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Abstract

We consider an input-dependent generalization of Gaussian randomized smoothing
(RS) for constructing certifiably robust classifiers in which the variable smoothing
distribution is parameterized as a neural network and is learned from data. In the
case that the smoothing distribution is constructed to be zero-mean and isotropic for
all inputs, we prove that the smoothed model satisfies a strong Lipschitz continuity
property under mild regularity conditions that are easily enforced on the Gaussian’s
standard deviation network in practice. Using the determined Lipschitz constant,
we derive a certified ℓ2-radius of robustness for the smoothed model. Our Lipschitz
constant and certified radius reduce to those of standard input-independent RS as a
special case. Experiments on MNIST illustrate “best-of-both-worlds” performance;
our input-dependent smoothing scheme simultaneously attains the high accuracy of
small-variance standard RS on clean data and the high robustness of large-variance
standard RS against adversarial attacks.

1 Introduction

Standard machine learning models are known to be highly sensitive to unreliable data. For example,
classifiers have been shown to exhibit catastrophic failures when subjected to imperceptible adversarial
attacks on their inputs [1, 2, 3]. This has motivated researchers to develop more robust ML models
[4], as well as mathematical and computational frameworks for certifying model robustness [5, 6, 7].

Randomized smoothing (RS), popularized by Cohen et al. [8], Lecuyer et al. [9], Li et al. [10],
is a post-processing method that certifiably robustifies a pretrained model by making predictions
based on the average model output on inputs that are intentionally corrupted with Gaussian random
noise. Despite remaining one of the state-of-the-art approaches for certified robustness, the standard
formulation of RS is limited by an accuracy-robustness tradeoff [11, 12], as the technique amounts
to smoothing the decision boundaries and consequently introduces underfitting when using large-
variance noise [13, 14, 15]. Follow-up work has aimed to alleviate the tradeoff through a variety
of approaches, including the incorporation of RS-friendly adversarial training and architecture
modifications [16, 17, 18, 19], optimization of the smoothing noise distribution parameters [20, 15],
and generalizing RS to utilize input-dependent smoothing noise (references discussed below). In
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this work, we build on the input-dependent approach, which, despite gaining much interest in recent
years, has seen limited progress thus far due to the significant mathematical challenges introduced
when analyzing the robustness of models with variable smoothing distributions.

1.1 Related Works

Input-dependent smoothing is rooted in the idea that different data may benefit from different noise
levels. Specifically, the prediction of data close to a classifier’s decision boundary might be quite
sensitive to the noising process, calling for low-magnitude, small-variance noise to maintain accuracy.
Contrarily, data far from the decision boundary can withstand higher-variance noise while maintaining
the correct prediction, which is consequently able to drown out stronger adversarial attacks.

The works Wang et al. [21], Eiras et al. [22], Alfarra et al. [23], Rumezhak et al. [24] have intro-
duced various methods for implementing this input-dependent smoothing approach. However, their
robustness certificates require the restrictive use of memory-based piecewise-constant smoothing
parameters that rely on memorization of data that results in the model being dependent on the order
that data is stored. The works Súkeník et al. [25], Anderson and Sojoudi [13] avoid this sensitivity
on the data’s order by using nearest-neighbor models to generate the input-dependent smoothing
parameters, but these approaches also rely on storing data and constrain the smoothing scheme
to adhere to a restrictive functional form. Chen et al. [26] avoids memory-based approaches and
proposes to optimize the smoothing distribution’s variance in a per-input fashion. However, their
certified radii are mathematically invalid for the actual classifier used at test time [13]. Some key
mathematical properties have been identified to rigorously implement input-dependent smoothing
[27, 25], but the conditions tend to be restrictive, making the rigorous certification of practically
useful radii remain an open challenge.

Other related works include the recent paper Lyu et al. [28], which proposes to adapt smoothing to
each test-time input using a learned masking rule, but their approach does not explicitly vary the
underlying input noise distribution parameters. Instead of varying the noise distribution across inputs,
Chen et al. [29] proposes to vary the number of samples used in randomized smoothing’s Monte
Carlo estimates to optimize runtime on a per-input basis, and are therefore focused on an unrelated
problem despite their method being referred to as “input-specific sampling.”

1.2 Contributions

We achieve the following contributions in this paper:

1. Under easily-enforced, mild technical assumptions, we prove for the first time in the input-
dependent smoothing literature a Lipschitz continuity property taking the same strong
functional form as standard input-independent RS, i.e., Φ−1 ◦ g being Lipschitz continuous
with g the smoothed model and Φ the standard normal cumulative distribution function.

2. We prove a certified radius of robustness for input-dependent randomized smoothing based
on our Lipschitz bound, which, unlike prior works, enjoys an increase without bound as
the model confidence increases, does not rely on memory-based methods, and rigorously
permits the Gaussian smoothing noise standard deviation mapping to be learned via Lipschitz
continuous neural networks with general structure. Our Lipschitz bound and certified radius
reduce exactly to those of standard RS as a special case.

3. We conduct proof-of-concept numerical experiments on MNIST that demonstrates “best-
of-both-worlds” performance; our input-dependent smoothing approach simultaneously
matches the high clean accuracy of low-variance standard RS and the improved robustness
of high-variance standard RS, with a negligible increase in certification time.

To streamline presentation, proofs are deferred to Appendix A.

2 Preliminaries

2.1 Notations

The d× d identity matrix is denoted by Id. The indicator function on a set A is defined by 1A(x) = 1
if x ∈ A and 1A(x) = 0 if x /∈ A. The multivariate normal distribution with mean µ ∈ Rd and
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covariance matrix Σ ∈ Sd+ is denoted by N (µ,Σ), where Sd+ denotes the set of d × d positive
semidefinite matrices. The probability density function (PDF) and cumulative distribution function
(CDF) of the standard normal distribution N (0, 1) are denoted by ϕ and Φ, respectively. We will also
occasionally write ϕµ,Σ to denote the PDF of the multivariate normal distribution N (µ,Σ). The PDF
and CDF of the χ2

d distribution (with d degrees of freedom) are denoted by fχ2
d

and Fχ2
d
, respectively.

Recall that a function f : Rd → R is said to be L-Lipschitz continuous (or L-Lipschitz for short) if
|f(x) − f(x′)| ≤ L∥x − x′∥2 for some associated L ≥ 0, where ∥ · ∥2 denotes the ℓ2-norm. The
Lipschitz constant Lip(f) is used to denote any valid L ≥ 0 such that f is L-Lipschitz. If M is a
matrix, then ∥M∥ denotes the spectral norm of M . We use diag(a1, . . . , ad) to denote the d × d
diagonal matrix with ai being the ith diagonal element for all i ∈ {1, . . . , d}. The rectified linear
unit is defined by ReLU: x 7→ max{0, x}, applied elementwise to vectors x.

2.2 Problem Statement

Consider a pre-trained n-class classifier f : Rd → {1, . . . , n} given by

f(x) ∈ argmax
i∈{1,...,n}

gi(x), (1)

with g : Rd → Rn. Standard, input-independent RS robustifies the classifier by choosing a fixed
standard deviation σ > 0 and replacing the prediction f(x) by

f(x) ∈ argmax
i∈{1,...,n}

g(x),

with g : Rd → Rn being a smoothed version of g:

g(x) = Eϵ∼N (0,σ2Id)[g(x+ ϵ)].

This formulation of RS, which averages the model’s output scores, is sometimes called “soft smooth-
ing” [17], and is known to converge to “hard smoothing,” as originally formulated in Cohen et al. [8],
in the case that g(x) ∈ [0, 1]n is a post-softmax probability vector and the pre-softmax temperature
scaling increases (making g(x) approach a standard unit vector). We stick with the soft smoothing
formulation as it is more commonly used in input-dependent smoothing schemes and is more general
than hard smoothing.

Input-dependent randomized smoothing generalizes standard RS by allowing the Gaussian noise
parameters to vary with the input, i.e., g takes the more general form

g(x) := Eϵ∼N (µ(x),Σ(x))[g(x+ ϵ)], (2)

with µ : Rd → Rd and Σ: Rd → Sd+ being mean and covariance matrix mappings.

In both standard and input-dependent RS, the noising process intuitively drowns out the effects of
any possible manipulations of the input data. Mathematically, this amounts to smoothing the decision
boundaries of the model, as (standard) RS can be viewed as convolution of the base classifier with
a (fixed) Gaussian mollifier. Indeed, this idea is well known to culminate into provable robustness
guarantees for the smoothed classifier f in the case of standard RS:
Theorem 1 (Cohen et al. [8], Zhai et al. [17]). Assume that g(x) ∈ [0, 1]n for all x ∈ Rd. Let
σ > 0. Consider a point x ∈ Rd, let y = f(x) be the classification of x under the standard RS
classifier f with fixed smoothing distribution N (0, σ2Id), and let y′ ∈ argmaxi∈{1,...,n}\{y} gi(x)
be a corresponding runner-up class. Then, it holds that

f(x+ δ) = y

for all δ ∈ Rd such that

∥δ∥2 ≤ r(x, y) :=
σ

2

(
Φ−1(gy(x))− Φ−1(gy′(x))

)
. (3)

The value r(x, y) ≥ 0 in (3) is called the certified radius of the model at the input-label pair (x, y).
A key feature of the certified radius formula in (3) is the presence of Φ−1, which allows for the
radius to enjoy an unbounded increase as the model confidence gy(x) increases (resulting in strong
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robustness guarantees). This functional form is very delicate to achieve, as it amounts to proving
the Lipschitz continuity of every Φ−1 ◦ gi, despite neither Φ−1 nor gi being Lipschitz. As such,
the added complexity of input-dependent smoothing schemes makes proving certified radii with the
same, strong functional form of (3) mathematically challenging (and it is certainly not as trivial as
replacing σ with σ(x) in (3), as this is not a valid certified radius in the input-dependent case [13]).
Consequently, input-dependent certified radii, up until this point, have either taken much weaker,
uniformly bounded forms without the Φ−1 [13, 27], or have been restricted to use memory-based
methods with piecewise-constant standard deviations [23, 22, 24]. The overarching goal of our
work is to overcome these limitations by proving an input-dependent certified radius taking the
strong functional form of (3), without relying on memory-based methods, and while allowing for the
standard deviation mapping x 7→ σ(x) to be implemented as a neural network and optimized from
data. We now move to our novel theoretical analysis to achieve this goal.

3 Theoretical Analysis and Certified Radius of Input-Dependent Smoothing

Throughout the remainder of the paper, we consider input-dependent RS taking the form (2), unless
otherwise specified. To prove a certified radius for the model, we begin by analyzing the Lipschitz
continuity of Φ−1 ◦ gi. Although this function is known to be 1

σ -Lipschitz when using the standard
RS smoothing distribution N (0, σ2Id) with fixed σ > 0 [17, Lemma 1], it is not evident how the
Lipschitz continuity is affected by the use of input-dependent smoothing distributions. We will
assume throughout that x 7→ µ(x) and x 7→ Σ(x) are both differentiable maps. In general, however,
one may still suspect that the model will become poorly behaved in cases where the distribution
N (µ(x),Σ(x)) varies wildly with x (which is entirely possible; differentiability of the parameters µ
and Σ does not imply Lipschitz continuity of them). We begin establishing our guarantees for the
strong Lipschitz property of the model by stating the following simplifying assumption.

Assumption 1. For all x ∈ Rd, it holds that Σ(x) is diagonal;

Σ(x) = diag(σ2
1(x), . . . , σ

2
d(x))

for some σ1(x), . . . , σd(x) > 0.

The following three technical lemmas will be key in establishing Lipschitzness of Φ−1 ◦ gi in our
input-dependent setting:

Lemma 1. Assume that Assumption 1 holds. Let x, ϵ ∈ Rd. It holds that

∇xϕµ(x),Σ(x)(ϵ− x) = ϕµ(x),Σ(x)(ϵ− x)

(
(Id +Dµ(x))Σ−1(x)(ϵ− x− µ(x))

+

d∑
i=1

(ϵi − xi − µi(x))
2 − σ2

i (x)

σ3
i (x)

∇σi(x)

)
,

where
Dµ(x) = [∇µ1(x) · · · ∇µd(x)] .

Intuitively, Lemma 1 allows us to characterize how much of the variation in the final model g is due
to the inherent variation in the shape of the PDF ϕµ(x),Σ(x)(·) (the term in the gradient with Id), the
variation of µ (the term with Dµ(x)), and the variation of Σ (the term with ∇σi(x)). All three forms
of variation contribute to the Lipschitzian quality (or lack thereof) of g.

Lemma 2. Let w ∈ Rd, let p ∈ [0, 1], let l : Rd → R, and let ν be a probability measure on
Rd (that possibly depends on w). If there exists tp ∈ R such that Pϵ∼ν(l(ϵ) ≥ tp) = p, then
h : y 7→ 1{z∈Rd:l(z)≥tp}(y − w) solves the functional optimization problem

sup
{
Eϵ∼ν [l(ϵ)f(w + ϵ)] : Eϵ∼ν [f(w + ϵ)] = p, f : Rd → [0, 1]

}
.

Lemma 2 takes inspiration from the approach taken in Salman et al. [16, Lemma 2], although our
result is proven for more general weighting functions l and probability measures ν, which is important
for proving robustness in our input-dependent smoothing setting.
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Lemma 3. It holds that R : (0, 1) → (0,∞) defined by

R(p) =
ϵ0(p)fχ2

d
(ϵ0(p))

ϕ(Φ−1(p))

is monotone decreasing on [pmin, 1− pmin] for some pmin ∈ (0, 1/2), where ϵ0 : (0, 1) → (0,∞) is
defined by

ϵ0(p) = F−1
χ2
d
(1− p). (4)

The ratio R(p) in Lemma 3 appears naturally as a key factor in our Lipschitz bound (to come in
Theorem 2), and it is beneficial to be able to verify that this ratio is monotone decreasing in p on as
large of an interval [pmin, 1− pmin] as possible (clearly, this makes the theoretical result in Lemma 3
stronger). In practice, the minimum probability value pmin in Lemma 3 can be taken to be very
close to zero for realistic dimensions d, which can be seen by plotting the function R. For instance,
when d = 784, graphical methods show that R is monotone decreasing on [pmin, 1 − pmin] with
pmin = 10−10. Analytically proving a (tight) upper bound on the minimal valid value of pmin that
ensures monotonicity of R poses an interesting open problem.

Utilizing the above three key technical lemmas, we are now able to establish the strong Lipschitz
property for input-dependent randomized smoothing, in the case that µ is identically zero, and
Σ(x) = σ2(x)Id:
Theorem 2. Consider zero-mean isotropic input-dependent randomized smoothing with µ(x) = 0
and Σ(x) = σ2(x)Id for all x ∈ Rd. Let i ∈ {1, . . . , n} be arbitrary. If σ is Lipschitz continuous
and bounded below by σmin > 0, and if gi(x) ∈ [pmin, 1− pmin] for pmin ∈ (0, 1/2) as in Lemma 3,
then x 7→ Φ−1(gi(x)) is L-Lipschitz with

L =
1

σmin

(
1 + 2Lip(σ)

ϵ0(pmin)fχ2
d
(ϵ0(pmin))

ϕ(Φ−1(pmin))

)
, (5)

where ϵ0 : (0, 1) → (0,∞) is defined as in (4).
Remark 1. The Lipschitz constant (5) recovers that of standard, input-independent randomized
smoothing, namely L = 1

σ , in the case that σ is taken to be a constant (since Lip(σ) = 0 in this case).
Remark 2. It is easy to ensure that all hypotheses in Theorem 2 are satisfied in practice. Specifically,
σ : x 7→ σ(x) can be constructed to be a single-output real-valued neural network with final layer
taking the form z 7→ ReLU(z) + σmin, with σmin > 0 being a fixed hyperparameter. This network is
easily constrained to be Lipschitz continuous with any desired Lipschitz constant Lip(σ) by using
standard weight normalization methods. Finally, it can be ensured that gi(x) ∈ [pmin, 1− pmin] for
every class i ∈ {1, . . . , n} by normalizing the outputs of the base classifier according to g(x) =
(1− npmin)g[0,1](x) + pmin1n, where g[0,1](x) is the (standard output) vector of scores with elements
in [0, 1], typically computed using a softmax, and where 1n denotes the n-vector of all ones.

Theorem 2 gives rise to a certified radius for input-dependent smoothing with zero-mean isotropic
Gaussian smoothing distributions:
Theorem 3. Consider input-dependent smoothing, with all hypotheses of Theorem 2 satisfied;
µ(x) = 0, Σ(x) = σ2(x)Id with σ Lipschitz continuous and bounded below by σmin > 0, and
g(x) ∈ [pmin, 1− pmin]

n for pmin ∈ (0, 1/2) as in Lemma 3. Consider a point x ∈ Rd, let y = f(x)
be the classification of x under the smoothed classifier, and let y′ ∈ argmaxi∈{1,...,n}\{y} gi(x) be
the runner-up class. Then, it holds that

f(x+ δ) = y

for all δ ∈ Rd such that

∥δ∥2 ≤ r(x, y) :=
1

2L

(
Φ−1(gy(x))− Φ−1(gy′(x))

)
,

with L being the Lipschitz constant defined in (5).

Theorem 3 achieves our overarching goal in the case with µ(x) = 0 and Σ(x) = σ2(x)Id. Specif-
ically, we rigorously obtain a certified radius for input-dependent smoothing taking the strong
functional form of (3) with Φ−1, while allowing for x 7→ σ(x) to be a general (Lipschitz and
uniformly lower-bounded) neural network learned from data, and while avoiding memory-based
methods with piecewise-constant σ.
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4 Numerical Experiments

We conduct numerical experiments on the MNIST dataset of handwritten digits [30]. The experiments
are run on a commercially available laptop computer using PyTorch [31] and SciPy [32]. We use
a two-layer fully-connected base classifier g with hidden layer width 200 and ReLU activation
functions. The base classifier is trained using PyTorch’s default optimizer together with 40-step ℓ2-
projected gradient descent (PGD) adversarial training [4], with attack magnitudes ∥δ∥2 = 1 and step
size 0.01. Such ℓ2-adversarial training approaches are known to yield state-of-the-art certified radii
under standard Gaussian RS, even compared to training using Gaussian augmentation [16, 33]. The
base classifier is trained to 98% accuracy on clean test data. The base classifier output probabilities
are normalized according to the method described in Remark 2, with pmin = 10−7.

We compare our input-dependent randomized smoothing (IDRS) method to standard RS [8] using a
variety of (input-independent) Gaussians. Specifically, we include the common baseline standard
deviations of σ ∈ {0.25, 0.5, 1}, used in Cohen et al. [8], Salman et al. [16], Jeong et al. [33]. Our
input-dependent model is implemented using the zero-mean, isotropic Gaussian smoothing scheme
N (0, σ2

θ(x)Id) by constructing σθ : Rd → [σmin,∞) as a two-layer neural network, parameterized
by θ ∈ Rp consisting of all weights and biases, with ReLU activation functions, and hidden layer
width 200. We utilize a minimum standard deviation value of σmin = 0.65. We explicitly constrain
the Lipschitz constant of this network to Lip(σ) = 0.5, using spectral weight normalization at every
step of the learning process [34]. The neural network σθ is learned to maximize the average certified
radius, as calculated by Theorem 3, by solving

sup
θ∈Rp

− 1

N

N∑
i=1

r(xi, yi) + λ

nW∑
j=1

∥W θ
j ∥

 ,

where (x1, y1), . . . , (xN , yN ) is a collection of labeled training data, W θ
1 , . . . ,W

θ
nW

denote the nW

weight matrices collected in θ, and, of course, the radii r(xi, yi) depend implicitly on θ. We use
spectral regularization parameter λ = 0.01, which we remark is performed in addition to the spectral
weight normalization.
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Figure 1: Certified accuracy curves for our input-dependent randomized smoothing method (IDRS),
as well as three standard RS curves corresponding to various standard deviations σ. Our method
is seen to enjoy a “best-of-both-worlds” when compared to the moderate σ = 0.5 and large σ = 1
standard RS curves.

The certified accuracy curves across a range of attack radii, computed using nsamples = 1000 noise
samples per input, are plotted in Figure 1 for each method. We see that our method (IDRS) exhibits
“best-of-both-worlds” performance relative to standard smoothing with moderate σ = 0.5 and large
σ = 1. Specifically, our model matches the high accuracy of low-strength standard smoothing (both
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σ = 0.25 and σ = 0.5) at small attack radii, in addition to matching the high robustness of high-
strength standard smoothing (σ = 1) at large attack radii. Contrarily, the standard RS curves exhibit a
strict weakness in performance compared to IDRS, either on clean data (when the standard smoothing
is too strong), or on strongly attacked data (when the standard smoothing is too weak). Since our
smoothing scheme only requires one additional forward pass through the scalar-valued network σθ

when compared to standard RS, we observe a negligible increase in the average certification time
required for each test input; see Table 1.

Table 1: Average certification times per test input.

Method Time (milliseconds)

IDRS (Ours) 9.286
Standard RS, σ = 0.25 9.225
Standard RS, σ = 0.5 9.244
Standard RS, σ = 1 9.271

5 Conclusions and future work

In this paper, we consider input-dependent randomized smoothing as a means to increase certified
robustness by allowing the smoothing distribution to learn how to adjust its shape according to the
data distribution. In the zero-mean, isotropic Gaussian case, we prove a strong Lipschitz property
of the input-dependent RS model, under suitable assumptions on the standard deviation mapping
that are easily enforced in practice. We use our Lipschitz property to derive a certified radius of
robustness for the input-dependent RS model, which, to the best of our knowledge, is the first
non-memory-based radius to outperform standard RS. Our Lipschitz constant and certified radius
recover those of standard, input-independent smoothing as a special case.

Future theoretical work includes extending our robustness guarantees to nonzero means and
anisotropic variances, certifying anisotropic regions of the input space rather than (isotropic) ℓ2-balls,
analytically upper-bounding the minimal pmin ensuring validity of our theory, and characterizing
the behavior of R(pmin)—a key factor in our certified radius—as the dimensionality d increases.
Experimentally, we seek to extend our implementations to larger-scale benchmark problems such as
the CIFAR-10 and ImageNet datasets, and to compare against additional baselines.
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A Proofs

Lemma 1. Assume that Assumption 1 holds. Let x, ϵ ∈ Rd. It holds that

∇xϕµ(x),Σ(x)(ϵ− x) = ϕµ(x),Σ(x)(ϵ− x)

(
(Id +Dµ(x))Σ−1(x)(ϵ− x− µ(x))

+

d∑
i=1

(ϵi − xi − µi(x))
2 − σ2

i (x)

σ3
i (x)

∇σi(x)

)
,

where
Dµ(x) = [∇µ1(x) · · · ∇µd(x)] .

Proof of Lemma 1. This follows from a routine application of chain and product rules when comput-
ing

∇xϕµ(x),Σ(x)(ϵ− x) = ∇x

(
1

(2π)d/2
∏d

i=1 σi(x)
exp

(
−1

2

d∑
i=1

(ϵi − xi − µi(x))
2

σ2
i (x)

))
.
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Lemma 2. Let w ∈ Rd, let p ∈ [0, 1], let l : Rd → R, and let ν be a probability measure on
Rd (that possibly depends on w). If there exists tp ∈ R such that Pϵ∼ν(l(ϵ) ≥ tp) = p, then
h : y 7→ 1{z∈Rd:l(z)≥tp}(y − w) solves the functional optimization problem

sup
{
Eϵ∼ν [l(ϵ)f(w + ϵ)] : Eϵ∼ν [f(w + ϵ)] = p, f : Rd → [0, 1]

}
.

Proof of Lemma 2. First, notice that h(y) = 1{z∈Rd:l(z)≥tp}(y−w) ∈ {0, 1} ⊆ [0, 1] for all y ∈ Rd,
and

Eϵ∼ν [h(w + ϵ)] = Eϵ∼ν [1{z∈Rd:l(z)≥tp}(ϵ)] = Pϵ∼ν(l(ϵ) ≥ tp) = p,

so h is feasible. To show that h is optimal, let f be any other feasible function. Then, we have that

Eϵ∼ν [l(ϵ)h(w + ϵ)]− Eϵ∼ν [l(ϵ)f(w + ϵ)] = Eϵ∼ν [l(ϵ)(h(w + ϵ)− f(w + ϵ))]

= Eϵ∼ν [l(ϵ)(h(w + ϵ)− f(w + ϵ))]

− tpEϵ∼ν [h(w + ϵ)− f(w + ϵ)]

= Eϵ∼ν [(l(ϵ)− tp)(h(w + ϵ)− f(w + ϵ))],

where the second equality comes from the fact that Eϵ∼ν [f(w+ ϵ)] = p = Eϵ∼ν [h(w+ ϵ)]. Splitting
the integral, it follows that

Eϵ∼ν [l(ϵ)h(w + ϵ)]− Eϵ∼ν [l(ϵ)f(w + ϵ)]

=

∫
ϵ∈{z∈Rd:l(z)≥tp}

(l(ϵ)− tp)(h(w + ϵ)− f(w + ϵ))dν(ϵ)

+

∫
ϵ∈{z∈Rd:l(z)<tp}

(l(ϵ)− tp)(h(w + ϵ)− f(w + ϵ))dν(ϵ).

The first above integral is nonnegative, since, for all ϵ ∈ {z ∈ Rd : l(z) ≥ tp}, it holds that l(ϵ) ≥ tp
and h(w + ϵ) − f(w + ϵ) = 1 − f(w + ϵ) ≥ 0, implying that the integrand is nonnegative. The
second above integral is also nonnegative, since, for all ϵ ∈ {z ∈ Rd : l(z) < tp}, it holds that
l(ϵ) < tp and h(w+ ϵ)− f(w+ ϵ) = 0− f(w+ ϵ) ≤ 0, implying that the integrand is nonnegative.
Thus, it holds that

Eϵ∼ν [l(ϵ)h(w + ϵ)]− Eϵ∼ν [l(ϵ)f(w + ϵ)] ≥ 0.

Since f was chosen to be an arbitrary feasible point for the optimization, this proves that h is
optimal.

Lemma 3. It holds that R : (0, 1) → (0,∞) defined by

R(p) =
ϵ0(p)fχ2

d
(ϵ0(p))

ϕ(Φ−1(p))

is monotone decreasing on [pmin, 1− pmin] for some pmin ∈ (0, 1/2), where ϵ0 : (0, 1) → (0,∞) is
defined by

ϵ0(p) = F−1
χ2
d
(1− p). (4)

Proof of Lemma 3. It suffices to prove that p 7→ logR(p) is monotone decreasing on [pmin, 1− pmin]
for some pmin ∈ (0, 1/2). We show this by computing the derivative of p 7→ logR(p).

First, notice that Fχ2
d
(ϵ0(p)) = 1− p, and therefore fχ2

d
(ϵ0(p))ϵ

′
0(p) = −1, implying that

ϵ′0(p) = − 1

fχ2
d
(ϵ0(p))

.

Furthermore, the function u : p 7→ Φ−1(p) satisfies Φ(u(p)) = p, implying that ϕ(u(p))u′(p) = 1,
and therefore

d

dp
Φ−1(p) = u′(p) =

1

ϕ(u(p))
=

1

ϕ(Φ−1(p))
.
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Thus,

d

dp
logR(p) =

d

dp

(
log ϵ0(p) + log fχ2

d
(ϵ0(p))− log ϕ(Φ−1(p))

)
=

ϵ′0(p)

ϵ0(p)
+

f ′
χ2
d
(ϵ0(p))ϵ

′
0(p)

fχ2
d
(ϵ0(p))

−
ϕ′(Φ−1(p)) d

dpΦ
−1(p)

ϕ(Φ−1(p))

= − 1

fχ2
d
(ϵ0(p))

(
1

ϵ0(p)
+

f ′
χ2
d
(ϵ0(p))

fχ2
d
(ϵ0(p))

)
−

ϕ′(Φ−1(p)) 1
ϕ(Φ−1(p))

ϕ(Φ−1(p))
.

It is easy to show the following derivatives for the standard normal and chi-squared probability
density functions:

ϕ′(u) = −uϕ(u)

f ′
χ2
d
(v) =

(
d/2− 1

v
− 1

2

)
fχ2

d
(v).

Substituting these expressions into our derivative of interest gives

d

dp
logR(p) = − 1

fχ2
d
(ϵ0(p))

(
1

ϵ0(p)
+

d/2− 1

ϵ0(p)
− 1

2

)
+

Φ−1(p)

ϕ(Φ−1(p))

= − 1

fχ2
d
(ϵ0(p))

(
d/2

ϵ0(p)
− 1

2

)
+

Φ−1(p)

ϕ(Φ−1(p))
.

At p = 1/2, it holds that Φ−1(p) = 0, and that

ϵ0(p) = F−1
χ2
d
(1/2),

which equals the median of the chi-squared distribution χ2
d. Since this distribution is an instance of

the gamma distribution with shape parameter d/2 and scale parameter 2, Lyon [35] gives that the
median is bounded as

F−1
χ2
d
(1/2) < d.

Therefore, we find that

d

dp
logR(p)

∣∣∣∣
p=1/2

< − 1

fχ2
d
(ϵ0(p))

(
d/2

d
− 1

2

)
= 0.

Clearly, p 7→ d
dp logR(p) is continuous on (0, 1), and therefore this shows that there exists δ ∈

(0, 1/2) such that
d

dp
logR(p) < 0 for all p ∈ [1/2− δ, 1/2 + δ].

Thus, p 7→ logR(p) is monotone decreasing on [pmin, 1−pmin], where pmin = 1/2−δ ∈ (0, 1/2).

Theorem 2. Consider zero-mean isotropic input-dependent randomized smoothing with µ(x) = 0
and Σ(x) = σ2(x)Id for all x ∈ Rd. Let i ∈ {1, . . . , n} be arbitrary. If σ is Lipschitz continuous
and bounded below by σmin > 0, and if gi(x) ∈ [pmin, 1− pmin] for pmin ∈ (0, 1/2) as in Lemma 3,
then x 7→ Φ−1(gi(x)) is L-Lipschitz with

L =
1

σmin

(
1 + 2Lip(σ)

ϵ0(pmin)fχ2
d
(ϵ0(pmin))

ϕ(Φ−1(pmin))

)
, (5)

where ϵ0 : (0, 1) → (0,∞) is defined as in (4).

Proof of Theorem 2. To simplify exposition, we drop the model output’s subscript notation and write
g and g in place of gi and gi, respectively. The desired Lipschitz constant of x 7→ Φ−1(g(x)) can be
obtained by bounding the norm of the gradient

∇xΦ
−1(g(x)) =

∇g(x)

Φ′(Φ−1(g(x)))
. (6)
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Notice that the denominator is readily computed as

Φ′(Φ−1(g(x))) = ϕ(Φ−1(g(x))) =
1√
2π

exp

(
−1

2
(Φ−1(g(x)))2

)
,

where ϕ : R → R denotes the univariate density function of the standard normal distribution N (0, 1).
Thus, we precisely know the denominator in the gradient (6) of interest, so everything boils down to
computing the numerator, i.e., the gradient ∇g(x).

We have that

∇g(x) = ∇x

∫
Rd

g(x+ ϵ)ϕµ(x),Σ(x)(ϵ)dϵ

= ∇x

∫
Rd

g(ϵ)ϕµ(x),Σ(x)(ϵ− x)dϵ

=

∫
Rd

g(ϵ)∇xϕµ(x),Σ(x)(ϵ− x)dϵ.

Lemma 1 gives, for our case where µ(x) = 0 and Σ(x) = σ2(x)Id for all x ∈ Rd, that

∇xϕµ(x),Σ(x)(ϵ− x) = ϕµ(x),Σ(x)(ϵ− x)

(
ϵ− x

σ2(x)
+

∥ϵ− x∥22 − dσ2(x)

σ3(x)
∇σ(x)

)
.

Thus,

∇g(x) =

∫
Rd

g(ϵ)
ϵ− x

σ2(x)
ϕµ(x),Σ(x)(x− ϵ)dϵ

+

∫
Rd

g(ϵ)
∥ϵ− x∥22 − dσ2(x)

σ3(x)
∇σ(x)ϕµ(x),Σ(x)(ϵ− x)dϵ.

In terms of expectations, this can be written as

∇g(x) = Eϵ∼N (0,σ2(x)Id)

[
ϵ

σ2(x)
g(x+ ϵ)

]
+ Eϵ∼N (0,σ2(x)Id)

[
∇σ(x)

σ3(x)
(∥ϵ∥22 − dσ2(x))g(x+ ϵ)

]
.

Since we’d like to bound the norm of this gradient, let u ∈ Rd be an arbitrary vector satisfying
∥u∥2 = 1. Then our goal reduces to bounding

u⊤∇g(x) = Eϵ∼N (0,σ2(x)Id)

[
u⊤ϵ

σ2(x)
g(x+ ϵ)

]
+ Eϵ∼N (0,σ2(x)Id)

[
u⊤∇σ(x)

σ3(x)
(∥ϵ∥22 − dσ2(x))g(x+ ϵ)

]
.

(7)

We now bound each of the two expectations in (7) using Lemma 2.

Applying Lemma 2 to the first expectation in (7) with w = x, p = g(x), l(z) = u⊤z
σ2(x) , and

ν = N (µ(x),Σ(x)), we find that

Eϵ∼N (0,σ2(x)Id)

[
u⊤ϵ

σ2(x)
g(x+ ϵ)

]
≤ Eϵ∼N (0,σ2(x)Id)

[
u⊤ϵ

σ2(x)
1{z∈Rd:u⊤z/σ2(x)≥tp}(ϵ)

]
,

where tp ∈ R is such that Pϵ∼N (µ(x),Σ(x))(u
⊤ϵ/σ2(x) ≥ tp) = p, which clearly exists since

N (µ(x),Σ(x)) is a continuous distribution and hence t 7→ Pϵ∼N (µ(x),Σ(x))(u
⊤ϵ/σ2(x) ≥ t) is

continuous, and has range (0, 1) for t ∈ R. Consider the change of variables ϵ′ := ϵ/σ(x), so
that ϵ′ = N (0, Id), and hence ϵ̃ := u⊤ϵ′ ∼ N (0, 1). This change of variables shows that p =

12



Pϵ̃∼N (0,1)(ϵ̃ ≥ σ(x)tp) and hence

Eϵ∼N (0,σ2(x)Id)

[
u⊤ϵ

σ2(x)
g(x+ ϵ)

]
≤ 1

σ(x)
Eϵ̃∼N (0,1)

[
ϵ̃1{z̃∈R:z̃≥σ(x)tp}(ϵ)

]
=

1

σ(x)

∫ ∞

z̃=σ(x)tp

z̃ϕ(z̃)dz̃

=
1

σ(x)
ϕ(σ(x)tp)

=
1

σ(x)
ϕ(Φ−1(p))

=
1

σ(x)
ϕ(Φ−1(g(x))).

This gives our bound on the first expectation in (7).

We now bound the second expectation in (7). Applying Lemma 2 with w = x, p = g(x), l(z) =
u⊤∇σ(x)
σ3(x) (∥ϵ∥22 − dσ2(x)), and ν = N (µ(x),Σ(x)), we find that

Eϵ∼N (0,σ2(x)Id)

[
u⊤∇σ(x)

σ3(x)
(∥ϵ∥22 − dσ2(x))g(x+ ϵ)

]
≤ Eϵ∼N (0,σ2(x)Id)

[
u⊤∇σ(x)

σ3(x)
(∥ϵ∥22 − dσ2(x))1{

z∈Rd:
u⊤∇σ(x)

σ3(x)
(∥z∥2

2−dσ2(x))≥tp
}(ϵ)

]
=: α(x),

where tp ∈ R is now defined according to the relation

Pϵ∼N (µ(x),Σ(x))

(
u⊤∇σ(x)

σ3(x)
(∥ϵ∥22 − dσ2(x)) ≥ tp

)
= p,

which, similar to the previous expectation bound, exists due to continuity of the distribution. We
now compute the value α(x). If u⊤∇σ(x) = 0, then clearly α(x) = 0. Suppose that u⊤∇σ(x) ̸= 0.
Consider the change of variables ϵ′ := ∥ϵ/σ(x)∥22, so that ϵ′ ∼ χ2

d. For all z ∈ Rd, it holds that

z′ := ∥z/σ(x)∥22 ≥ ϵ0(p) if and only if l(z) = u⊤∇σ(x)
σ3(x) (∥z∥22 − dσ2(x)) ≥ tp, where

ϵ0(p) := d+
tpσ(x)

u⊤∇σ(x)
.

Therefore, the change of variables gives that

α(x) = Eϵ′∼χ2
d

[
u⊤∇σ(x)

σ(x)
(ϵ′ − d)1{z′∈R:z′≥ϵ0(p)}(ϵ

′)

]
=

u⊤∇σ(x)

σ(x)

∫ ∞

ϵ′=ϵ0(p)

(ϵ′ − d)dχ2
d(ϵ

′).

(8)

We now focus on computing this integral. First, notice that the integral of the constant term is given
by ∫ ∞

ϵ′=ϵ0(p)

1dχ2
d(ϵ

′) = Pϵ′∼χ2
d
(ϵ′ ≥ ϵ0(p)) = Pϵ∼N (0,σ2(x)Id)(l(ϵ) ≥ tp) = p. (9)

Therefore, all that remains to compute is∫ ∞

ϵ′=ϵ0(p)

ϵ′dχ2
d(ϵ

′).

We may assume without loss of generality that ϵ0(p) ≥ 0, for otherwise it would be the case that
Pϵ′∼χ2

d
(ϵ′ ≥ ϵ0(p)) = 1 and hence that Pϵ∼N (0,σ2Id)(l(ϵ) ≥ tp) = 1, and therefore we could have
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equivalently chosen tp such that ϵ0(p) = d +
tpσ(x)

u⊤∇σ(x)
= 0 from the outset. Thus, using the χ2

d

density function over nonnegative reals, we have that∫ ∞

ϵ′=ϵ0(p)

ϵ′dχ2
d(ϵ

′) =

∫ ∞

ϵ′=ϵ0(p)

ϵ′
1

2d/2Γ
(
d
2

) (ϵ′)d/2−1e−ϵ′/2dϵ′

=
1

2d/2Γ
(
d
2

) ∫ ∞

ϵ′=ϵ0(p)

(ϵ′)d/2e−ϵ′/2dϵ′.

After the change of variables ϵ̃ := ϵ′/2, the last integral is given by the upper incomplete gamma
function: ∫ ∞

ϵ′=ϵ0(p)

(ϵ′)d/2e−ϵ′/2dϵ′ = 2d/2+1Γ

(
d

2
+ 1,

ϵ0(p)

2

)
.

Thus, we find that ∫ ∞

ϵ′=ϵ0(p)

ϵ′dχ2
d(ϵ

′) =
2Γ
(

d
2 + 1, ϵ0(p)

2

)
Γ
(
d
2

) . (10)

Combining (8), (9), and (10) yields that

α(x) =
u⊤∇σ(x)

σ(x)

(
2Γ
(
d
2 + 1, ϵ0

2

)
Γ
(
d
2

) − dp

)
.

This is simplified by noting that

p = Pϵ′∼χ2
d
(ϵ′ ≥ ϵ0(p))

=

∫ ∞

ϵ′=ϵ0(p)

1

2d/2Γ
(
d
2

) (ϵ′)d/2−1e−ϵ′/2dϵ′,

which again can be written in terms of the upper incomplete gamma function:

p =
Γ
(

d
2 ,

ϵ0(p)
2

)
Γ
(
d
2

) .

Therefore,

α(x) =
u⊤∇σ(x)

σ(x)

2Γ
(

d
2 + 1, ϵ0(p)

2

)
− dΓ

(
d
2 ,

ϵ0(p)
2

)
Γ
(
d
2

) .

Now, the recurrence relation for the upper incomplete gamma function can be used to relate the two
terms in the numerator of the second factor:

α(x) =
u⊤∇σ(x)

σ(x)

dΓ
(

d
2 ,

ϵ0(p)
2

)
+ 2

(
ϵ0(p)
2

)d/2
exp

(
− ϵ0(p)

2

)
− dΓ

(
d
2 ,

ϵ0(p)
2

)
Γ
(
d
2

)
= 2

u⊤∇σ(x)

σ(x)

(
ϵ0(p)
2

)d/2
exp

(
− ϵ0(p)

2

)
Γ
(
d
2

)
= 2

u⊤∇σ(x)

σ(x)

ϵ0(p)
d/2 exp

(
− ϵ0(p)

2

)
2d/2Γ

(
d
2

)
= 2

u⊤∇σ(x)

σ(x)
ϵ0(p)fχ2

d
(ϵ0(p)).

This gives our bound on the second expectation in (7).

Applying our established bounds on the expectations in (7), we find that

u⊤∇g(x) ≤ 1

σ(x)
ϕ(Φ−1(g(x))) + 2

u⊤∇σ(x)

σ(x)
ϵ0(p)fχ2

d
(ϵ0(p)).
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Now, we see that

p = Pϵ′∼χ2
d
(ϵ′ ≥ ϵ0(p)) = 1− Pϵ′∼χ2

d
(ϵ′ < ϵ0(p)) = 1− Fχ2

d
(ϵ0(p)),

where Fχ2
d

is the cumulative distribution function of the χ2
d distribution, and hence

ϵ0(p) = F−1
χ2
d
(1− p).

This shows, importantly, that ϵ0(p) is actually independent of u. Based on this key observation, we
conclude that

∥∇g(x)∥2 = sup
u∈Rd:∥u∥2=1

u⊤∇g(x)

≤ 1

σ(x)
ϕ(Φ−1(g(x))) + sup

u∈Rd:∥u∥2=1

2
u⊤∇σ(x)

σ(x)
ϵ0(p)fχ2

d
(ϵ0(p))

=
1

σ(x)
ϕ(Φ−1(g(x))) + 2

∥∇σ(x)∥2
σ(x)

ϵ0(p)fχ2
d
(ϵ0(p)).

Therefore, (6) gives that

∥∇xΦ
−1(g(x))∥2 =

∥∇g(x)∥2
ϕ(Φ−1(g(x)))

≤ 1

σ(x)
+ 2

∥∇σ(x)∥2
σ(x)

ϵ0(p)fχ2
d
(ϵ0(p))

ϕ(Φ−1(p))

≤ 1

σmin

(
1 + 2Lip(σ)

ϵ0(p)fχ2
d
(ϵ0(p))

ϕ(Φ−1(p))

)
.

Since p′ 7→
ϵ0(p

′)f
χ2
d
(ϵ0(p

′))

ϕ(Φ−1(p′)) is monotone decreasing on [pmin, 1 − pmin] by Lemma 3, and since
p = g(x) ∈ [pmin, 1− pmin], we conclude that

∥∇xΦ
−1(g(x))∥2 ≤ 1

σmin

(
1 + 2Lip(σ)

ϵ0(pmin)fχ2
d
(ϵ0(pmin))

ϕ(Φ−1(pmin))

)
= L,

and therefore indeed x 7→ Φ−1(g(x)) is L-Lipschitz continuous, as x is arbitrary.

Theorem 3. Consider input-dependent smoothing, with all hypotheses of Theorem 2 satisfied;
µ(x) = 0, Σ(x) = σ2(x)Id with σ Lipschitz continuous and bounded below by σmin > 0, and
g(x) ∈ [pmin, 1− pmin]

n for pmin ∈ (0, 1/2) as in Lemma 3. Consider a point x ∈ Rd, let y = f(x)
be the classification of x under the smoothed classifier, and let y′ ∈ argmaxi∈{1,...,n}\{y} gi(x) be
the runner-up class. Then, it holds that

f(x+ δ) = y

for all δ ∈ Rd such that

∥δ∥2 ≤ r(x, y) :=
1

2L

(
Φ−1(gy(x))− Φ−1(gy′(x))

)
,

with L being the Lipschitz constant defined in (5).

Proof of Theorem 3. The proof uses the same argument as in Zhai et al. [17, Theorem 2], with the
Lipschitz constant L from Theorem 2.
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