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Abstract. We consider a novel control scheme, termed ROT-MPC, for robustly steering a
decoupled system of constrained agents from one finite distribution to another, subject to agent-wise
bounded uncertainty. The approach blends discrete-time robust tube model predictive control (MPC)
for the computation of provably safe control actions, together with a reach-constrained modification
of optimal transport for the distribution mapping. We prove that the feasible set of the reach-
constrained optimal transport problem is a convex polytope in the case that every agent admits a
deadbeat state feedback stabilizing controller, thereby reducing the modified transport problem to a
standard linear program. Additionally, we prove that the overall system’s closed-loop dynamics enjoy
recursive feasibility and recursive constraint satisfaction. We also give a finite-time stability proof—
namely, in cases where a feasible permutation transport plan is computed by ROT-MPC, it is shown
that every agent’s associated terminal invariant set is robustly finite-time attractive. A variety
of numerical simulations are conducted that highlight the robustness, stability, and performance
advantages of the proposed method, even in situations where related control schemes fail.
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1. Introduction. Controlling large networks of agents, each with inherent dy-
namics and operational constraints, is an important and challenging problem that
has garnered immense interest amongst researchers. Applications include swarm ro-
botics [19, 2, 4], optimal power flow [5], and platooning and formation control in
(autonomous) networked vehicle systems [22, 23]. One approach for solving the net-
worked control problem is to use conventional centralized control schemes, viewing
each agent’s state as part of the overall system’s larger state as a whole. However, this
state augmentation technique is computationally prohibitive even for moderately sized
populations of agents, which has led to the exploration of more efficient approaches,
such as modeling the population as a finite sample of a continuous distribution [25],
or turning to distributed control methods [7].

In recent years, optimal transport has become a very popular framework for de-
signing and analyzing mappings between distributions, with both theoretical and com-
putational developments [32, 26]. This surge in popularity has been bolstered by the
application of the Sinkhorn algorithm for matrix scaling to achieve “lightspeed” com-
putations for entropy-regularized optimal transport problems arising in machine learn-
ing [12]. Consequently, a handful of recent works have incorporated dynamical con-
straints into (conventionally static) transport problems as a means to apply optimal
transport tools to density control and distribution steering [10, 30, 8, 9, 13, 14, 15, 20],
building off of Benamou and Brenier’s classical fluid dynamics reformulation of opti-
mal transport [3]. However, these optimal transport-based control approaches have
thus far largely neglected system disturbances and uncertainties, making them un-
suited for safety-critical networked control systems in which stringent constraints and
robustness guarantees are paramount. In this article, we aim to address this gap
in the literature by introducing robust optimal transport model predictive control
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(ROT-MPC) for distribution steering.
Most closely related to our work is “Sinkhorn MPC,” introduced by [16, 18].

This control scheme alternates between updating transport plans using iterations of
the Sinkhorn algorithm, and steering each agent towards their updated target using
decentralized optimal control problems. The follow-up work [17] lifts the prior works’
restrictive assumption that every agent has an invertible control matrix, yet is inca-
pable of handling state or input constraints. In all three of these works, uncertainties
in the dynamics are neglected, resulting in a lack of provable robustness (and, in some
cases, failure in practice, as we will demonstrate in our numerical simulations).

1.1. Contributions. The primary contributions of this work include:
1. Key reachability constraints to ensure feasible robust control problems under

optimal transport-based target assignments are identified, culminating into a
novel, semi-infinite reach-constrained optimal transport problem.

2. The feasible set of the reach-constrained optimal transport problem is shown
to be a polytope when agents admit deadbeat state feedback stabilizing con-
trollers (Proposition 3.2), reducing the modified transport problem into a
finite-dimensional linear program.

3. The reach-constrained optimal transport problem is coupled with agent-wise
optimal control problems to define a semi-decentralized robust optimal trans-
port MPC (ROT-MPC) control scheme (Algorithm 3.1).

4. The closed-loop dynamics of ROT-MPC are proven to be recursively feasible
(Theorem 4.6), to satisfy recursive constraint satisfaction (Theorem 4.8), and
to exhibit robust finite-time attraction to the agents’ terminal invariant sets
in the case that a permutation transport plan is computed at some point
during the dynamics (Theorem 4.10).

5. Numerical simulations are carried out to illustrate the performance and ro-
bustness advantages of ROT-MPC over baseline control schemes.

To streamline the exposition, some proofs are deferred to Appendix A.

1.2. Outline. The remainder of the article is organized as follows. In Section 2,
we define our notations, formally state the problem under consideration, and sum-
marize the fundamental tools from robust tube MPC and optimal transport used in
the sequel. We then introduce the new reach-constrained optimal transport prob-
lem in Section 3, prove when it reduces to a finite-dimensional linear program with
a polytope feasible set, and introduce robust optimal transport MPC (ROT-MPC)
using the modified transport problem. Key properties—recursive feasibility, recursive
constraint satisfaction, and stability—of the closed-loop dynamics of ROT-MPC are
theoretically analyzed in Section 4. Numerical simulations are conducted in Section 5,
illustrating the effectiveness of ROT-MPC and drawing comparisons to baseline meth-
ods. Conclusions and directions for future work are discussed in Section 6.

2. Preliminaries.

2.1. Notations. Throughout, we use t ∈ N ∪ {0} to denote time for actual
system dynamics, whereas we typically use k ∈ N ∪ {0} to denote time for predicted
system dynamics within a given optimal control problem. For two sets X,Y ⊆ Rn,
we denote their Minkowski sum by X ⊕ Y := {x+ y : x ∈ X, y ∈ Y }, and we denote
their Pontryagin difference by X ⊖ Y = {x ∈ Rn : {x} ⊕ Y ⊆ X}. If x ∈ Rn, then
we write x ⊕ Y as shorthand for {x} ⊕ Y . The n-vector of all ones is 1n and the
m × n matrix of all ones is 1m×n. The n × n identity matrix is written In, and 0
denotes a scalar, vector, or matrix of all zeros, whose size is inferred from context.
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The partial orders ≥ and ≤ on vectors and matrices are to be interpreted elementwise.
If OPT denotes an optimization problem, then Feas(OPT) denotes the feasible set
of OPT, and Val(OPT) denotes the optimal value of OPT. For N ∈ N, we define
BN := {P ∈ RN×N : P1N = 1N/N, P⊤1N = 1N/N, P ≥ 0}. To simplify exposition,
we call BN the Birkhoff polytope, despite it being equal to a 1

N -scaled version of
the classical definition of the Birkhoff polytope (the polytope of doubly stochastic
matrices). Similarly, we use the term permutation matrix to mean a matrix with one
and only one nonzero element, equal to 1/N , in every row and column; we consider
scaling permutation matrices by a factor of 1/N according to their classical definition.

2.2. Problem Statement. Consider N ∈ N agents that evolve according to the
discrete-time dynamics

(2.1)
xi(0) = xi,0,

xi(t+ 1) = Aixi(t) +Biui(t) + wi(t), t ∈ N ∪ {0},

for all i ∈ {1, . . . , N}, where all Ai ∈ Rn×n andBi ∈ Rn×mi are known, but wi(t) ∈ Rn

is unknown for all i and all t. For all i ∈ {1, . . . , N}, let Xi ⊆ Rn and Ui ⊆ Rmi

be state and input constraint sets, respectively. The unknown quantity wi(t) can be
thought of either as an external disturbance, or as model error (e.g., in the case that
(Ai, Bi) is a linearization of a truly nonlinear system). In any case, we make the
following bounded uncertainty assumption:

Assumption 2.1 (Standing). For all i ∈ {1, . . . , N}, there exists a compact
polytope Wi ⊆ Rn such that 0 ∈ Wi and wi(t) ∈ Wi for all t ∈ N ∪ {0}.

The problem at hand is to robustly steer the system of uncertain agents to a
collection of desired target states xd

1, . . . , x
d
N ∈ Rn while strictly satisfying the state

and input constraints. We do not care which agent moves to a particular target state,
only that all of the targets get “covered.” We assume that these target states are
viable equilibria of each agent (neglecting disturbance):

Definition 2.2. Let A ∈ Rn×n, B ∈ Rn×m, X ⊆ Rn, and U ⊆ Rm. A state
xe ∈ Rn is an equilibrium of (A,B) subject to (X,U) if xe ∈ X and there exists
ue ∈ U such that xe = Axe +Bue.

Assumption 2.3 (Standing). For all i, j ∈ {1, . . . , N}, the state xd
j is an equi-

librium of (Ai, Bi) subject to (Xi, Ui).

Assumption 2.3 is natural; if we have any hope in stabilizing an agent i near one of
the target states xd

j in the presence of disturbance, we should expect to have access

to some permissible control that makes xd
j an equilibrium of system i in the absence

of disturbance. Going forward, we let ud
ij denote an input making xd

j an equilibrium
of (Ai, Bi) subject to (Xi, Ui).

We also make the following standard stabilizability assumption:

Assumption 2.4 (Standing). (Ai, Bi) is stabilizable for all i ∈ {1, . . . , N}.
By Assumption 2.4, there exists a matrix Ki ∈ Rmi×n for all i ∈ {1, . . . , N} such that
Ai+BiKi is Schur stable (all eigenvalues have modulus strictly less than one). These
matrices can be computed, e.g., via the classical linear quadratic regulator problem.
Throughout the remainder of this paper, we fix such matrices Ki.

Remark 2.5. One may replace Assumption 2.3 and Assumption 2.4 by assuming
the stronger condition that every pair (Ai, Bi) is controllable.
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2.3. Robust Control Invariant Sets. As is standard in robust MPC [21], we
use notions of disturbance invariant sets and robust control invariant sets to manage
the effects of the uncertainty:

Definition 2.6. Let A ∈ Rn×n, B ∈ Rn×m, K ∈ Rm×n, and W ⊆ Rn. A set
Ω ⊆ Rn is a disturbance invariant set for (A,B) under K subject to W if ((A +
BK)Ω)⊕W ⊆ Ω.

It is desirable that disturbance invariant sets are as small as possible [21], as they
are used to define terminal constraint sets in MPC, ensuring the system’s state remains
close to the target state once it reaches the disturbance invariant set. For A, B, K,
and W as in Definition 2.6, the minimal disturbance invariant set is Ω =

⊕∞
j=0(A+

BK)jW , in the sense that it is a subset of every other closed disturbance invariant
set [27]. Generally, the minimal disturbance invariant set is difficult to compute

exactly. However, it is easily inner-approximated by Ω̂ :=
⊕K

j=0(A+BK)jW for some
finite K ∈ N, which is clearly a polytope when W is. Disturbance invariant outer
approximations of the minimal disturbance invariant set are also easy to compute [27].

We make the following assumption, requiring the equilibrium to be contained in a
shrunken version of the state constraint set (and similarly for the equilibrium input),
which is commonly used to ensure robust constraint satisfaction (see, e.g., [24]).

Assumption 2.7 (Standing). For all i ∈ {1, . . . , N}, there exists a nonempty
convex set Ωi ⊆ Rn that is a disturbance invariant set for (Ai, Bi) under Ki subject
to Wi such that xd

j ∈ Xi ⊖ Ωi and ud
ij ∈ Ui ⊖ (KiΩi) for all j ∈ {1, . . . , N}.

Taking each Ωi to be minimal makes Assumption 2.7 more likely to be satisfied.
The assumption can be interpreted as shifting the disturbance invariant set around
the equilibrium of interest, and requiring the shifted set to satisfy the state and input
constraints (under the feedback controller Ki). This allows us to efficiently compute
robust control invariant sets (defined below) around the equilibria, since we may
simply shift the sets Ωi rather than computing N2 robust control invariant sets from
scratch (one for each agent-target pair):

Definition 2.8. Let A ∈ Rn×n, B ∈ Rn×m, X,W ⊆ Rn, and U ⊆ Rm. A set
Ω ⊆ Rn is a robust control invariant set for (A,B) subject to (X,U,W ) if Ω ⊆ X
and for all x ∈ Ω, there exists u ∈ U such that (Ax+Bu)⊕W ⊆ Ω.

Proposition 2.9. Let i, j ∈ {1, . . . , N}. It holds that Ωd
ij := xd

j ⊕ Ωi is a robust
control invariant set for (Ai, Bi) subject to (Xi, Ui,Wi).

2.4. Robust Tube MPC. In order to steer each agent i ∈ {1, . . . , N} while tak-
ing into account the uncertainty and constraints, we will employ robust tube MPC
(cf., [11, 21] as standard references). For all i, let Ti ∈ N be the optimal control time
horizon, and let Li : (Rn)Ti+1 × (Rmi)Ti → R be the optimal control loss function,
which is taken to be time-invariant for convenience. Robust tube MPC ensures robust-
ness of the uncertain closed-loop system by shrinking the state and input constraints
on the linear model (Ai, Bi) according to the propagation of disturbance through its
“disturbance tube.” These disturbance tubes are formally defined as follows:

R0
i = {0}, Rk

i =

k−1⊕
j=0

(Ai +BiKi)
jWi, k ∈ N.

Every set Rk
i is a compact polytope, as is every set KiR

k
i .
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The closed-loop system for agent i ∈ {1, . . . , N} under robust tube MPC is given
by the dynamics (2.1), with the control input ui(t) taken to be ui(t) = ut

i(0) ∈ Rmi ,
where ut

i = (ut
i(0), . . . ,u

t
i(Ti − 1)) ∈ (Rmi)Ti is a Ti-step long optimal control signal

associated with steering the agent’s current state xi(t) ∈ Rn to a shrunken version of
some terminal set Γi ⊆ Xi, with respect to the nominal, disturbance-free model:

(2.2)

(xt
i,u

t
i)

∈ OCPi(xi(t),Γi)

:= argmin
(x(0),...,x(Ti))∈(Rn)Ti+1,

(u(0),...,u(Ti−1))∈(Rmi )Ti

Li(x(0), . . . , x(Ti), u(0), . . . , u(Ti − 1))

subject to x(0) = xi(t),
x(k + 1) = Aix(k) +Biu(k), k ∈ {0, . . . , Ti − 1},
x(k) ∈ Xi ⊖Rk

i , k ∈ {0, . . . , Ti − 1},
u(k) ∈ Ui ⊖ (KiR

k
i ), k ∈ {0, . . . , Ti − 1},

x(Ti) ∈ Γi ⊖RTi
i .

This canonical formulation of robust tube MPC uses a fixed terminal set Γi. However,
in our proposed control scheme, we will allow for the update of the target for agent
i to occur at every time step via optimal transport assignments, and therefore the
terminal set will be time-varying, as is commonly considered in MPC for reference
tracking [29, 34]. More details will be presented in Section 3.

We make the following standard assumptions, which ensure that (2.2) is a convex
optimization problem, and that when it is feasible it is attained by a unique minimizer:

Assumption 2.10 (Standing). For all i ∈ {1, . . . , N}, the dynamics (2.1) and
the optimal control problem (2.2) satisfies all of the following conditions:

1. xi,0 ∈ Xi,
2. Xi, Ui, and Γi are closed convex polyhedra,
3. Ui and Γi are compact, and
4. Li is strictly convex.

2.5. Optimal Transport. In order to actually steer the agents to the target
distribution, each agent must be assigned to some target before solving for their
individual control inputs. That is, the optimal control problem, being an agent-wise
computation, only generates the local behavior of each agent once a desired global
behavior has been set. In order to generate such a global setpoint, we use optimal
transport, which “optimally” dictates how to morph one distribution into another.
Specifically, the classical Kantorovich formulation of the optimal transport problem
from one probability measure µ on a Polish space X to another probability measure
ν on a Polish space Y is given by

inf

{∫
X×Y

c(x, y)dπ(x, y) : π ∈ Π(µ, ν)

}
,

where c : X×Y → R is an integrable transportation cost function, and Π(µ, ν) denotes
the set of probability measures on X × Y with marginal µ on X and marginal ν on
Y [32]. In our setting with a finite number of agents, optimal transport reduces
to a mapping between discrete distributions. Formally, optimal transport between
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µ =
∑m

i=1 aiδxi
and ν =

∑n
j=1 bjδyj

reduces to

inf


m∑
i=1

n∑
j=1

c(xi, yj)Pij : P1n = a, P⊤1m = b, P ≥ 0

 .

This problem is a linear program, which can be viewed as a relaxation of the classical
assignment problem. A feasible matrix P is called a transport plan, and the entry Pij

represents how much “mass” shall be moved from xi to yj .
In our setting, we seek to transport agents at initial states x1, . . . , xN ∈ Rn to

target states xd
1, . . . , x

d
N ∈ Rn. This corresponds to transporting a discrete distribu-

tion
∑N

i=1 ρiδxi
to a discrete distribution

∑N
j=1 ρ

d
j δxd

j
. We view the targets xd

1, . . . , x
d
N

as always being fixed, whereas the initial states x1, . . . , xN may change between in-
stances of the optimal transport problem. Therefore, we write the cost associated
with moving one unit of “mass” from xi to xd

j as Cij(xi) := c(xi, x
d
j ). Furthermore,

since we want one and only one agent at every state, both the initial and terminal
probability distributions are uniform; ρ = ρd = 1N/N . Under this formulation, the
optimal transport problem for directing the population of agents reads

(2.3) OTP(x1, . . . , xN ) := argmin
P∈BN

N∑
i,j=1

Cij(xi)Pij .

The optimal transport problem (2.3) is always feasible; its feasible set equals the
Birkhoff polytope BN . The Birkhoff-von Neumann theorem states that BN has N !
vertices, each one being equal to some permutation matrix on N elements [6, 33].

Notice that it is not immediately clear whether a transport plan P that is feasible
for (2.3) will preserve the fixed “mass” of the individual agents. For example, P =
1
412×2 is feasible for (2.3) in the case that N = 2, but this transport plan says to send
1/2 of agent 1 from x1 to xd

1 and another 1/2 of agent 1 to xd
2, which is not realizable

under our considered problem setting of discrete agents. However, a fundamental
result in optimal transport theory is that, in this specific case of transport between
uniform discrete distributions with finite support, there exists a permutation matrix
that solves (2.3), and therefore such an optimal transport plan reduces to a one-to-one
assignment between the initial and target states [31, Page 5]. This fact immediately
follows from the Birkhoff-von Neumann theorem together with the fact that linear
programs over compact feasible sets have at least one vertex solution.

3. Robust Optimal Transport MPC (ROT-MPC). We now describe our
proposed blending of optimal transport with robust tube MPC. First, we remark
that the optimal transport problem (2.3) makes no considerations for the reachability
aspects of the agents. That is, solving (2.3) may yield a transport plan that tells agent
i to move to a target location, even though this particular steering may be difficult or
impossible for the agent to achieve. Since the agents have limited control authority,
this may result in breaking recursive feasibility in the robust tube MPC. The previous
works [16, 18] considering optimal transport-based MPC did not need to consider this
challenge, since they assumed that the agent’s had invertible input matrices Bi, no
control constraints (that is, Ui = Rmi), and no uncertainties. However, in our more
challenging setting with underactuation, control constraints, and uncertainty, we must
take care to ensure that the optimal transport plans do not result in infeasible control
problems. Furthermore, in the prior works [16, 18], the optimal transport plan is used
to generate a target state for each agent. However, as discussed earlier, reaching an
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exact target state may be infeasible in our setting with constraints and disturbance,
and therefore we consider using the transport plan to define a target set to which we
can feasibly and robustly steer the agent.

In particular, at every time t, we use a transport plan P (t) to generate a temporary
target state and temporary terminal set,

χtmp,i(t) := N

N∑
j=1

Pij(t)x
d
j , Ωtmp,i(t) := N

N⊕
j=1

Pij(t)Ω
d
ij .

The set Ωtmp,i(t) will take the place of the terminal set Γi in the optimal control prob-
lem. This temporary terminal set can be viewed as a generalization of the Barycen-
tric projection from discrete optimal transport theory that returns a deterministic
point-to-point assignment from a transport plan (where the transport plan may in
general split “mass”) [26, Remark 4.11]. In our case where the robust control in-
variant sets satisfy Ωd

ij = xd
j ⊕ Ωi with Ωi being convex, it is easy to show that

Ωtmp,i(t) = N
⊕N

j=1 Pij(t)(x
d
j ⊕ Ωi) =

(
N

∑N
j=1 Pij(t)x

d
j

)
⊕ Ωi = χtmp,i(t) ⊕ Ωi.

Since 0 ∈ Wi and hence 0 ∈ Ωi for all i, it holds that χtmp,i(t) ∈ Ωtmp,i(t) for all
i, and hence the target state χtmp,i(t) can be thought of as the “center” of the set
Ωtmp,i(t). In practice, the set Ωtmp,i(t) can be efficiently computed by shifting the
(fixed) set Ωi by χtmp,i(t), rather than performing the associated Minkowski sums.

3.1. Reach-Constrained Optimal Transport. In accordance with the above
temporary targets and terminal sets, we modify the optimal transport problem as
follows. First, in addition to the current agent states xi ∈ Rn, we assume that we
have predictions x̂i(Ti) ∈ Rn of where the agents could have been robustly steered to
from their previous states, within a time horizon Ti. These predictions will come from
past optimal control problems. Then, the modified optimal transport problem reads

(3.1)

(P ⋆, û⋆
1, . . . , û

⋆
N )

∈ OTPreach(x1, . . . , xN , x̂1(T1), . . . , x̂N (TN ))

:= argmin
P∈BN ,

û1∈Rm1 ,...,ûN∈RmN

∑N
i,j=1 Cij(xi)Pij

subject to ûi ∈ Ui ⊖ (KiR
Ti
i ), i ∈ {1, . . . , N},

(Aix̂i(Ti) +Biûi)⊕ ((Ai +BiKi)
TiWi)

⊆
(
N

⊕N
j=1 PijΩ

d
ij

)
⊖RTi

i , i ∈ {1, . . . , N}.

This problem has additional constraints when compared to (2.3), and therefore the op-
timal value of (3.1) upper-bounds that of (2.3) for all predictions x̂1(T1), . . . , x̂N (TN ):

Proposition 3.1. Let x1, . . . , xN , x̂1(T1), . . . , x̂N (TN ) ∈ Rn be arbitrary. If
(P, û1, . . . , ûN ) is feasible for OTPreach(x1, . . . , xN , x̂1(T1), . . . , x̂N (TN )), then P is
feasible for OTP(x1, . . . , xN ). Consequently,

Val(OTP(x1, . . . , xN )) ≤ Val(OTPreach(x1, . . . , xN , x̂1, . . . , x̂N )).

Intuitively, the added constraints ensure that the temporary terminal set
N

⊕N
j=1 PijΩ

d
ij generated by the transport plan P is one-step robustly reachable from

x̂i(Ti) (hence the subscript “reach” on the optimization problem). As we will show in
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Section 4, this in turn ensures (recursive) feasibility of the robust optimal control prob-
lems using the updated temporary terminal set at the next time step. In light of the
added reachability constraints, we call the above optimization the reach-constrained
optimal transport problem.

Notice that the reach-constrained optimal transport problem (3.1) is a (semi-
infinite) linear program, and as such has a convex feasible set. In general, semi-infinite
linear programs need not have polyhedral feasible sets. In the case that every Ki is
a deadbeat controller (meaning that (Ai +BiKi)

ki = 0 for some finite ki ∈ N ∪ {0}),
then the set of feasible reach-constrained transport plans does reduce to a polytope:

Proposition 3.2. If, for every i ∈ {1, . . . , N}, there exists ki ∈ N ∪ {0} such
that (Ai + BiKi)

ki = 0, then the feasible set of (3.1) is a polytope. In this case, the
reach-constrained optimal transport problem (3.1) is equivalent to a standard (finite-
dimensional) linear program.

Proof. Suppose that, for every i ∈ {1, . . . , N}, there exists ki ∈ N∪{0} such that

(Ai+BiKi)
ki = 0. Then Ωi =

⊕∞
j=0(Ai+BiKi)

jWi =
⊕ki−1

j=0 (Ai+BiKi)
jWi = Rki

i ,

and therefore Ωd
ij = xd

j ⊕ Ωi = xd
j ⊕ Rki

i . Therefore, the subset constraint in (3.1)
corresponding to agent i ∈ {1, . . . , N} reduces to

(Aix̂i(Ti) +Biûi)⊕ ((Ai +BiKi)
TiWi) ⊆

(
N

⊕N
j=1 Pij(x

d
j ⊕Rki

i )
)
⊖RTi

i .

This is equivalent to −N
∑N

j=1 Pijx
d
j +Biûi ∈ (−Aix̂i(Ti))⊕(Rki

i ⊖RTi+1
i ). Since Rki

i

and RTi+1
i are both polytopes, the above constraint on (P, û1, . . . , ûN ) is polyhedral.

Since every other constraint in (3.1) is also polyhedral, and since the feasible set is
clearly a subset of the polytope BN × U1 × · · · × UN , we conclude that the feasible
set of (3.1) is a polytope. Certainly, this further implies that (3.1) is equivalent to a
finite-dimensional linear program.

Even if the feedback controllers Ki are not deadbeat, there are a variety of ways
to reformulate (3.1) into equivalent finite-dimensional problems (both convex and
nonconvex) that are amenable to numerical computations. In practice, however, the
reformulations of the subset constraints in (3.1) should be done with care, for the
choice of reformulation can affect the solution quality of the transport plan. We dis-
cuss such computational considerations in Appendix B, and, in particular, we describe
a (nonconvex) bilinear reformulation of the subset constraints that we find to yield the
best balance between solution quality and overall efficiency of the proposed control
scheme in our numerical simulations. The recursive feasibility, recursive constraint
satisfaction, and stability of the overall control scheme (given in Section 4) still hold
even when using nonconvex reformulations of the reach-constrained optimal transport
problem, as their proofs rely solely on (robust) feasibility, rather than on global opti-
mality of the transport plan used by the system. As such, we only require finding a
feasible point of (3.1). However, in practice, this feasible point will be found through
(locally) minimizing the bilinear reformulation of the reach-constrained problem (3.1).

It is not immediately clear that the feasible set of (3.1) is nonempty, i.e., the
added constraints may have made the reach-constrained optimal transport problem
infeasible if there are no transport plans in the Birkhoff polytope that yield a robustly
one-step reachable temporary terminal set. However, we will show in Section 4 that
this problem inherits feasibility from the robust control invariance of the terminal sets
Ωd

ij , and furthermore that the optimal control problems inherit feasibility from these
added reachability constraints on the transport plan.
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Algorithm 3.1 ROT-MPC: Robust optimal transport MPC

input: targets xd
j , dynamics Ai, Bi, Xi, Ui, Wi, xi,0, control parameters Ti, Li, and

transport cost functions Cij : xi 7→ c(xi, x
d
j )

1: initialize xi(0) = xi,0 for all i

2: initialize x−1
i (Ti) :=

1
N

∑N
j=1 x

d
j + (Ai +BiKi)

Ti

(
xi,0 − 1

N

∑N
j=1 x

d
j

)
for all i

3: initialize P (−1) ∈ BN as non-permutation matrix
4: for times t ∈ N ∪ {0}:
5: if P (t− 1) is not a permutation matrix:
6: compute reach-constrained transport plan:

(P (t), û1(t), . . . , ûN (t))

∈ Feas
(
OTPreach(x1(t), . . . , xN (t),xt−1

1 (T1), . . . ,x
t−1
N (TN ))

)
7: for agents i ∈ {1, . . . , N}:
8: compute temporary target and terminal set:

χtmp,i(t) = N
∑N

j=1 Pij(t)x
d
j , Ωtmp,i(t) = χtmp,i(t)⊕ Ωi

9: compute optimal control trajectory (xt
i,u

t
i) ∈ OCPi(xi(t),Ωtmp,i(t))

10: set control input ui(t) = ut
i(0)

11: if P (t) is a permutation matrix:
12: set fixed transport plan start time t⋆ = t
13: else:
14: set fixed transport plan P (t) = P (t− 1)
15: for agents i ∈ {1, . . . , N}:
16: compute target index ji ∈ {1, . . . , N} such that Piji(t) = 1/N
17: if t− t⋆ < Ti:
18: set control input ui(t) = ut⋆

i (t− t⋆) +Ki(xi(t)− xt⋆

i (t− t⋆))
19: else:
20: set control input ui(t) = ud

iji
+Ki(xi(t)− xd

ji
)

21: update state xi(t+ 1) = Aixi(t) +Biui(t) + wi(t)

3.2. Summary of the Control Scheme. Overall, the proposed control
scheme, which we call ROT-MPC in short for “robust optimal transport MPC,” is
summarized in Algorithm 3.1.1 We remark the step where, once the (robustly fea-
sible) transport plan recovers a permutation, that plan and its subsequent optimal
control policies are no longer re-optimized. Then, once an agent i reaches its tar-
get set Ωtmp,i(t) that is generated by the permutation plan, that agent’s control law
switches to the simple and efficient static feedback control defined by Ki and the
equilibrium state-input pair, which robustly maintains agent i within their final tar-
get set for all subsequent time (cf., Theorem 4.10). This tri-mode control scheme can

1The initializations x−1
i (Ti) are chosen to reflect a Ti-step ahead prediction from the initial

condition under a sort of “average” unconstrained closed-loop control given by ui(t) =
1
N

∑d
j=1 u

d
ij+

Ki(xi(t) − 1
N

∑N
j=1 x

d
j ) generated by the target equilibria. Other initializations are possible, e.g.,

letting x−1
i (Ti) be a Ti-step ahead prediction that comes about from steering the system from xi,0

to the convex hull of
⋃d

j=1 Ω
d
ij via optimal control with robustified constraints. An open problem

for future research is to determine how these initializations can be chosen to ensure that the first
optimal transport problem is feasible.
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be thought of as having three phases: 1) alternating centralized transport planning
and decentralized policy optimization, 2) decentralized fixed-policy control to achieve
robust finite-time stability, and 3) decentralized static feedback control to robustly
maintain the distribution around the desired equilibrium distribution. Although the
second and third phases are not strictly necessary for feasibility or stability in practice,
they are key in rigorously proving stability, as those phases guarantee the absence of
“switching” behavior where an agent gets redirected towards a different target in the
state space after it has already stabilized near another target. Fixing the transport
plan at a robustly feasible permutation also aids with computational efficiency, as
the centralized reach-constrained optimal transport plan can be skipped entirely at
subsequent time steps, while maintaining feasibility.

4. Theoretical Analysis of ROT-MPC. In this section, we mathematically
analyze the properties of ROT-MPC. Specifically, we consider recursive feasibility in
Section 4.1, recursive constraint satisfaction and uniform boundedness in Section 4.2,
and stability in Section 4.3.

4.1. Recursive Feasibility. We begin our theoretical analysis of ROT-MPC by
showing that its optimization problems exhibit advantageous feasibility properties.

Definition 4.1. The system ROT-MPC is called recursively feasible if, for all
t ∈ N∪{0} for which P (t−1) is not a permutation matrix, it holds that OTPreach(x1(t+
1), . . . , xN (t + 1),xt

1(T1), . . . ,x
t
N (TN )) and every OCPi(xi(t + 1),Ωtmp,i(t + 1))

are feasible whenever OTPreach(x1(t), . . . , xN (t),xt−1
1 (T1), . . . ,x

t−1
N (TN )) and every

OCPi(xi(t),Ωtmp,i(t)) are feasible.

Note that if the optimization problems in ROT-MPC are feasible at the time
t⋆ where P (t) first becomes a permutation matrix, then clearly the remainder of
the algorithm (the “second” stage and the “third” stage, after the optimizations
terminate) is well-defined without any further concerns of feasibility. Therefore, one
really only needs to be concerned with recursive feasibility for times t leading up to
the computation of a permutation transport plan P (t⋆), as in Definition 4.1.

To establish the recursive feasibility of ROT-MPC, we will utilize the following
lemma ensuring that the temporary terminal sets always satisfy the state constraints:

Lemma 4.2. For all i ∈ {1, . . . , N} and all P ∈ BN , it holds that Ωtmp,i :=

N
⊕N

j=1 PijΩ
d
ij is a subset of Xi.

We now show that the reach-constrained optimal transport problem is always
feasible whenever the predictions x̂i(Ti) are known to be contained in robustified
“past” temporary terminal sets generated by a valid transport plan.

Proposition 4.3. Let T1, . . . , TN ∈ N and consider arbitrary states
x1, . . . , xN , x̂1(T1), . . . , x̂N (TN ) ∈ Rn. If there exists Q ∈ BN such that x̂i(Ti) ∈(
N

⊕N
j=1 QijΩ

d
ij

)
⊖ RTi

i for all i ∈ {1, . . . , N}, then (3.1) is feasible for some

(P, û1, . . . , ûN ) with P = Q.

Proof sketch. The Minkowski convex combination N
⊕N

j=1 QijΩ
d
ij is robust con-

trol invariant, and therefore, there exists a feasible input that maintains agent i within
this set when taking one step from x̂i(Ti)+wi, with wi ∈ RTi

i being some compounded
disturbance. This corresponds to satisfaction of the subset constraint in (3.1). We
explicitly identify such an input,

ûi = N
∑N

j=1 Qiju
d
ij +Ki

(
x̂i(Ti)−N

∑N
j=1 Qijx

d
j

)
,
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and show that it satisfies the tightened control constraint in (3.1). A complete proof
is deferred to Appendix A to streamline the flow of the article.

The following corollary shows that, if P (t) ∈ BN is a feasible transport plan for
the reach-constrained optimal transport problem at time t, then it is guaranteed to
remain feasible at the next time step when it is used to construct the temporary
targets and terminal sets:

Corollary 4.4. Consider the closed-loop dynamics of ROT-MPC at
some time t ∈ N ∪ {0}. If (P , û1, . . . , ûN ) is a feasible point for
OTPreach(x1(t), . . . , xN (t),xt−1

1 (T1), . . . ,x
t−1
N (TN )) and is used to define χtmp,i(t) =

N
∑N

j=1 Pij(t)x
d
j and Ωtmp,i(t) = χtmp,i(t) ⊕ Ωi with P (t) = P , and if every

OCPi(xi(t),Ωtmp,i(t)) is feasible, then (P , û′
1, . . . , û

′
N ) is feasible for OTPreach(x1(t+

1), . . . , xN (t+ 1),xt
1(T1), . . . ,x

t
N (TN )) for some û′

1 ∈ Rm1 , . . . , û′
N ∈ RmN .

Proof. It holds by the dynamics of ROT-MPC that xt
i(Ti) ∈

(
N

⊕N
j=1 P ijΩ

d
ij

)
⊖

RTi
i for all i ∈ {1, . . . , N}, and hence, by Proposition 4.3, (P , û′

1, . . . , û
′
N ) is feasible

for OTPreach(x1(t+ 1), . . . , xN (t+ 1),xt
1(T1), . . . ,x

t
N (TN )) for some û′

1, . . . , û
′
N .

Remark 4.5. There are two primary implications of Corollary 4.4. First, one may
decide to skip solving the reach-constrained optimal transport problem at any time
steps in the dynamics of ROT-MPC that they would like, so long as a previously
(robustly) feasible transport plan is used in the control problems. This clearly gives
rise to computational benefits, as the reach-constrained optimal transport problem
need not be solved at every time step. Second, if one would like to continue re-
optimizing the control policies at every time step after finding a permutation transport
plan, instead of fixing the control policies as is done in ROT-MPC, then the robustly
feasible permutation plan will continue to give rise to feasible control problems. This
may be desired in the case that minimizing control trajectory losses is more important
than the computational burdens of solving the optimal control problems. However,
we remark that this approach of re-optimizing the control policies (and hence never
entering the “third” stage of ROT-MPC) violates the assumptions of our stability
guarantees in Theorem 4.10.

The above properties give rise to our main feasibility result, i.e., recursive feasi-
bility of the closed-loop dynamics of ROT-MPC:

Theorem 4.6. The system ROT-MPC is recursively feasible.

Proof sketch. Based on the optimal control solution (xt
i,u

t
i) at time t, and the

input ûi(t + 1) that is feasible for the reach-constrained transport problem at time
t+ 1 (per Proposition 4.3), a candidate control trajectory is defined for time t+ 1:

(4.1)

xt+1
i (0) := xi(t+ 1),

ut+1
i (k) := ut

i(k + 1) +Ki(x
t+1
i (k)− xt

i(k + 1)), k ∈ {0, . . . , Ti − 2},
ut+1
i (Ti − 1) := ûi(t+ 1) +Ki(x

t+1(Ti − 1)− xt
i(Ti)),

xt+1
i (k + 1) := Aix

t+1
i (k) +Biu

t+1
i (k), k ∈ {0, . . . , Ti − 1}.

This candidate trajectory is shown to be feasible for the optimal control problem at
time t+1 by bounding its deviation from (xt

i,u
t
i) using the disturbance tube polytopes.

A complete proof is deferred to Appendix A to streamline the flow of the article.

4.2. Recursive Constraint Satisfaction. We now show that ROT-MPC en-
joys recursive constraint satisfaction, meaning that the closed-loop states and inputs
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always satisfy the constraints defined by Xi and Ui, even in the presence of the un-
certainty. This result, as well as our stability theory in Section 4.3, are rooted in the
following key lemma. The lemma amounts to combining ideas from the single-policy
disturbance invariant MPC scheme studied in [21] and the “growing” tube introduced
in [11]. The result shows that, once an agent begins following a fixed control policy
that robustly steers the disturbance-free system to the terminal set, the true dynamics
can be bounded within the growing tube surrounding the nominal trajectory:

Lemma 4.7. Consider a trajectory of the system ROT-MPC. Suppose that, for
some t⋆ ∈ N∪ {0}, the computed transport plan P (t⋆) ∈ BN is a permutation matrix,
and that P (t) is non-permutation for all t < t⋆. Then, for all agents i ∈ {1, . . . , N},
the following all hold:

1. xi(t) ∈ xt⋆

i (t− t⋆)⊕Rt−t⋆

i ⊆ Xi for all t ∈ {t⋆, . . . , t⋆ + Ti − 1},
2. ui(t) ∈ ut⋆

i (t− t⋆)⊕ (KiR
t−t⋆

i ) ∈ Ui for all t ∈ {t⋆, . . . , t⋆ + Ti − 1}, and
3. xi(t

⋆ + Ti) ∈ xt⋆

i (Ti)⊕RTi ⊆ Ωd
iji
,

where ji ∈ {1, . . . , N} is the unique target index for which Piji(t
⋆) = 1/N .

Proof. Let i ∈ {1, . . . , N} be arbitrary. We start by relating the true state xi(t)
to the nominal state xt⋆

i (t − t⋆) for times t ∈ {t⋆, . . . , t⋆ + Ti}, via induction on
t. It is clear that xi(t

⋆) = xt⋆

i (0) by the initial condition constraint in the optimal
control problem solved at time t⋆. At the subsequent time, we see that xi(t

⋆ + 1) =
Aixi(t

⋆) + Biui(t
⋆) + wi(t

⋆) = xt⋆

i (1) + wi(t
⋆), since xi(t

⋆) = xt⋆

i (0) and ui(t
⋆) =

ut⋆

i (0) + Ki

(
xi(t

⋆)− xt⋆

i (0)
)
= ut⋆

i (0). These relations constitute the base case for
induction. Now, suppose that t ∈ {t⋆, . . . , t⋆ + Ti − 1} is such that

(4.2) xi(t) = xt⋆

i (t− t⋆) +

t−t⋆−1∑
j=0

(Ai +BiKi)
jwi(t− j − 1),

which serves as the inductive hypothesis. Then, it holds that

xi(t+ 1)− xt⋆

i (t+ 1− t⋆)

= (Ai +BiKi)(xi(t)− xt⋆

i (t− t⋆)) + wi(t)

=

t−t⋆−1∑
j=0

(Ai +BiKi)
j+1wi(t− j − 1) + wi(t)

=

(t+1)−t⋆−1∑
j=0

(Ai +BiKi)
jwi((t+ 1)− j − 1),

which shows that (4.2) also holds at time t+ 1. Thus, by induction, it must be that
(4.2) holds for all t ∈ {t⋆, . . . , t⋆ + Ti}.

We now use the relation (4.2) to prove that the three enumerated claims hold.
The first is obvious from (4.2), since, for all t ∈ {t⋆, . . . , t⋆ + Ti − 1}, it holds that

t−t⋆−1∑
j=0

(Ai +BiKi)
jwi(t− j − 1) ∈

t−t⋆−1⊕
j=0

(Ai +BiKi)
jWi = Rt−t⋆

i ,

and since xt⋆

i (t− t⋆) ∈ Xi ⊖Rt−t⋆

i by the robustified state constraints in the optimal
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control problem at time t⋆. Next, we see for all such t that

ui(t) = ut⋆

i (t− t⋆) +Ki

t−t⋆−1∑
j=0

(Ai +BiKi)
jwi(t− j − 1)

∈ ut⋆

i (t− t⋆)⊕ (KiR
t−t⋆

i )

⊆ Ui,

where, again, the final subset inclusion follows from the fact that ut⋆

i (t − t⋆) ∈ Ui ⊖
(KiR

t−t⋆

i ) from the optimal control constraints. Thus, the second enumerated claim
holds. The final enumerated claim holds similarly:

xi(t
⋆ + Ti) = xt⋆

i (Ti) +

Ti−1∑
j=0

(Ai +BiKi)
jwi(t− j − 1) ∈ xt⋆

i (Ti)⊕RTi
i ⊆ Ωd

iji ,

where the final subset inclusion holds due to the robust terminal state constraint in
the optimal control problem at time t⋆, and the fact that P (t⋆) is a permutation
matrix and hence Ωtmp,i(t

⋆) = Ωd
iji

for some unique index ji ∈ {1, . . . , N} satisfying
Piji = 1/N .

Theorem 4.8. Assume that all of the initial optimization problems
OTPreach(x1(0), . . . , xN (0),x−1

1 (T1), . . . ,x
−1
N (TN )) and OCPi(xi(0),Ωtmp,i(0)) are

feasible, so that ROT-MPC is feasible at every time t ∈ N ∪ {0} per Theorem 4.6.
Then, for all i ∈ {1, . . . , N}, it holds that xi(t) ∈ Xi and ui(t) ∈ Ui for all t ∈ N∪{0}
for the closed-loop system ROT-MPC.

Proof sketch. At times t with P (t − 1) a non-permutation matrix, one can show
that xi(t) = xt−1

i + wi(t − 1) ∈ (Xi ⊖ R1
i ) ⊕ Wi ⊆ Xi and that ui(t) = ut

i(0) ∈
Ui ⊖ (KiR

0
i ) = Ui. At times t with P (t − 1) a permutation matrix, Lemma 4.7

gives that xi(t) ∈ Xi and ui(t) ∈ Ui if t < t⋆ + Ti, and otherwise xi(t) is in some
robust control invariant set Ωd

iji
⊆ Xi and thus the static feedback controller ui(t) =

ud
iji

+ Ki(xi(t) − xd
ji
) feasibly maintains the agent’s state to be within that set. A

complete proof is deferred to Appendix A to streamline exposition.

The recursive constraint satisfaction of Theorem 4.8 immediately implies uniform
boundedness of the closed-loop system within bounded state constraints:

Corollary 4.9. Assume that all of the initial optimization problems
OCPi(xi(0),Ωtmp,i(0)) and OTPreach(x1(0), . . . , xN (0),x−1

1 (T1), . . . ,x
−1
N (TN )) are

feasible. If every Xi is compact, then the closed-loop trajectory t 7→ (x1(t), . . . , xN (t))
of ROT-MPC is uniformly bounded in X1 × · · ·XN , meaning that ∥xi(t)∥2 ≤ Mi :=
maxx∈Xi

∥x∥2 < ∞ for all i ∈ {1, . . . , N} and all t ∈ N ∪ {0}.

4.3. Stability. We now turn to our main stability result: if ROT-MPC starts
off feasible and, at some time, a permutation transport plan is computed, then every
agent reaches, and stays within, its final target set in finite time.

Theorem 4.10. Assume that all of the initial optimization problems
OTPreach(x1(0), . . . , xN (0),x−1

1 (T1), . . . ,x
−1
N (TN )) and OCPi(xi(0),Ωtmp,i(0)) are

feasible, so that ROT-MPC is feasible at every time t ∈ N ∪ {0} per Theorem 4.6.
Furthermore, suppose that for some t⋆ ∈ N ∪ {0}, the computed transport plan
P (t⋆) ∈ BN is a permutation matrix, and that P (t) is non-permutation for all t < t⋆.



14 B. G. ANDERSON AND O. FRAUSTO

Then, for all agents i ∈ {1, . . . , N}, it holds that Ωd
iji

is robustly finite-time attractive,
meaning that

xi(t) ∈ Xi for all t ∈ N ∪ {0},
ui(t) ∈ Ui for all t ∈ N ∪ {0}, and

xi(t) ∈ Ωd
iji = xd

ji ⊕ Ωi for all t ∈ {t⋆ + Ti, t
⋆ + Ti + 1, . . . },

where ji ∈ {1, . . . , N} is the unique target index for which Piji(t
⋆) = 1/N .

Proof. First, the constraint satisfactions xi(t) ∈ Xi and ui(t) ∈ Ui for all t ∈
N∪{0} follow immediately from Theorem 4.8. Next, Lemma 4.7 gives that xi(t

⋆+Ti) ∈
Ωd

iji
. At this time and subsequent times, the control input becomes the static feedback

control ui(t) = ud
iji

+Ki

(
xi(t)− xd

ji

)
. If t ∈ {t⋆+Ti, t

⋆+Ti+1, . . . } and xi(t) ∈ Ωd
iji
,

then xi(t) = xd
ji
+ ωi(t) for some ωi(t) ∈ Ωi and hence

xi(t+ 1) = Ai(x
d
ji + ωi(t)) +Bi(u

d
iji +Kiωi(t)) + wi(t)

= xd
ji + (Ai +BiKi)ωi(t) + wi(t),

which shows that xi(t+ 1) ∈ xd
ji
⊕ (((Ai +BiKi)Ωi)⊕Wi) ⊆ xd

ji
⊕ Ωi = Ωd

iji
. Thus,

by induction, it holds that xi(t) ∈ Ωd
iji

for all t ∈ {t⋆ + Ti, t
⋆ + Ti + 1, . . . }.

Remark 4.11. We find in our simulations (Section 5) that the reach-constrained
transport problem typically returns a permutation transport plan at either the first or
second time step of the control scheme. Therefore, the assumption in Theorem 4.10 of
computing a permutation transport plan appears mild, in practice. Indeed, sufficiently
long optimal control time horizons and sufficiently lax input constraint sets Ui both
increase the likelihood of a permutation transport plan becoming feasible.

5. Numerical Simulations. In this section, we test ROT-MPC on three dis-
tribution steering tasks. We consider a homogeneous population of agents, all having
the discrete-time dynamics considered in [18]:

Ai =

[
1.04 0.026
−0.01 1.02

]
, Bi = 0.02I2, i ∈ {1, . . . , N}.

The open-loop agent dynamics are naturally unstable, as Ai has two complex eigen-
values outside of the unit circle. We subject every agent to the state constraints
defined by Xi = [−2, 2]2, i ∈ {1, . . . , N}, and we consider various input constraints
and uncertainty bounds in each of the three tasks. In all tasks, the uncertainty at
each time step is a random vertex of the uncertainty polytope Wi. To ensure a fair
comparison between the three methods tested (the baselines are described below),
the actual sequences of realized uncertainties, wi(t), are made the same for all three
control schemes. All three methods are simulated for Tsim = 40 time steps on every
task. Additional details regarding the simulation setup, as well as the implementation
of ROT-MPC and the baselines, are provided in Appendix B.

Baselines. On all three tasks, we compare ROT-MPC against the baseline
“Sinkhorn MPC,” introduced in [16, 18]. Sinkhorn MPC is the closest related tech-
nique to ROT-MPC, as it also performs distribution steering by alternating between
optimal transport updates for target assignment, and agent-wise optimal control steps
for determining how to steer each agent to the updated target. However, Sinkhorn
MPC is not designed to explicitly handle uncertainties, and as such has no guarantees
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of feasibility, constraint satisfaction, or stability, in such uncertain cases. Sinkhorn
MPC sets the optimal transport cost Cij equal to the optimal control cost of steering
agent i to target j (with non-robust state and input constraints). As such, it requires
solving N2 optimal control problems at every time step in order to update the targets.

The first task (described below) is small-scale, allowing us to also compare ROT-
MPC against a centralized robust MPC control scheme. The centralized MPC scheme
simultaneously optimizes the transport plan and all of the agent-wise controls at every
time step by solving the following problem:

min
P permutation

min
(x1(0),...,x1(T1)),

(u1(0),...,u1(T1−1)),...
(xN (0),...,xN (TN )),

(uN (0),...,uN (TN−1))

∑N
i=1 Li(xi(0), . . . , xi(Ti), ui(0), . . . , ui(Ti − 1))

subject to xi(0) = xi(t) for all i,
xi(k + 1) = Aix(k) +Biu(k) for all i, k,
xi(k) ∈ Xi ⊖Rk

i for all i, k,
ui(k) ∈ Ui ⊖ (KiR

k
i ) for all i, k,

xi(Ti) ∈
(
N

⊕N
j=1 PijΩ

d
ij

)
⊖RTi

i for all i.

Here, the optimization variables are P ∈ BN , xi(k) ∈ Rn, and ui(k) ∈ Rmi , where the
variables and constraint indices range over k ∈ {0, . . . , Ti − 1} and i ∈ {1, . . . , N}. At
every time t, every agent i applies its associated optimal input ui(0) from the solution
to the above centralized optimization problem. Since the number of permutation
matrices P ∈ BN is N !, this centralized MPC scheme quickly becomes intractable at
moderate population sizes N .

Performance Metrics. Since the three methods tested utilize different loss
functions in their optimization problems, we choose to measure performance using
the following method-agnostic metrics:

ℓstate :=
1

Tsim + 1

Tsim∑
t=0

1

N

N∑
i=1

min
j∈{1,...,N}

∥xi(t)− xd
j∥2,

ℓinput :=
1

Tsim

Tsim−1∑
t=0

1

N

N∑
i=1

∥ui(t)∥22.

The value ℓstate quantifies the average deviation of the agents’ states from their near-
est targets, over the course of the simulation. Low values of ℓstate indicate that the
method works well at steering the population towards the target distribution quickly
and maintaining it there. The value ℓinput quantifies the average control energy ex-
penditure throughout the simulation.

We also compare the speed of convergence to the target distribution by computing

Ttarget := inf
{
t ∈ N ∪ {0} : xi(t) ∈ Ωd

iji for all i ∈ {1, . . . , N}
}
,

which is the first time at which every agent is within their terminal invariant set Ωd
iji
.

The index ji denotes the index of the target state to which agent i is assigned by the
end of the simulation. If at least one agent never enters its associated terminal set
Ωd

iji
, then Ttarget = ∞, indicating that convergence to the target distribution has not

been achieved. We still compute this metric for Sinkhorn MPC using the invariant
sets Ωd

ij constructed in Section 2.3, even though it is not guaranteed that the agents
will remain in such sets under the Sinkhorn MPC control scheme.
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Task 1: Small-Scale Comparison to Centralized Robust MPC. In this
task, we consider N = 3 agents, initialized uniformly at random within the region
[−2,−1]2. The target states are xd

1 = (1, 0), xd
2 = (0, 1), and xd

3 = (1, 1). For all
i ∈ {1, . . . , N}, the inputs are constrained by Ui = [−20, 20]2 and the disturbance
polytope is Wi = [−0.1, 0.1]2. All three methods utilize control time horizons of
Ti = 10 time steps for every agent.

The agent trajectories for ROT-MPC, Sinkhorn MPC, and centralized MPC are
shown in Figure 1. All three methods are seen to eventually stabilize the popula-
tion around the target distribution. However, Sinkhorn MPC exhibits “switching”
behavior, where some agents are redirected to a different target states after they have
already reached the vicinity of another state. Fixing the transport plan, once a feasi-
ble permutation has been found, avoids this issue, as illustrated in the trajectories of
ROT-MPC. This also aids with computation speeds; even though Sinkhorn MPC en-
joys much faster optimal control solve times (0.005 seconds versus 0.274 seconds) and
transport plan update times (0.066 seconds versus 0.452 seconds) than ROT-MPC,
the continued re-optimization at every time step eventually causes the entire task to
take longer for Sinkhorn MPC, as tabulated in Table 1. The performance of ROT-
MPC is qualitatively near-identical to centralized MPC, which can be considered as
the optimal baseline due to its simultaneous optimization over transport plans and all
of the control sequences. As shown in Table 1, the quantitative performance is very
similar as well, with nearly equal state and input performance metric values, both of
which outperform Sinkhorn MPC.

Table 1
Performance of the various methods on Tasks 1, 2, and 3. Compute time is the total time

taken to complete the simulation. Best values on a given task are bold.

Simulation ℓstate ℓinput Ttarget Compute time (seconds)

Task 1: ROT-MPC 0.389 113.953 8 2.131
Task 1: Sinkhorn MPC 0.456 124.257 24 3.329
Task 1: Centralized MPC 0.388 114.299 8 388.083

Task 2: ROT-MPC 0.133 31.058 9 81.395
Task 2: Sinkhorn MPC 0.155 82.508 26 38.655

Task 3: ROT-MPC 0.261 48.691 9 19.805
Task 3: Sinkhorn MPC 1.013 174.018 ∞ 170.530

Task 2: Scalability to Larger Populations. In this task, we test the perfor-
mance of ROT-MPC and Sinkhorn MPC with an increased population size of N = 12.
The initial states are chosen uniformly at random from [−0.25, 0.25]2, shifted by either
(1, 1), (−1, 1), (−1,−1), or (1,−1). The target states are arranged in a uniform grid
on the line segment {(x, y) ∈ R2 : x = 0, y ∈ [−1.75, 1.75]}. For all i ∈ {1, . . . , N}, we
use the same input constraints as in Task 1, namely, Ui = [−20, 20]2, but we shrink
the disturbance polytopes to Wi = [−0.05, 0.05]2. The time horizon is again chosen
as Ti = 10 time steps for every agent.

The agent trajectories for ROT-MPC and Sinkhorn MPC are shown in Figure 2.
Both methods eventually solve the steering task. However, ROT-MPC is seen to yield
much more “practical” trajectories than Sinkhorn MPC, which appears to send agents
to targets much further away than is necessary. This suboptimality in the transport
planning is likely due to ROT-MPC solving the (reach-constrained) transport problem
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Fig. 1. Agent trajectories for Task 1. Black circles indicate initial states and crosses indicate
target states. Grey regions are the terminal invariant sets Ωd

iji
for the two methods with robustness

guarantees (ROT-MPC and centralized MPC). The red hatched region is the “unsafe” set Rn \Xi.

to optimality, whereas Sinkhorn MPC’s transport plans may try to “hold on” to the
initialization used by the Sinkhorn algorithm. Interesting to note is that, since the
targets are quite close together and Sinkhorn MPC makes no guarantees that the
agents will remain within terminal regions surrounding their associated target states,
the agents appear to move somewhat freely between the targets, along the line segment
{(x, y) ∈ R2 : x = 0, y ∈ [−1.75, 1.75]}, due to the disturbances faced by Sinkhorn
MPC. For instance, the pink agent is seen to reach the third-from-top target, but
then meander down to the fourth-from-bottom target. Contrarily, the agents perfectly
remain within their associated terminal invariant sets under ROT-MPC. As seen in
Table 1, ROT-MPC is seen to quantitatively outperform Sinkhorn MPC in all metrics
on this task, except the overall compute time.

Task 3: Resilience to Tighter Constraints and Shorter Horizon. In this
task, we test how ROT-MPC and Sinkhorn MPC adapt when the task becomes more
difficult, with more stringent constraints. We consider N = 10 agents, with initial
states positioned on a circle of radius 0.25, and target states positioned on a circle
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Fig. 2. Agent trajectories for Task 2. Black circles indicate initial states and crosses indicate
target states. Grey regions are the terminal invariant sets Ωd

iji
for ROT-MPC. The red hatched

region is the “unsafe” set Rn \Xi.

of radius 1.75. For all i ∈ {1, . . . , N}, the input constraints are halved, to Ui =
[−10, 10]2, and the uncertainties are set back to the larger disturbances from Task 1:
Wi = [−0.1, 0.1]2. In addition to the tightened input constraints, the optimal control
time horizon is reduced to Ti = 4 time steps for every agent.

The agent trajectories are shown in Figure 3. Note that the geometry of the
targets makes this task have little room for error, as some of the targets are very
close to the boundary of the constraint set Xi. It is clear that ROT-MPC successfully
solves the steering task, whereas Sinkhorn MPC fails entirely, highlighting the capacity
that ROT-MPC has to handle difficult, highly constrained tasks in the presence of
uncertainties. Quantitative performance metrics are reported in Table 1.
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Fig. 3. Agent trajectories for Task 3. Black circles indicate initial states and crosses indicate
target states. Grey regions are the terminal invariant sets Ωd

iji
for ROT-MPC. The red hatched

region is the “unsafe” set Rn \Xi.
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6. Conclusions. In this article, we introduce ROT-MPC, a method for robustly
steering a distribution of decoupled discrete-time dynamical agents in the presence
of bounded uncertainty. We prove that a reach-constrained modification to the op-
timal transport problem results in the closed-loop system inheriting recursive feasi-
bility, recursive constraint satisfaction, and robust finite-time attraction of terminal
invariant sets in the practical situation in which the transport problem returns a per-
mutation matrix. Our numerical simulations demonstrate that ROT-MPC generally
outperforms baseline optimal transport-based steering techniques, yielding more in-
terpretable agent trajectories, and stabilizing the system to the target distribution
even in cases where the baselines fail.

A handful of directions for future research remain. First, the reach-constrained
optimal transport problem may pose a practical hurdle in cases where the centralized
computation capacity is significantly limited. As such, there is a need to develop and
analyze efficient algorithms that are specifically tailored to solving, or even finding
a feasible point of, the reach-constrained transport problem. A specific approach of
interest is to modify the classical Sinkhorn algorithm in order to provide feasible reach-
constrained transport plans. A second interesting direction for future research is to
consider continuous-time and continuous-distribution generalizations of the task and
methods studied in this article. Finally, incorporating agent-wise collision constraints
into the problem setting poses an important challenge to solve in order to ensure safe
deployment in practice.

Appendix A. Deferred Proofs.

Proposition 2.9. Let i, j ∈ {1, . . . , N}. It holds that Ωd
ij := xd

j ⊕ Ωi is a robust
control invariant set for (Ai, Bi) subject to (Xi, Ui,Wi).

Proof of Proposition 2.9. Let xij ∈ Ωd
ij and define uij = ud

ij + Ki(xij − xd
j ).

Then xij = xd
j + ωi and uij = ud

ij +Kiωi for some ωi ∈ Ωi. Since xd
j ∈ Xi ⊖ Ωi by

Assumption 2.7, it holds that xij = xd
j+ωi ∈ xd

j⊕Ωi ⊆ Xi, and since ud
ij ∈ Ui⊖(KiΩi)

by Assumption 2.7, it holds that uij = ud
ij + Kiωi ∈ ud

ij ⊕ (KiΩi) ⊆ Ui. By the
disturbance invariance of Ωi, we have that Aixij +Biuij +wi = (Ai+BiKi)ωi+wi+
xd
j ∈ xd

j ⊕ ((Ai +BiKi)Ωi ⊕Wi) ⊆ xd
j ⊕ Ωi for all wi ∈ Wi.

Proposition 3.1. Let x1, . . . , xN , x̂1(T1), . . . , x̂N (TN ) ∈ Rn be arbitrary. If
(P, û1, . . . , ûN ) is feasible for OTPreach(x1, . . . , xN , x̂1(T1), . . . , x̂N (TN )), then P is
feasible for OTP(x1, . . . , xN ). Consequently,

Val(OTP(x1, . . . , xN )) ≤ Val(OTPreach(x1, . . . , xN , x̂1, . . . , x̂N )).

Proof of Proposition 3.1. The proof is obvious from the fact that the reach-
constrained optimal transport problem includes the constraints of the standard opti-
mal transport problem.

Lemma 4.2. For all i ∈ {1, . . . , N} and all P ∈ BN , it holds that Ωtmp,i :=

N
⊕N

j=1 PijΩ
d
ij is a subset of Xi.

Proof of Lemma 4.2. Let i ∈ {1, . . . , N} and P ∈ BN . Suppose that xi ∈ Ωtmp,i,

so that xi = ωi + N
∑N

j=1 Pijx
d
j for some ωi ∈ Ωi. Since N

∑N
j=1 Pij = 1, we have

that xi =
∑N

j=1
1
N Pij(x

d
j + ωi). By Assumption 2.7, it holds that xd

j + ωi ∈ Xi, and
therefore since Xi is convex, we conclude that xi ∈ Xi, which completes the proof.

Proposition 4.3. Let T1, . . . , TN ∈ N and consider arbitrary states
x1, . . . , xN , x̂1(T1), . . . , x̂N (TN ) ∈ Rn. If there exists Q ∈ BN such that x̂i(Ti) ∈
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N

⊕N
j=1 QijΩ

d
ij

)
⊖ RTi

i for all i ∈ {1, . . . , N}, then (3.1) is feasible for some

(P, û1, . . . , ûN ) with P = Q.

Proof of Proposition 4.3. Suppose that there exists Q ∈ BN such that x̂i(Ti) ∈(
N

⊕N
j=1 QijΩ

d
ij

)
⊖RTi

i for all i ∈ {1, . . . , N}. It suffices to show that (P, û1, . . . , ûN )

with P = Q and

ûi = N
∑N

j=1 Qiju
d
ij +Ki

(
x̂i(Ti)−N

∑N
j=1 Qijx

d
j

)
, i ∈ {1, . . . , N},

is feasible for (3.1). First, it it obvious that P ∈ BN since Q ∈ BN .

Next, let i ∈ {1, . . . , N} be arbitrary. Since x̂i(Ti) ∈
(
N

⊕N
j=1 QijΩ

d
ij

)
⊖ RTi

i =((
N

∑N
j=1 Qijx

d
j

)
⊕ Ωi

)
⊖RTi

i , it holds that x̂i(Ti)+wi ∈
(
N

∑N
j=1 Qijx

d
j

)
⊕Ωi for

all wi ∈ RTi
i , and therefore

(A.1) x̂i(Ti) + wi −N
N∑
j=1

Qijx
d
j ∈ Ωi for all wi ∈ RTi

i .

Since, for all j ∈ {1, . . . , N}, it holds that ud
ij ⊕ (KiΩi) ⊆ Ui by Assumption 2.7,

this gives that ud
ij +Ki

(
x̂i(Ti) + wi −N

∑N
j=1 Qijx

d
j

)
∈ Ui for all wi ∈ RTi

i and all

j ∈ {1, . . . , N}. By convexity of Ui and the fact that Q ∈ BN , this yields that

ûi +Kiwi = N
∑N

j=1 Qij

(
ud
ij +Ki

(
x̂i(Ti) + wi −N

∑N
l=1 Qilx

d
l

))
∈ Ui

for all wi ∈ RTi
i . Thus, we find that the first added constraint in (3.1) is satisfied,

namely, that ûi ∈ Ui ⊖ (KiR
Ti
i ).

Finally, let i ∈ {1, . . . , N} and w0, . . . , wTi ∈ Wi be arbitrary. Then, it holds that

(A.2)

Aix̂i(Ti) +Biûi

+ (Ai +BiKi)
TiwTi + (Ai +BiKi)

Ti−1wTi−1 + · · ·+ w0 −N
∑N

j=1 Qijx
d
j

= (Ai +BiKi)

(
x̂i(Ti)−N

∑N
j=1 Qijx

d
j

+ (Ai +BiKi)
Ti−1wTi

+ (Ai +BiKi)
Ti−2wTi−1 + · · ·+ w1

)
+ w0 +N

∑N
j=1 Qij(Aix

d
j +Biu

d
ij − xd

j ).

Now, we have that Aix
d
j + Biu

d
ij − xd

j = 0 for all j ∈ {1, . . . , N}, and furthermore,

since (Ai +BiKi)
Ti−1wTi

+ (Ai +BiKi)
Ti−2wTi−1 + · · ·+w1 ∈ RTi

i , (A.1) gives that

x̂i(Ti)−N

N∑
j=1

Qijx
d
j + (Ai +BiKi)

Ti−1wTi
+ (Ai +BiKi)

Ti−2wTi−1 + · · ·+w1 ∈ Ωi.

Since Ωi is a disturbance invariant set for (Ai, Bi) under Ki subject to Wi and w0 ∈
Wi, we conclude from (A.2) that

Aix̂i(Ti) +Biûi

+ (Ai +BiKi)
TiwTi

+ (Ai +BiKi)
Ti−1wTi−1 + · · ·+ w0 −N

N∑
j=1

Qijx
d
j ∈ Ωi.



ROBUST OPTIMAL TRANSPORT MPC 21

Since w0, . . . , wTi
∈ Wi are arbitrary and hence (Ai + BiKi)

Ti−1wTi−1 + · · · + w0 ∈⊕Ti−1
j=0 (Ai+BiKi)

jWi = RTi
i is arbitrary, this proves that (Aix̂i(Ti)+Biûi)⊕ ((Ai+

BiKi)
TiWi) ⊆

((
N

∑N
j=1 Qijx

d
j

)
⊕ Ωi

)
⊖RTi

i =
(
N

⊕N
j=1 QijΩ

d
ij

)
⊖RTi

i , and hence

the final added constraint in (3.1) is satisfied. This concludes the proof.

Theorem 4.6. The system ROT-MPC is recursively feasible.

Proof of Theorem 4.6. Let t ∈ N∪ {0} and assume that P (t− 1) is not a permu-
tation matrix. Suppose that

OTPreach(x1(t), . . . , xN (t),xt−1
1 (T1), . . . ,x

t−1
N (TN ))

and every OCPi(xi(t),Ωtmp,i(t)) are feasible. Let (P (t), û1(t), . . . , ûN (t)) denote the
feasible point of the reach-constrained optimal transport problem that is used to
define χtmp,i(t) and Ωtmp,i(t) for every agent i, as in ROT-MPC. Recall that the
optimal control problem (2.2) is attained whenever it is feasible. Thus, let (xt

i,u
t
i) be

a minimizer of OCPi(xi(t),Ωtmp,i(t)) for all i ∈ {1, . . . , N}, and let ui(t) = ut
i(0) be

the corresponding control for agent i as in ROT-MPC.
The feasibility of OTPreach(x1(t + 1), . . . , xN (t + 1),xt

1(T1), . . . ,x
t
N (TN )) imme-

diately follows from Proposition 4.3 using the fact that xt
i(Ti) ∈ Ωtmp,i(t) ⊖ RTi

i =(
N

⊕N
j=1 Pij(t)Ωj

)
⊖ RTi

i for all i ∈ {1, . . . , N}, in light of the optimal control con-

straints at time t. Let (P (t+1), û1(t+1), . . . , ûN (t+1)) be such a feasible point, and
let χtmp,i(t+1) and Ωtmp,i(t+1) respectively be the corresponding temporary target
state and terminal set for agent i as in ROT-MPC.

We must now show that OCPi(xi(t + 1),Ωtmp,i(t + 1)) is feasible for all i ∈
{1, . . . , N}. To this end, let i ∈ {1, . . . , N}. Define xt+1

i = (xt+1
i (0), . . . ,xt+1

i (Ti)) ∈
(Rn)Ti+1 and ut+1

i = (ut+1
i (0), . . . ,ut+1

i (Ti − 1)) ∈ (Rmi)Ti by (4.1). We claim that
(xt+1

i ,ut+1
i ) is feasible for OCPi(xi(t+ 1),Ωtmp,i(t+ 1)), which we now prove.

Clearly, the dynamics constraint xt+1
i (k + 1) = Aix

t+1
i (k) + Biu

t+1
i (k) holds for

all k ∈ {0, . . . , Ti − 1} by construction. Similarly, the initial condition constraint
xt+1
i (0) = xi(t+ 1) holds by construction. Thus, all that remains to show is that the

robust state, input, and terminal set constraints hold.
State constraints. It holds that xt+1

i (0) = xi(t+1) = Aixi(t) +Biui(t) +wi(t) =
Aix

t
i(0) +Biu

t
i(0) + wi(t) = xt

i(1) + wi(t), and

xt+1
i (k + 1) = Aix

t+1
i (k) +Biu

t
i(k + 1) +BiKi(x

t+1
i (k)− xt

i(k + 1))

= (Ai +BiKi)(x
t+1
i (k)− xt

i(k + 1)) + xt
i(k + 2),

for all k ∈ {0, . . . , Ti − 2}, and hence

(A.3)
xt+1
i (k) = xt

i(k + 1) + (Ai +BiKi)
k(xt+1

i (0)− xt
i(1))

= xt
i(k + 1) + (Ai +BiKi)

kwi(t)

for all k ∈ {0, . . . , Ti − 1}. Since xt
i(k+1) ∈ Xi ⊖Rk+1

i for all k ∈ {0, . . . , Ti − 2} and

xt
i(Ti) ∈ Ωtmp,i(t)⊖RTi

i ⊆ Xi ⊖RTi
i (as Ωtmp,i(t) ⊆ Xi by Lemma 4.2), we find from

(A.3) that

xt+1
i (k) ∈ (Xi ⊖Rk+1

i )⊕ ((Ai +BiKi)
kWi)

= (Xi ⊖ (Rk
i ⊕ ((Ai +BiKi)

kWi)))⊕ ((Ai +BiKi)
kWi)

⊆ Xi ⊖Rk
i

for all k ∈ {0, . . . , Ti − 1}. Hence, the robust state constraints are satisfied.
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Input constraints. From (A.3), it holds that ut+1
i (k) = ut

i(k + 1) +Ki(x
t+1
i (k)−

xt
i(k + 1)) = ut

i(k + 1) + Ki(Ai + BiKi)
kwi(t) for all k ∈ {0, . . . , Ti − 2}. Since

ut
i(k + 1) ∈ Ui ⊖ (KiR

k+1
i ) for all k ∈ {0, . . . , Ti − 2}, we find that

ut+1
i (k) ∈ (Ui ⊖ (KiR

k+1
i ))⊕ (Ki(Ai +BiKi)

kWi)

= (Ui ⊖ (Ki(R
k
i ⊕ ((Ai +BiKi)

kWi))))⊕ (Ki(Ai +BiKi)
kWi)

= (Ui ⊖ ((KiR
k
i )⊕ (Ki(Ai +BiKi)

kWi)))⊕ (Ki(Ai +BiKi)
kWi)

⊆ Ui ⊖ (KiR
k
i )

for all k ∈ {0, . . . , Ti − 2}. Since (P (t + 1), û1(t + 1), . . . , ûN (t + 1)) is feasible for
OTPreach(x1(t + 1), . . . , xN (t + 1),xt

1(T1), . . . ,x
t
N (TN )), we have that ûi(t + 1) ∈

Ui⊖ (KiR
Ti
i ), and therefore using the same line of analysis as above together with the

fact that ut+1
i (Ti−1) = ûi(t+1)+Ki(x

t+1
i (Ti−1)−xt

i(Ti)) yields that u
t+1
i (Ti−1) ∈

Ui ⊖ (KiR
Ti−1
i ). Hence, the robust input constraints are satisfied.

Terminal set constraint. Employing (A.3) once again, we find that

xt+1
i (Ti) = Aix

t+1
i (Ti − 1) +Biu

t+1
i (Ti − 1)

= Aix
t+1
i (Ti − 1) +Biûi(t+ 1) +BiKi(x

t+1
i (Ti − 1)− xt

i(Ti))

= (Ai +BiKi)(x
t+1
i (Ti − 1)− xt

i(Ti)) +Aix
t
i(Ti) +Biûi(t+ 1)

= (Ai +BiKi)
Tiwi(t) +Aix

t
i(Ti) +Biûi(t+ 1)

∈ (Aix
t
i(Ti) +Biûi(t+ 1))⊕ ((Ai +BiKi)

TiWi)

⊆
(
N

⊕N
j=1 Pij(t+ 1)Ωd

ij

)
⊖RTi

i

= Ωtmp,i(t+ 1)⊖RTi
i ,

where the final inclusion and final equality come from the fact that (P (t+ 1), û1(t+
1), . . . , ûN (t+1)) is feasible for OTPreach(x1(t+1), . . . , xN (t+1),xt

1(T1), . . . ,x
t
N (TN )).

Thus, the robust terminal set constraint is satisfied.

Theorem 4.8. Assume that all of the initial optimization problems
OTPreach(x1(0), . . . , xN (0),x−1

1 (T1), . . . ,x
−1
N (TN )) and OCPi(xi(0),Ωtmp,i(0)) are

feasible, so that ROT-MPC is feasible at every time t ∈ N ∪ {0} per Theorem 4.6.
Then, for all i ∈ {1, . . . , N}, it holds that xi(t) ∈ Xi and ui(t) ∈ Ui for all t ∈ N∪{0}
for the closed-loop system ROT-MPC.

Proof of Theorem 4.8. Let i ∈ {1, . . . , N} and let t ∈ N∪{0}. If t = 0, then triv-
ially we have that xi(t) = xi(0) = xi,0 ∈ Xi, and by feasibility and hence attainment
of OCPi(xi(0),Ωtmp,i(0)), there exists (x0

i ,u
0
i ) solving OCPi(xi(0),Ωtmp,i(0)). By

the dynamics of ROT-MPC and the input constraints, we find that ui(t) = u0
i (0) ∈

Ui ⊖ (KiR
0
i ) = Ui ⊖ {0} = Ui.

On the other hand, suppose that t > 0. As a first case, suppose that P (t − 1)
is not a permutation matrix. By Theorem 4.6, we have that both control prob-
lems OCPi(xi(t− 1),Ωtmp,i(t− 1)) and OCPi(xi(t),Ωtmp,i(t)) are feasible, and hence
attained. Let (xt−1

i ,ut−1
i ) and (xt

i,u
t
i) be solutions to these control problems, respec-
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tively. By the dynamics of ROT-MPC and the state constraints, we find that

xi(t) = Aixi(t− 1) +Biui(t− 1) + wi(t− 1)

= Aix
t−1
i (0) +Biu

t−1
i (0) + wi(t− 1)

= xt−1
i (1) + wi(t− 1)

∈ (Xi ⊖R1
i )⊕Wi

= (Xi ⊖Wi)⊕Wi

⊆ Xi.

Furthermore, by the dynamics of ROT-MPC and the input constraints, we find that
ui(t) = ut

i(0) ∈ Ui ⊖ (KiR
0
i ) = Ui ⊖ {0} = Ui.

As a second case, suppose that t > 0 is such that P (t − 1) is a permutation
matrix. Then, there exists t⋆ ∈ N∪{0} such that P (t⋆) is a permutation matrix, and
P (t′) is non-permutation for all t′ < t⋆. It is necessarily the case for the time under
consideration that t ≥ t⋆. Consider the solution (xt⋆

i ,ut⋆

i ) to the control problem
OCPi(xi(t

⋆),Ωtmp,i(t
⋆)). If t < t⋆ + Ti, then xi(t) ∈ Xi and ui(t) ∈ Ui follows

directly from Lemma 4.7. To show that the constraints hold when t ≥ t⋆ + Ti (and
therefore complete the proof), note that we have by Lemma 4.7 that xi(t

⋆+Ti) ∈ Ωd
iji
,

implying that xi(t
⋆ + Ti) ∈ Xi. Suppose that t ≥ t⋆ + Ti and that xi(t) ∈ Ωd

iji
(as is

the case for t = t⋆ + Ti). Then, it holds that xi(t) = xd
ji
+ ωi(t) for some ωi(t) ∈ Ωi.

Therefore, the dynamics of ROT-MPC give that

ui(t) = ud
iji +Kiωi(t) ∈ ud

iji ⊕ (KiΩi) ⊆ Ui

per Assumption 2.7, and furthermore that

xi(t+ 1) = Aixi(t) +Bi(u
d
iji +Ki(xi(t)− xd

ji)) + wi(t)

= (Ai +BiKi)xi(t) + wi(t) +Biu
d
iji −BiKix

d
ji

= (Ai +BiKi)xi(t) + wi(t) + xd
ji −Aix

d
ji −BiKix

d
ji

= xd
ji + (Ai +BiKi)(xi(t)− xd

ji) + wi(t),

implying that xi(t + 1) ∈ xd
ji
⊕ (((Ai + BiKi)Ωi) ⊕ Wi) ⊆ xd

ji
⊕ Ωi = Ωd

iji
, further

implying that xi(t + 1) ∈ Xi. This proves that the constraint satisfactions hold for
all cases of t, i.e., xi(t) ∈ Xi and ui(t) ∈ Ui for all t ∈ N ∪ {0}.

Corollary 4.9. Assume that all of the initial optimization problems
OCPi(xi(0),Ωtmp,i(0)) and OTPreach(x1(0), . . . , xN (0),x−1

1 (T1), . . . ,x
−1
N (TN )) are

feasible. If every Xi is compact, then the closed-loop trajectory t 7→ (x1(t), . . . , xN (t))
of ROT-MPC is uniformly bounded in X1 × · · ·XN , meaning that ∥xi(t)∥2 ≤ Mi :=
maxx∈Xi ∥x∥2 < ∞ for all i ∈ {1, . . . , N} and all t ∈ N ∪ {0}.

Proof of Corollary 4.9. This follows immediately from the fact that xi(t) is an
element of the compact set Xi for all i ∈ {1, . . . , N} and all t ∈ N ∪ {0}, due to
Theorem 4.8.

Appendix B. Additional Implementation Details.
Simulations are conducted with a 2020 Macbook Air M1, Python 3.9.19, NumPy

1.23.2, and SciPy 1.9.1. Polytope computations are carried out by the pytope package,
and the optimization problems are solved using scipy.optimize.minimize.
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All optimal control loss functions are defined by

Li(x(0), . . . , x(Ti), u(0), . . . , u(Ti − 1))

=

Ti∑
k=0

(x(k)− xref(k))
⊤Q(x(k)− xref(k)) +

Ti−1∑
k=0

(u(k)− uref(k))
⊤R(u(k)− uref(k)),

with Q = 10In and R = 0.01Imi , and where uref(0), . . . , uref(Ti − 1) ∈ Rmi and
xref(0), . . . , xref(Ti) ∈ Rn denote reference input and state trajectories constructed
based on the temporary target state at that time, i.e., xref(k) = χtmp,i(t) for all
k ∈ {1, . . . , Ti}, and uref(0) = · · · = uref(Ti − 1) =: µtmp,i(t) is taken as a solution to
the linear system of equations Biµtmp,i(t) = (In −Ai)χtmp,i(t).

In our implementation of Sinkhorn MPC, we use one iteration of the Sinkhorn
algorithm per time step, as proposed in [16]. Although more Sinkhorn iterations are
possible, it was shown that one iteration yields comparable performance in [18], so we
employ this choice for simplicity. In Task 1, Sinkhorn MPC uses entropy regularization
parameter ϵ = 1. In Tasks 2 and 3, this is increased to ϵ = 2, as used in [18].

Our implementation of ROT-MPC uses transport cost functions defined by
Cij(xi) = ∥xi − xd

j∥2. Our implementation of ROT-MPC also reformulates the mod-
ified transport problem’s reachability subset constraint,

(B.1) (Aix̂i(Ti) +Biûi)⊕ ((Ai +BiKi)
TiWi) ⊆

(
N

⊕N
j=1 PijΩ

d
ij

)
⊖RTi

i ,

into an equivalent finite-dimensional form. Specifically, we apply the reformulation
techniques considered in [1, 28] by framing the constraint as an equivalent optimization
problem, and then dualize it. The reformulation is summarized as follows. For every
i, compute (offline) halfspace representations of RTi+1

i and Ωi:

RTi+1
i = {w ∈ Rn : Hiw ≤ hi}, Ωi = {x ∈ Rn : Gix ≤ gi},

with Hi ∈ Rpi×n, hi ∈ Rpi , Gi ∈ Rqi×n, and gi ∈ Rqi . For every i, compute (offline)

Gi = blkdiag(Gi, . . . , Gi)︸ ︷︷ ︸
N-fold block diagonalization

, gi = (gi, . . . , gi)︸ ︷︷ ︸
N-fold vertical concatenation

.

Replace the subset constraint (B.1) by the equivalent system of constraints

gi +Giηi ≥ 0, γi ≥ 0, λi ≥ 0,

G
⊤
i λi = Yi(P )⊤H⊤

i γi,

Hi(−Aix̂i(Ti)−Biûi + yi(P )− Yi(P )ηi) ≤ hi,

(gi +Giηi)
⊤λi = 0,

γ⊤
i (Hi(−Aix̂i(Ti)−Biûi + yi(P )− Yi(P )ηi)− hi) = 0,

in both the original variables P, ûi as well as new variables λi ∈ RqiN , ηi ∈ RnN , and
γi ∈ Rpi , where yi(P ) = N

∑N
j=1 Pijx

d
j and Yi(P ) = N

[
Pi1In · · ·PiNIn

]
.

These constraints are nonconvex due to the bilinear terms. This nonconvexity
does not break the recursive feasibility or recursive constraint satisfaction of ROT-
MPC, since all that is needed at every timestep of the control scheme is a feasible point
for the optimal transport problem, and not necessarily a global optimizer; any point
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satisfying the above constraints ensures reachability of the associated transport plan.
In practice, we find that off-the-shelf nonlinear programming solvers quickly converge
to (local) solutions with permutation transport plans when using this reformulation.
In fact, our testing found that this nonconvex formulation results in much faster overall
runtime for ROT-MPC than equivalent finite-dimensional convex formulations, as the
latter tend to return solutions with non-permutation transport plans.

Acknowledgments. The authors would like to thank Siddharth Nair for their
insightful discussions surrounding robust MPC stability and efficient implementations.
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[26] G. Peyré and M. Cuturi, Computational optimal transport, Foundations and
Trends in Machine Learning, 11 (2019), pp. 355–607.

[27] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
Invariant approximations of the minimal robust positively invariant set, IEEE
Transactions on Automatic Control, 50 (2005), pp. 406–410.

[28] S. Sadraddini and R. Tedrake, Linear encodings for polytope containment
problems, in 58th IEEE Conference on Decision and Control (CDC), 2019.
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