve as
approximations to λ and µ(t), which may have full support.
Writing the mean dynamics for the approximation yields

(µ̇n(t))(B) = vn(µn(t), F (µn(t)))(B)

=

∫
S

∫
B

φ(s, s′, µn(t), F (µn(t)))dλn(s
′)d(µn(t))(s)

−
∫
S

∫
B

φ(s′, s, µn(t), F (µn(t)))d(µn(t))(s
′)dλn(s)

for all B ∈ B(S). Since λn(B) = (µn(0))(B) = 0 for
B = S \ Sn, we immediately see that (µ̇n(0))(B) = 0 and
hence (µn(t))(B) = 0 for all t ∈ [0,∞) for this set B. Thus,
µn(t) is discrete with supp(µn(t)) ⊆ Sn for all t ∈ [0,∞),
implying that it takes the form

µn(t) =

n∑
i=1

(µn(t))(si)δsi . (3)

Thus, we may uniquely identify µn with the curve
xn : [0,∞) → ∆n−1 defined by (xn(t))i = (µn(t))(si),
where ∆n−1 denotes the probability simplex in Rn.

We define a finite-dimensional game F̂n : ∆
n−1 → Rn by

restricting F to discrete measures on Sn:

(F̂n(θ))i = F

(
n∑

j=1

θjδsj

)
(si), i ∈ {1, . . . , n}.

Similarly, we define a finite-dimensional revision protocol
φ̂n : {1, . . . , n} × {1, . . . , n} ×∆n−1 → R+ by

φ̂n(i, j, θ) = φ

(
si, sj ,

n∑
k=1

θkδsk , F

(
n∑

k=1

θkδsk

))
.

Under these constructions, the mean dynamics of the finite
approximation are equivalently rewritten as

(ẋn(t))i = λn(si)

n∑
j=1

φ̂n(j, i, xn(t))(xn(t))j

− (xn(t))i

n∑
j=1

φ̂n(i, j, xn(t))λn(sj),

(4)

for all i ∈ {1, . . . , n}. Note that the approximation (4) is a
system of n ordinary differential equations, and hence can
be solved efficiently using off-the-shelf numerical solvers.

Example 2. For the replicator dynamics of Example 1, the
above constructions give λn(si) = (xn(t))i and φ̂n(i, j, θ) =

max
{
0, (F̂n(θ))j − (F̂n(θ))i

}
, and therefore (4) reduces to

(ẋn(t))i = (xn(t))i

(
(F̂n(xn(t)))i − xn(t)

⊤F̂n(xn(t))
)
,

for all i ∈ {1, . . . , n}, which coincides with the classical
replicator dynamics on the finite strategy set {1, . . . , n} (see
Sandholm [27, Example 4.3.1]). Similar recovery of the clas-
sical finite-dimensional BNN dynamics [27, Example 4.3.4]
and pairwise comparison dynamics [27, Example 4.3.5] are
also achieved (specifically, under the fixed uniform reference
measure given by λn(si) =

1
n for all i).



B. Finite-Time Analysis
In this section, we show that, under some mild regularity

conditions on φ, approximations to the EDM (1) weakly
converge to the true infinite-dimensional dynamics on com-
pact time intervals. Throughout our analyses, we denote
the bounded-Lipschitz metric on P(S) by dBL : (ν, η) 7→
sup

{∣∣∫
S
gdν −

∫
S
gdη
∣∣ : g ∈ Lip1(S), ∥g∥∞ ≤ 1

}
, where

LipL(S) denotes the set of all L-Lipschitz real-valued func-
tions on S and ∥·∥∞ denotes the supremum norm. Recall that
dBL metrizes the weak topology on P(S) [5, Theorem 8.3.2].
We start by formally stating the regularity conditions on φ:

Assumption 1. The following all hold:
1) Bounded. There exists M ∈ R+ such that

|φ(s, s′, µ, F (µ))| ≤ M for all s, s′ ∈ S, µ ∈ P(S).
2) Lipschitz on S. There exist L1, L2 ∈ R+ such that

φ(·, s′, µ, F (µ)) ∈ LipL1
(S) for all s′ ∈ S, µ ∈ P(S),

φ(s, ·, µ, F (µ)) ∈ LipL2
(S) for all s ∈ S, µ ∈ P(S).

3) Lipschitz on P(S). There exists L3 ∈ R+ such that,
for all s, s′ ∈ S, µ, µ′ ∈ P(S), it holds that

|φ(s, s′, µ, F (µ))− φ(s, s′, µ′, F (µ′))| ≤ L3dBL(µ, µ
′).

Notice that all conditions in Assumption 1 are with respect
to the closed-loop dynamics, i.e., they are required to hold
for state-payoff pairs (µ, ρ) satisfying ρ = F (µ). In general,
this is much less stringent than requiring them to hold for
all states µ ∈ P(S) and all payoff functions ρ ∈ C(S).

The replicator, BNN, and impartial pairwise comparison
dynamics (recall Example 1) all satisfy Assumption 1 for
typical games, and thus the conditions are considered mild:

Proposition 1. Consider either the replicator dynamics,
the BNN dynamics, or the impartial pairwise comparison
dynamics with (s′, p) 7→ ϕs′(p) Lipschitz with respect to
the metric dS×R : ((s

′, p), (s̃′, p̃)) 7→ ∥(dS(s′, s̃′), |p − p′|)∥
where ∥ · ∥ denotes an arbitrary norm on R2 (e.g., the
Smith dynamics [8]). If F is Lipschitz continuous between
(P(S), dBL) and (C(S), ∥·∥∞) and there exists L ∈ R+ such
that F (µ) ∈ LipL(S) for all µ ∈ P(S), then Assumption 1
holds. In particular, this is the case for the commonly
considered linear games F taking the form

F (µ)(s) =

∫
S

f(s, s′)dµ(s′)

with f : S × S → R bounded and Lipschitz with respect to
the metric dS×S : ((s, s

′), (s̃, s̃′)) 7→ ∥(dS(s, s̃), dS(s′, s̃′))∥.

The proof of Proposition 1 involves routine Lipschitz
analysis and hence is omitted due to space constraints. We
now state our finite-time approximation result.

Theorem 1. Assume Assumption 1. For all n ∈ N, consider
approximations λn, µn(0) ∈ P(S) to λ and µ(0), with
associated solutions µn to the mean dynamics EDM (1)–(2).
Assume that λ and all λn are fixed in time. If λn

n→∞→ λ
weakly and µn(0)

n→∞→ µ(0) weakly, then

lim
n→∞

sup
t∈[0,T ]

dBL(µn(t), µ(t)) = 0 for all T ∈ (0,∞). (5)

Remark 1. Theorem 1 gives a strong type of convergence:
the approximation converges to the true dynamics uniformly
on compact time intervals. This implies the pointwise con-
vergence that µn(t)

n→∞→ µ(t) weakly for all t ∈ [0,∞).

Remark 2. Although Theorem 1 holds for general approxi-
mating measures λn, µn(0) ∈ P(S)—not only finite ones—
it is most useful to consider the finite case, which guaran-
tees that the computationally tractable system of ODEs (4)
accurately reflects the true infinite-dimensional dynamics in
finite time. We will see in Section III-C that this does not
necessarily imply accuracy in the long-time limit.

Remark 3. Theorem 1 still holds for time-varying reference
measures λ and λn, under the additional assumptions that 1)
t 7→ λ(t) and all t 7→ λn(t) are weakly continuous, and 2)
λn(t)

n→∞→ λ(t) weakly for all t ∈ [0,∞). The proof be-
comes more complicated, relying on a generalized version of
Grönwall’s inequality [11, Theorem 9] and some additional
continuity arguments, which we omit for conciseness.

Remark 4. Given a measure λ ∈ P(S), we may always con-
struct an approximating measure λn := 1

n

∑n
i=1 δsi ∈ P(S)

with s1, . . . , sn ∈ S sampled independently and identically
from λ, and in this case, the law of large numbers ensures
that the weak convergence assumption in Theorem 1 holds
λ-almost surely. The same goes for approximating µ(0).

C. Long-Time Analysis and Convergence to Equilibria

Although Theorem 1 shows that finite-dimensional ap-
proximations accurately reflect the evolutionary game’s be-
havior over any finite-time interval under rather weak regu-
larity conditions, it does not automatically imply accurate
approximations in the long-time limit. Specifically, Theo-
rem 1 cannot be applied to assess the game’s convergence to
Nash equilibria using the finite approximations. To rigorously
analyze such asymptotic behavior, we identify and introduce
the key notion of “choice paralysis:”

Definition 1. Consider a collection X = {xn : n ∈ N} of
trajectories xn : [0,∞) → ∆n−1 such that, for all n ∈ N,
there exists xn ∈ ∆n−1 such that limt→∞ xn(t) = xn. The
collection X is said to be choice-mobile if

lim
t→∞

sup
n∈N

∥xn(t)− xn∥1 = 0. (6)

Otherwise, X is said to suffer from choice paralysis.

Remark 5. The definition of choice-mobility can be extended
to collections of finite-dimensional EDMs, such as (4), by
requiring all associated trajectories to be choice-mobile.

Remark 6. The ℓ1-norm in (6) cannot hastily be replaced
with another norm, even if they induce the same topology
on Rn for a fixed value of n, since the tightness of the
bounds between equivalent norms on Rn in general depends
on n. Using ∥ · ∥1 induces a natural comparison between
approximations of different dimensionality, as ∥x∥1 = 1 for
all x ∈ ∆n−1, irrespective of the number of strategies n ∈ N.

We now consider what choice-mobility represents in a
game theoretic context. Mathematically, (6) corresponds to



uniform convergence xn(t)
t→∞→ xn. The uniformity in n

requires every finite-dimensional approximation to converge
to its associated equilibrium at some speed independent of
the number of strategies available. This corresponds to finite-
dimensional games that remain sufficiently “mobile” even as
more and more strategies become available, i.e., giving the
players more strategies to choose from does not significantly
slow down the overall dynamics of the game. Contrarily,
if a population suffers from choice paralysis, progression
towards equilibrium may slow down upon increasing the
(finite) number of strategies; the more choices there are,
the longer it takes players to figure out what they want to
do. If the evolution rate is slowed down enough relative to
the convergence rates toward equilibria at a fixed number of
strategies, then convergence can no longer be guaranteed as
the number of strategies increases towards infinity. From this
perspective, it should be expected that the choice mobility
condition (6) is key in ensuring that the infinite-dimensional
state µ(t) actually “makes progress” towards an equilibrium.
We show that this is indeed the case in Theorem 2.

Theorem 2. Assume Assumption 1. Let θn, xn(0) ∈ ∆n−1

for all n ∈ N, and consider the approximation (4) with
λn :=

∑n
i=1(θn)iδsi and initial condition xn(0). Assume

that λ and all λn are fixed in time. If λn
n→∞→ λ weakly and∑n

i=1(xn(0))iδsi
n→∞→ µ(0) weakly, then

lim
t→∞

lim
n→∞

dBL

(
n∑

i=1

(xn)iδsi , µ(t)

)
= 0 (7)

whenever X = {xn : n ∈ N} is choice-mobile with every
limt→∞ xn(t) = xn for some collection {xn ∈ ∆n−1 : n ∈
N}. In this case,

1) µ(t)
t→∞→ µ weakly whenever

∑n
i=1(xn)iδsi

n→∞→ µ
weakly for some µ ∈ P(S), and

2)
∑n

i=1(xn)iδsi
n→∞→ µ weakly whenever µ(t)

t→∞→ µ
weakly for some µ ∈ P(S).

Remark 7. As was the case for Theorem 1, Theorem 2 also
still holds for time-varying reference measures λ and λn,
under the same additional assumptions outlined in Remark 3.
The proof of Theorem 2 is essentially unchanged in this case.

At this point, let us dissect Theorem 2. The result (7)
ensures that, as the resolution of the approximation (4)
becomes finer, the approximation accurately reflects the long-
time behavior of the true infinite-strategy game. The two final
enumerated results ensure coincidence between an asymp-
totically stable equilibrium µ of the infinite-dimensional
game and the limit of the asymptotically stable equilibria
xn of the approximations. In particular, they assert that,
when the discrete distribution generated by xn converges
towards some limiting distribution µ, then µ(t) must ap-
proach this same distribution, and, on the other hand, when
µ(t) approaches some limiting distribution µ, the discrete
distribution generated by xn must converge towards the same
distribution. These consequences show that we may “trust”
finite-dimensional approximations of infinite strategy games
when the approximations satisfy choice mobility.

D. Emergence of Choice Paralysis

In the following result, we show that one way that choice
paralysis may occur is through decaying revision protocol
values; paralysis occurs if the rate of strategy switching
decreases towards zero as the number of strategies increases.

Proposition 2. Let θn, xn(0) ∈ ∆n−1 for all n ∈ N, and
consider the approximation (4) with λn :=

∑n
i=1(θn)iδsi

and initial condition xn(0). Suppose for all n ∈ N that
limt→∞ xn(t) = xn for some xn ∈ ∆n−1. If there exist ϵ >
0 and a sequence {Mn ∈ R+ : n ∈ N} such that Mn

n→∞→ 0
and, for all n ∈ N, it holds that ∥xn(0)− xn∥1 > ϵ and

∥ẋn(t)∥1 ≤ Mn for all t ∈ [0,∞), (8)

then X = {xn : n ∈ N} suffers from choice paralysis. In
particular, (8) holds when the revision protocol φ̂n satisfies
|φ̂n(i, j, θ)| ≤ 1

2Mn for all i, j ∈ {1, . . . , n}, θ ∈ ∆n−1.

Proposition 2 is not restricted to fixed reference measures;
it holds for time-varying λn, e.g., in the replicator dynamics.

IV. EXAMPLE

We now construct an explicit example illustrating choice
paralysis and inconsistency between the infinite-strategy dy-
namics and the finite approximations. Consider the game on
S = [0, 1] defined by F (µ)(s) =

∫
S
f(s, s′)dµ(s′) with

f(s, s′) = −1 if s = s′, f(s, s′) = 0 otherwise,

evolving according to the replicator dynamics (recall
Example 1). This game penalizes players that choose
the same strategy as another player, and hence is
often referred to as the “anticoordination game”
[27]. It is straightforward to see that µ̇(t)(B) =∫
B

(
F (µ(t))(s)−

∫
S
F (µ(t))(s′)d(µ(t))(s′)

)
d(µ(t))(s) =

0 for every set B ∈ B(S), whenever µ(t) is absolutely
continuous with respect to Lebesgue measure. In particular,
this shows that the infinite-strategy evolutionary game gets
completely stuck at such population states; µ(t) = µ(0) for
all t ∈ [0,∞), for every µ(0) with (Lebesgue) density.

On the other hand, the approximation (4) reduces to

(ẋn(t))i = −(xn(t))
2
i + (xn(t))i

n∑
j=1

(xn(t))
2
j

for all i ∈ {1, . . . , n} for every n ∈ N, which corresponds
to the finite-dimensional game defined by F̂n(θ) = −θ. It is
straightforward to show that xn = 1

n1n is the only stationary
point of these dynamics in the relative interior of ∆n−1,
where 1n denotes the n-vector of all ones, and that xn is also
this (strictly concave) game’s unique Nash equilibrium [27,
Corollary 3.1.4]. As such, the stationary point xn = 1

n1n is
globally asymptotically stable over the relative interior of
∆n−1 [27, Theorem 7.2.4] for every n ∈ N, suggesting
that the game converges towards the uniform distribution
on S when initialized with full support. Therefore, the
approximations fail to accurately model the game’s behavior
in the long-time limit. Indeed, the dynamics suffer from
choice paralysis. Intuitively, this is because, in the vicinity



of the stationary point, ∥ẋn(t)∥1 ≤ 2∥xn(t)∥22 ≈ 2∥xn∥22 =
2
n

n→∞→ 0, so paralysis emerges (recall Proposition 2).
This can occur even at states that are uniformly bounded
away from xn in ℓ1. For instance, let ϵ > 0, and for all
n ∈ N define mn ∈ N to be the ceiling of ϵn

2 and consider
xn(0) =

(
( 1n + ϵ

2mn
)1mn

, ( 1n − ϵ
2mn

)1mn
, 1
n1n−2mn

)
. It

holds that xn(0) ∈ ∆n−1, that ∥xn(0) − xn∥1 = ϵ, and
that ∥ẋn(0)∥1 ≤ 2∥xn(0)∥22 = 2

n + ϵ2

mn

n→∞→ 0, so the
collection of approximations exhibits paralysis immediately
at t = 0 despite the fact that every individual approximation
converges to its associated equilibrium.

While the above example illustrates the correlation be-
tween choice paralysis and decaying convergence rates of the
approximations, it utilizes a discontinuous payoff function f
that violates Assumption 1. An interesting open problem is
to characterize the relationship between choice paralysis and
the continuity properties of f .

APPENDIX

Proof of Theorem 1. To simplify the exposition, we
denote φ(s, s′, µ(τ), F (µ(τ))) by φ(s, s′, τ) and
φ(s, s′, µn(τ), F (µn(τ))) by φn(s, s

′, τ) for all τ ∈ [0,∞).
Let T ∈ (0,∞). Furthermore, let n ∈ N, let t ∈ [0, T ],

and let g ∈ Lip1(S) be such that ∥g∥∞ ≤ 1. It holds that∫
S
gdµ(t) =

∫
[0,t]

∫
S
g(s)d(µ̇(τ))(s)dτ +

∫
S
g(s)d(µ(0))(s)

=
∫
[0,t]

∫
S
g(s)

∫
S
φ(s′, s, τ)d(µ(τ))(s′)dλ(s)dτ

−
∫
[0,t]

∫
S
g(s)

∫
S
φ(s, s′, τ)dλ(s′)d(µ(τ))(s)dτ

+
∫
S
g(s)d(µ(0))(s),∫

S
gdµn(t)

=
∫
[0,t]

∫
S
g(s)d(µ̇n(τ))(s)dτ +

∫
S
g(s)d(µn(0))(s)

=
∫
[0,t]

∫
S
g(s)

∫
S
φn(s

′, s, τ)d(µn(τ))(s
′)dλn(s)dτ

−
∫
[0,t]

∫
S
g(s)

∫
S
φn(s, s

′, τ)dλn(s
′)d(µn(τ))(s)dτ

+
∫
S
g(s)d(µn(0))(s).

Our goal is to estimate
∫
S
gdµ(t)−

∫
S
gdµn(t) by comparing

corresponding “inflows,” “outflows,” and initial states.
a) Inflows: We have that

∆1(τ) :=
∫
S
g(s)

∫
S
φ(s′, s, τ)d(µ(τ))(s′)dλ(s)

−
∫
S
g(s)

∫
S
φn(s

′, s, τ)d(µn(τ))(s
′)dλn(s)

=
∫
S
g(s)

∫
S
φ(s′, s, τ)d(µ(τ))(s′)dλ(s)

−
∫
S
g(s)

∫
S
φn(s

′, s, τ)d(µ(τ))(s′)dλ(s)

+
∫
S
g(s)

∫
S
φn(s

′, s, τ)d(µ(τ))(s′)dλ(s)

−
∫
S
g(s)

∫
S
φn(s

′, s, τ)d(µn(τ))(s
′)dλ(s)

+
∫
S
g(s)

∫
S
φn(s

′, s, τ)d(µn(τ))(s
′)dλ(s)

−
∫
S
g(s)

∫
S
φn(s

′, s, τ)d(µn(τ))(s
′)dλn(s).

Comparing neighboring terms, we have that∣∣∫
S
g(s)

∫
S
(φ(s′, s, τ)− φn(s

′, s, τ))d(µ(τ))(s′)dλ(s)
∣∣

=
∣∣∫

S
g(s)

∫
S
(φ(s′, s, τ)− φn(s

′, s, τ))d(µ(τ))(s′)dλ(s)
∣∣

≤
∫
S
|g(s)|

∫
S
L3dBL(µ(τ), µn(τ))d(µ(τ))(s

′)dλ(s)

≤ L3dBL(µ(τ), µn(τ)),

which follows from the bound ∥g∥∞ ≤ 1 and the Lipschitz-
ness of φ on P(S). Next,∣∣∫

S
g(s)

∫
S
φn(s

′, s, τ)d(µ(τ)− µn(τ))(s
′)dλ(s)

∣∣
=
∣∣∫

S
g(s)

∫
S
φn(s

′, s, τ)d(µ(τ)− µn(τ))(s
′)dλ(s)

∣∣
≤ max{L1,M}dBL(µ(τ), µn(τ))

follows from boundedness and Lipschitzness of φ in its first
argument together with the bound ∥g∥∞ ≤ 1. Furthermore,∣∣∫

S
g(s)

∫
S
φn(s

′, s, τ)d(µn(τ))(s
′)d(λ− λn)(s)

∣∣
=
∣∣∫

S

∫
S
g(s)φn(s

′, s, τ)d(λ− λn)(s)d(µn(τ))(s
′)
∣∣

≤ (L2 +M)dBL(λ, λn),

since s 7→ g(s)φn(s
′, s, τ) is bounded with constant M and

is Lipschitz with constant L2 +M (which intimately relies
on boundedness of both g and φ; in general, the product of
Lipschitz functions is not Lipschitz). Thus, we conclude that

|∆1(τ)| ≤ (L3 +max{L1,M})dBL(µ(τ), µn(τ))

+ (L2 +M)dBL(λ, λn).

b) Outflows: From a nearly identical analysis as above:

∆2(τ) :=
∫
S
g(s)

∫
S
φ(s, s′, τ)dλ(s′)d(µ(τ))(s)

−
∫
S
g(s)

∫
S
φn(s, s

′, τ)dλn(s
′)d(µn(τ))(s),

|∆2(τ)| ≤ (L1 + L3 +M)dBL(µ(τ), µn(τ))

+ max{L2,M}dBL(λ, λn).

c) Initial states: As g ∈ Lip1(S), ∥g∥∞ ≤ 1, we have∣∣∫
S
g(s)d(µ(0))(s)−

∫
S
g(s)d(µn(0))(s)

∣∣
≤ dBL(µ(0), µn(0)).

d) Completing the proof: Given our above estimates,
we complete the proof as follows. First, we see that∣∣∫

S
gdµ(t)−

∫
S
gdµn(t)

∣∣
≤
∫
[0,t]

(|∆1(τ)|+ |∆2(τ)|)dτ + dBL(µ(0), µn(0))

≤ K
∫
[0,t]

(dBL(µ(τ), µn(τ)) + dBL(λ, λn))dτ

+ dBL(µ(0), µn(0)),

where K := max{2L3 + 3max{L1,M}, 3max{L2,M}}.
Taking the supremum on the left-hand side over g ∈
Lip1(S), ∥g∥∞ ≤ 1, we find that

dBL(µ(t), µn(t))

≤ K
∫
[0,t]

(dBL(µ(τ), µn(τ)) + dBL(λ, λn)) dτ

+ dBL(µ(0), µn(0)).

Applying Grönwall’s inequality gives that

dBL(µ(t), µn(t))

≤ −dBL(λ, λn) + (dBL(λ, λn) + dBL(µ(0), µn(0)))e
Kt

≤ −dBL(λ, λn) + (dBL(λ, λn) + dBL(µ(0), µn(0)))e
KT .

Thus,

sup
t∈[0,T ]

dBL(µ(t), µn(t))

≤ −dBL(λ, λn) + (dBL(λ, λn) + dBL(µ(0), µn(0)))e
KT .



Since n ∈ N is arbitrary and limn→∞ dBL(λ, λn) =
limn→∞ dBL(µ(0), µn(0)) = 0 as both λn

n→∞→ λ weakly
and µn(0)

n→∞→ µ(0) weakly, the conclusion (5) follows.

Proof of Theorem 2. Suppose that limt→∞ supn∈N ∥xn(t)−
xn∥1 = 0 for some collection {xn ∈ ∆n−1 : n ∈ N}. Let
T ∈ (0,∞). By the triangle inequality and Theorem 1,

lim sup
n→∞

dBL (
∑n

i=1(xn)iδsi , µ(T ))

≤ lim sup
n→∞

dBL (
∑n

i=1(xn)iδsi ,
∑n

i=1(xn(T ))iδsi)

+ lim sup
n→∞

sup
τ∈[0,T ]

dBL (
∑n

i=1(xn(τ))iδsi , µ(τ))

= lim sup
n→∞

dBL (
∑n

i=1(xn)iδsi ,
∑n

i=1(xn(T ))iδsi)

≤ sup
n∈N

dBL (
∑n

i=1(xn)iδsi ,
∑n

i=1(xn(T ))iδsi) .

Since T ∈ (0,∞) is arbitrary, we conclude that

lim sup
T→∞

lim sup
n→∞

dBL (
∑n

i=1(xn)iδsi , µ(T ))

≤ lim sup
T→∞

sup
n∈N

dBL (
∑n

i=1(xn)iδsi ,
∑n

i=1(xn(T ))iδsi)

= lim sup
T→∞

sup
n∈N

sup
g∈Lip1(S)
∥g∥∞≤1

|
∑n

i=1((xn)i − (xn(T ))i)g(si)|

≤ lim sup
T→∞

sup
n∈N

∑n
i=1 |(xn)i − (xn(T ))i|

= lim sup
T→∞

sup
n∈N

∥xn − xn(T )∥1 = 0.

Hence, limt→∞ limn→∞ dBL (
∑n

i=1(xn)iδsi , µ(t)) = 0,
which proves (7). The two final enumerated results follow
immediately from the triangle inequality.

Proof of Proposition 2. Let t ∈ [0,∞). For all n ∈ N,

∥xn(t)− xn∥1 =
∥∥∥∫[0,t] ẋn(τ)dτ + xn(0)− xn

∥∥∥
1

≥ ∥xn(0)− xn∥1 −
∫
[0,t]

∥ẋn(τ)∥1dτ.

Therefore,

lim sup
n→∞

∥xn(0)− xn∥1 ≤ lim sup
n→∞

∥xn(t)− xn∥1

+ lim sup
n→∞

∫
[0,t]

∥ẋn(τ)∥1dτ,

implying that

sup
n∈N

∥xn(t)− xn∥1 ≥ lim sup
n→∞

∥xn(0)− xn∥1

− lim sup
n→∞

∫
[0,t]

∥ẋn(τ)∥1dτ

≥ ϵ− lim sup
n→∞

Mnt = ϵ,

so X = {xn : n ∈ N} suffers from choice paralysis.
If |φ̂n(i, j, θ)| ≤ 1

2Mn for all i, j ∈ {1, . . . , n}, θ ∈ ∆n−1,
then (4) gives that

|(ẋn(t))i| ≤ 1
2Mn

∑n
j=1 (λn(si)(xn(t))j + (xn(t))iλn(sj))

= 1
2Mn(λn(si) + (xn(t))i)

for all n ∈ N and all i ∈ {1, . . . , n}, and therefore

∥ẋn(t)∥1 ≤ 1
2Mn

∑n
i=1(λn(si) + (xn(t))i) = Mn,

so (8) holds since t ∈ [0,∞) is arbitrary.
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