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Abstract

Provably Robust Machine Learning through Structure-Aware Computation

by

Brendon G. Anderson

Doctor of Philosophy in Engineering—Mechanical Engineering

University of California, Berkeley

Associate Professor Somayeh Sojoudi, Chair

Standard machine learning (ML) algorithms exhibit catastrophic failures when subject to
uncertainties in their input data, such as attacks generated by an adversary. Robustness
against such uncertainties must be guaranteed in order to reliably deploy ML in safety-
critical settings, such as autonomous driving, healthcare, and the operation of power systems.
This dissertation presents theoretical and computational advancements in provably robust
machine learning. We both introduce efficient optimization methods to certify the robustness
of prior ML models, as well as design novel ML models endowed with mathematical proof
of robustness. By exploiting key structures in the underlying certification problems, the
proposed methods achieve state-of-the-art robustness and efficiency.

In the first part of this dissertation, we consider certifying the robustness of given, pretrained
machine learning models. This robustness certification problem amounts to solving a difficult
nonconvex optimization problem, and therefore a more tractable approach for generating
safety guarantees is to lower-bound the optimization. We begin by considering a branch-
and-bound approach to computing such lower bounds. In doing so, we leverage the piecewise
linear structure of ReLU neural networks to develop branching schemes that minimize the
looseness of the desired lower bounds in a worst-case sense. Next, we show that ReLU neural
networks may be rewritten in a min-max affine form. We prove that this min-max affine
structure allows us to efficiently solve the nonconvex robustness certification problem to
global optimality by solving an equivalent convex reformulation. We also consider certifying
the robustness of models in the case where the inputs are subject to random noise. A data-
driven, convex optimization-based method is developed that simultaneously localizes neural
network outputs and verifies their safety, all with high-probability guarantees. We show that
our data-driven method’s sample complexity can be dramatically reduced by leveraging the
compositional structure of neural networks.

In the second part of this dissertation, we consider the design of robust machine learning
models that are capable of withstanding uncertainties and attacks in their inputs, and are
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amenable to robustness certification. First, we propose feature-convex neural networks, which
consist of the composition of a Lipschitz continuous feature map followed by a convex neural
network. We utilize this composite convex structure of our model to derive deterministic,
closed-form robustness certificates that match or outperform those of prior provably robust
ML methods. Finally, we introduce locally biased randomized smoothing as a means to ro-
bustify an otherwise general, non-robust pretrained classifier. Our model inherits a nonlinear
interpolation structure from which we prove certified robustness guarantees, and empirically
show an enhancement in robustness against adversarial attacks.
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Chapter 1

Introduction

Real-world data is inherently uncertain. Such uncertainty takes a variety of forms, including
corruptions, random measurement noise, and adversarial attacks [57, 20, 71]. Recent re-
search has found that the performance of machine learning models can be highly sensitive to
these uncertainties in the input data [129, 47, 127]. For example, Kumar et al. [83] showed
that maliciously designed, human-imperceptible perturbations to image data are capable
of fooling autonomous vehicle perception systems into misclassifying a stop sign as a yield
sign. More recently, publicly available AI systems have been broken: Zou et al. [172] per-
suaded Chat GPT into generating a step-by-step plan to destroy humanity, in spite of the
system’s built-in safeguards. Examples of this sort demonstrate that, even though machine
learning models may attain state-of-the-art performance on complex data-driven tasks, they
are susceptible of exhibiting catastrophic performance in the presence of an adversary or
corrupted input data. Such sensitivity is unacceptable in safety-critical machine learning
applications such as autonomous driving [23, 149] and the operation of power systems [78,
104, 110]. This has motivated the need for provably robust machine learning systems, i.e.,
systems with mathematical guarantees that they perform reliably in the presence of input
uncertainties.

To formalize robustness of machine learning systems, consider a classifier given by f(x) ∈
argmaxi∈{1,...,n} gi(x) with g : Rd → Rn, and a region X ⊆ Rd. The region X represents a
threat model; it is the set of all possible uncertain or attacked inputs that f may receive.
Formally, the classifier f is said to be certifiably robust over X if there exists some class
y ∈ {1, . . . , n} such that f(x) = y for all x ∈ X . That is, robustness of the model amounts
to consistent prediction over the set X of viable input data. Commonly, the input uncertainty
set X is taken as an ℓp-norm ball centered around some nominal input data point x ∈ Rd, to
model the situation in which an adversary is designing a “stealth,” or human-imperceptible
attack.

Verifying that a classifier is robust over an input uncertainty set X typically amounts to
solving the robustness certification problem, given by the following optimization:

p⋆i := inf
x∈X

(
gy(x)− gi(x)

)
.
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If p⋆i ≥ 0 for all i ̸= y, then indeed f(x) = y for all x ∈ X , and hence f is certifiably robust
over X . Such optimization-based approaches to robustness certification can be extended to
regression settings and situations in which the input data is corrupted by random noise—
these alternative notions of robustness will be formalized in later chapters. In the case that
f is certifiably robust over a norm ball input uncertainty set X = {x ∈ Rd : ∥x−x∥ ≤ r}, we
call r a certified radius. In general, we hope for our systems to withstand as much uncertainty
as possible (without sacrificing predictive performance on clean data), and hence seek to
certify robustness over the largest possible uncertainty set X .

There are two key challenges that arise when dealing with certifiable robustness of ma-
chine learning systems:

1. Computing robustness certificates. The robustness certification problem is, in
general, a nonconvex optimization problem, and is therefore challenging to solve to
global optimality. If, however, one computes a lower bound p̃i ≤ p⋆i and verifies that
p̃i ≥ 0, then the model is still guaranteed to be robust over X . A handful of approaches
have been popularized to compute such lower bounds, ranging from branch-and-bound
techniques [25, 39, 141], to bounding the Lipschitz constant of g [65, 51], to developing
convex relaxations of the nonconvex certification problem [146, 148, 115]. However,
these methods have been found to span an efficiency-conservatism tradeoff. For ex-
ample, branch-and-bound schemes can offer very tight lower bounds on p⋆i , but their
worst-case computational cost grows exponentially with the size of the problem. On the
other hand, off-the-shelf linear programming (LP) solvers can efficiently solve LP relax-
ations of the certification problem, but the resulting lower bounds are over-conservative
(loose) in high-dimensional, deep learning settings [122]. If such a lower bound is too
loose, it may become negative, voiding the robustness certificate altogether. This moti-
vates the need for novel techniques to efficiently lower-bound the certification problem
with as minimal conservatism as possible.

2. Designing robust models. Even if the certification problem was able to be solved to
global optimality, this would not imply that the model under consideration is actually
robust. That is, p⋆i may be negative for an overly sensitive model. Designing models
that simultaneously exhibit high performance on clean data as well as robust prediction
on uncertain data has remained a major challenge in the field. Various approaches
have been proposed, such as adversarial training (training on attacked data) [95],
and Jacobian regularization [67] and randomized smoothing [85, 35] methods that
aim to smooth out the sensitivities in the decision landscape of a classifier. However,
current approaches to robustifying models have been shown to suffer from an accuracy-
robustness tradeoff [135, 165], resulting in the call for new models that attain high
accuracy in both the clean and uncertain data regimes.

This dissertation aims at tackling these two key challenges. The underlying methodology
taken in this work is to leverage structure in models and the robustness certification problem
as a means to resolve the accuracy-robustness and efficiency-conservatism tradeoffs.
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Leveraging Structure in Robust Machine Learning

Much of machine learning is highly structured. For instance, neural networks are defined
by compositional structures, ReLU activation functions have piecewise linear structure, and
even data distributions encode input-output structures that can be learned from. This
dissertation makes use of these structures to develop novel computational techniques for
solving and lower-bounding the robustness certification problem (Part I), as well as novel
machine learning models with robustness-enhancing structures built into them (Part II).
This structure-aware approach to computation is the key theme underlying each of the fol-
lowing chapters. In Chapter 2, the piecewise linear structure of ReLU neural networks is
utilized to develop novel branch-and-bound techniques that efficiently tighten lower bounds
on the certification problem. Min-max affine structures for ReLU networks are introduced in
Chapter 3, and are shown to result in globally optimal solutions to the certification problem.
By leveraging the input-output structure of samples through a neural network in conjunc-
tion with its compositional structure, an efficient data-driven approach to certification is
developed in Chapter 4. In Chapter 5, a new model is introduced, whose composite con-
vex structure results in closed-form certified radii that meet or exceed prior state-of-the-art
methods. Finally, a nonlinear interpolation structure is introduced in Chapter 6 to robustify
general, unstructured models. The primary contributions of each of these chapters are now
summarized.

Summary of Contributions

This dissertation is organized into two parts, each focusing on one of the primary challenges
of robust machine learning introduced above. The first part, comprised of three chapters, is
focused on computing robustness certificates. The common underlying contributions of these
chapters include novel optimization methods that leverage structure in network architecture
and data distributions to efficiently compute state-of-the-art lower bounds on the robust-
ness certification problem. The second part, comprised of two chapters, centers around the
design of robust machine learning models. These chapters focus on endowing models with
robustness-enhancing structures that are amenable to efficient certification.

Part I: Computing Robustness Certificates

In Chapter 2, branch-and-bound methods for lower-bounding the robustness certification
problem for ReLU neural networks are considered. We consider the popular linear and
semidefinite programming-based methods for bounding the problem. The focus of our work
in this chapter is on determining a branching scheme that results in minimal relaxation error
when employing these bounding methods. We show that computing an optimal branching
strategy is NP-hard. Consequently, we leverage the structure of the ReLU activation func-
tions to derive upper-bounds on the relaxation error incurred by these bounding methods in
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a worst-case sense. We then derive worst-case optimal branching schemes that minimize our
upper bounds in closed form.

In Chapter 3, we ask ourselves whether we can do even better than just tightening lower
bounds on the certification problem. Namely, can we exactly solve the nonconvex certification
problem to global optimality? In this chapter, we show that this is possible by changing our
representation of ReLU neural networks into a min-max affine form. Specifically, we leverage
the min-max structure to prove that the nonconvex certification problem over a convex input
uncertainty set is equivalent to a readily-solvable convex optimization problem, under mild
technical assumptions. As a result, we are able to solve the certification problem for such
min-max representations to global optimality using off-the-shelf convex solvers, which we
show outperform branch-and-bound methods both in terms of certification performance and
speed.

In Chapter 4, we consider data-driven robustness certification in the case that models
are subject to random uncertainties in their inputs. We develop a scenario optimization
approach that is capable of simultaneously localizing model outputs as well as certifying their
safety with high probability, given input-output samples from the model. Conditions for the
convexity of the resulting optimization problem are proven. We show that, by exploiting
the compositional structure of neural networks, one may apply our method to shallower
“surrogate” models to dramatically reduce certification runtime, while maintaining high-
performing robustness certificates for the true model under consideration.

Part II: Designing Robust Models

In Chapter 5, we propose feature-convex models, which consist of the composition of a Lip-
schitz continuous feature map followed by a convex function. By leveraging the composite
convex structure of these models, we derive closed-form certified radii that scale up with
model confidence and scale down with the Lipschitz constant of the feature map. This form
of the robustness certificate motivates us to choose simple, low-Lipschitz feature maps, and to
learn the convex portion of the model from data, using a nonnegatively weighted ReLU neu-
ral network with feedthrough layers. We characterize the decision region geometry of these
feature-convex neural networks and prove that they are universal approximators of convex
classifiers. We also show that their composite convex structure is not restrictive in practice,
as they are able to achieve 100% training accuracy on the benchmark CIFAR-10 cats-dogs
image dataset, and are even able to separate highly unstructured, uniformly distributed data
on a cube with probability that increases exponentially in the data’s underlying dimension.
Our model’s certified radii are shown to meet or exceed prior state-of-the-art methods on
benchmark image and malware classification datasets.

In Chapter 6, we propose locally biased randomized smoothing, which robustifies a given
pretrained classifier by manipulating its decision boundaries via convolution with a “smooth-
ing distribution.” We show that prior smoothing approaches, which use unbiased smoothing
distributions that are independent of the input, cannot robustify even the simplest linear
classifiers, and always work to lower the model’s Lipschitz constant, even if the underlying
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data distribution indicates the need for an increase in nonlinearity to robustify predictions.
We propose to generalize smoothing to allow for biased, input-dependent smoothing distri-
butions. We optimize such a smoothing distribution for first-order approximations of the
base classifier in closed-form—without the need for sample expectations—which we show is
biased and locally pushes the classifier’s decision boundary along the span of its gradient.
Upon approximating the correct direction of this decision boundary manipulation using a
1-nearest neighbor classifier, we are able to prove interpretable certified radii for our model.
The structure of our model is shown to result in nonlinear interpolation between the base
classifier and the 1-nearest neighbor classifier, which we empirically find enhances robustness
on benchmark image datasets.
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Chapter 2

Towards Optimal Branching for ReLU
Neural Networks

In this chapter, we study certifying the robustness of ReLU neural networks against adver-
sarial input perturbations. To diminish the relaxation error suffered by the popular linear
programming (LP) and semidefinite programming (SDP) certification methods, we take a
branch-and-bound approach to propose partitioning the input uncertainty set and solving
the relaxations on each part separately. We show that this approach reduces relaxation
error, and that the error is eliminated entirely upon performing an LP relaxation with a
partition intelligently designed to exploit the nature of the ReLU activations. To scale this
approach to large networks, we consider using a coarser partition whereby the number of
parts in the partition is reduced. We prove that computing such a coarse partition that di-
rectly minimizes the LP relaxation error is NP-hard. By instead minimizing the worst-case
LP relaxation error, we develop a closed-form branching scheme. We extend the analysis
to the SDP, where the feasible set geometry is exploited to design a branching scheme that
minimizes the worst-case SDP relaxation error. Numerical simulations on MNIST, CIFAR-
10, and Wisconsin breast cancer diagnosis classifiers demonstrate significant increases in
the percentages of test samples certified. By independently increasing the input size and
the number of layers, we empirically illustrate under which regimes the branched LP and
branched SDP are best applied.

This chapter is based on the following submitted and published works:

[5] Brendon G. Anderson, Ziye Ma, Jingqi Li, and Somayeh Sojoudi, “Towards optimal
branching of linear and semidefinite relaxations for neural network robustness certification,”
Submitted, 2023.

[4] Brendon G. Anderson, Ziye Ma, Jingqi Li, and Somayeh Sojoudi, “Tightened convex
relaxations for neural network robustness certification,” IEEE Conference on Decision and
Control (CDC), 2020.
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2.1 Introduction

The two primary settings taken in the robustness certification literature consider either
random input uncertainty or adversarial uncertainty. In the former, the neural network
input is assumed to be random and follow a known probability distribution. For instance,
the works Weng et al. [145] and Anderson and Sojoudi [9] (see also Chapter 4) derive high-
probability guarantees that this randomness causes no misclassification or unsafe output. In
the adversarial setting, the input is assumed to be unknown but contained in a prescribed
input uncertainty set. The goal here is to certify that all possible inputs from the uncertainty
set are mapped to outputs that the network operator deems as safe [148, 119]. In this chapter,
we take the latter, worst-case perspective. We remark that this approach is more generally
applicable than the techniques for random inputs. Indeed, certifying that a network is
robust against adversarial inputs immediately also certifies it is robust against random inputs
distributed over the same uncertainty set; if the worst-case input cannot cause a failure, then
neither will randomly selected ones.

The problem of adversarial robustness certification amounts to proving that all possible
outputs in the output set, i.e., the image of the input uncertainty set under the mapping of
the network, are contained in the safe set. However, this output set is generally nonconvex,
even when the input set is convex. Consequently, the certification decision problem has
been shown to be NP-complete, and the optimization-based formulation for solving it is an
NP-hard, nonconvex optimization problem [73, 146]. To make the problem more tractable,
researchers have proposed various ways to over-approximate the nonconvex output set with
a convex one. Performing the certification over the convex surrogate reduces the problem
to an easy-to-solve convex relaxation, and if the relaxation issues a robustness certificate for
the outer approximation, it also issues a certificate for the true set of outputs. Such convex
relaxation-based certification algorithms are sound, but generally incomplete; the network
may be robust even if the algorithm is unable to verify it. Thus, a line of works has been
developed in order to increase the percentage of test inputs that convex relaxation-based
methods are able to certify [148, 115, 50, 132, 103, 21, 141].

Perhaps the simplest and most popular outer approximation technique is based on a lin-
ear programming (LP) relaxation of the ReLU activation function [45, 148]. However, this
method has been shown to yield relatively loose outer approximations, making it possible for
the approximating set to contain unsafe outputs, even if the true output set is entirely safe.
If this occurs, the convex relaxation fails to issue a certificate of robustness, despite the fact
the network is indeed robust. A semidefinite programming (SDP) relaxation was proposed in
Raghunathan, Steinhardt, and Liang [115] and shown to yield tighter outer approximations
when compared to the LP method. Other methods, such as the quadratically-constrained
semidefinite program [50], use sophisticated relaxations to tighten the approximation, but
these SDP-based methods inevitably gain accuracy at the expense of enlarging the compu-
tational cost, and are still susceptible to relaxation error. The work Tjandraatmadja et al.
[132] introduces a joint ReLU LP relaxation that is tighter than the per-neuron approach,
but may require an exponential number of linear inequalities and is weaker overall in com-
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parison to the per-neuron relaxation when embedded into a branch-and-bound scheme [141].
We follow the certification literature’s emphasis on ReLU networks and focus our attention
in this chapter on such models, which, aside from their certifiable structure, are extremely
popular for their non-vanishing gradient property and their quick training times [152].

Branch-and-Bound Certification

As eluded to above, instead of resorting to exorbitantly costly relaxation techniques to lower
the approximation error, e.g., using heuristic variants of Lasserre’s hierarchy [32], state-of-
the-art convex relaxation-based verifiers have turned to branch-and-bound methods, where
the nonconvex optimization domain is recursively partitioned and outer-approximated by
smaller convex sets. In fact, the verifier that won the 2021 and 2022 VNN certification
competition is α, β-CROWN [18, 141], which is a branch-and-bound method that uses linear
programming relaxations in the bounding steps. α, β-CROWN uses α-CROWN to generate
linear upper and lower bounds on the neural network output, together with the heuristic
per-neuron branching methods BaBSR [25] and filtered smart branching (FSB) [39].

The success of α, β-CROWN is interesting, since the BaBSR and FSB branching strate-
gies are designed in the context of Ehler’s per-neuron “triangle” convex relaxations [45],
which is a different and, when activation bounds are adequately chosen, tighter bounding
approach than α-CROWN’s linear bounding of the output, albeit computationally more ex-
pensive. FSB remains the state-of-the-art branching heuristic, outperforming BaBSR [141,
39], which in turn beat a state-of-the-art mixed-integer approach and all prior ReLU neuron
splitting methods: Reluplex, Planet, and Neurify [25, 73, 45, 140]. FSB works by assign-
ing scores to each neuron that are computed by quickly estimating the improvement in the
optimization objective upon splitting that neuron. In this chapter, we propose two branch-
and-bound certification methods, one utilizing the triangle relaxation of Ehlers [45] as a
bounding method and the other utilizing the SDP relaxation of Raghunathan, Steinhardt,
and Liang [115], and for these bounding methods we derive novel branching schemes that
minimize the worst-case relaxation error.

It is worth briefly mentioning here that branch-and-bound certification techniques can
make use of parallel computing when solving independent subproblems arising from the
feasible set partitioning [92, 151, 155]. This improves the scalability and efficiency of neu-
ral network certification. Our proposed branch-and-bound methods are naturally able to
leverage such parallelizations.

Contributions

In this chapter, we fully exploit the piecewise linear structure of ReLU networks in order to
tighten convex relaxations for robustness certification. A condensed summary of our main
contributions is as follows:
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1. For the LP relaxation, we show that a methodically designed finite partition of the
input set allows one to attain zero relaxation error. We then use the structure of this
motivating partition to derive a closed-form branching scheme that minimizes worst-
case relaxation error. This novel branching scheme makes theoretically principled
strides towards optimal LP branching, in contrast to heuristic-based prior methods.

2. We prove that computing the branching neuron that minimizes the actual LP relaxation
error is NP-hard, in turn theoretically justifying our approach of minimizing the worst-
case relaxation error.

3. For the SDP relaxation, we develop a geometrically interpretable measure for how
far the solution is from being rank-1. We then show that, when branching along a
given direction, this rank-1 gap is minimized by a uniform grid. Finally, we derive the
branching direction that minimizes the worst-case relaxation error.

4. We embed our branching schemes into a branch-and-bound framework, and empirically
validate the effectiveness of our approaches on the MNIST, CIFAR-10, and Wisconsin
breast cancer diagnosis benchmarks. Specifically, we experimentally show on these
datasets that our LP branching scheme outperforms the state-of-the-art filtered smart
branching, the branching heuristic used in α, β-CROWN to win the 2021 and 2022
VNN certification competitions. Our SDP branching scheme is found to yield even
higher certified percentages.

Outline

This chapter is organized as follows. Section 2.2 introduces the ReLU robustness certification
problem as well as its basic LP and SDP relaxations. In Section 2.3, we study the effect
of partitioning the input uncertainty set for the LP relaxation. After developing formal
guarantees for its effectiveness, we develop a branching strategy that optimally reduces the
worst-case relaxation error. Similarly, in Section 2.4 we study the partitioned SDP relaxation
and propose a worst-case optimal branching scheme. Section 2.6 demonstrates the developed
methods on numerical examples and studies the effectiveness of branching on the LP and
SDP as the network grows in width and depth. Finally, we conclude in Section 2.7.

Notations

For the reader’s convenience, we list our commonly used symbols for this chapter in Table 2.1,
some of which will be more rigorously defined in the following sections.

For a matrix X ∈ Rm×n, we use two indices to denote an element of X and one index to
denote a column of X, unless otherwise stated. In particular, the (i, j) element and the ith
column of X are denoted by Xij and Xi respectively, or, when necessary for clarity, by (X)ij
and (X)i respectively. For a function f : Rn → Rm and the point x ∈ Rn, we denote the ith
element of the m-vector f(x) by fi(x). Furthermore, for a function f : R → R, we define
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f(X) to be an m× n matrix whose (i, j) element is equal to f(Xij) for all i ∈ {1, 2, . . . ,m}
and all j ∈ {1, 2, . . . , n}. If Z is a square n×n matrix, we use the notation diag(Z) to mean
the n-vector (Z11, Z22, . . . , Znn) and tr(Z) to mean the trace of Z. When Z ∈ Sn, we write
Z ⪰ 0 to mean that Z is positive semidefinite.

For an index set I ⊆ {1, 2, . . . , n}, the symbol 1I is used to denote the n-vector with
(1I)i = 1 for i ∈ I and (1I)i = 0 for i ∈ Ic = {1, 2, . . . , n} \ I. We use I to denote the
indicator function, i.e., I(A) = 1 if event A holds and I(A) = 0 if event A does not hold. For
a set T ⊆ R, we respectively denote its infimum and supremum by inf T and sup T . For a
function f : Rn → R and a set X ⊆ Rn, we write infx∈X f(x) to mean inf{f(x) : x ∈ X}
and similarly for suprema. Finally, we assume that all infima and suprema throughout the
chapter are attained.

Table 2.1: List of commonly used symbols in Chapter 2.

Symbol Meaning

Rn Set of n-vectors with real elements
Sn Set of n× n matrices with real elements
ei ith standard basis vector of Rn

1n n-vector of all ones
X ≤ Y The array X is element-wise less than or equal to the array Y
X ⊙ Y Element-wise (Hadamard) product between arrays X and Y
X ⊘ Y Element-wise (Hadamard) division of array X by array Y
|S| Cardinality of the set S
∥ · ∥∗ Dual norm of the norm ∥ · ∥
d∥·∥(X ) Diameter of X ⊆ Rn with respect to norm ∥ · ∥; d∥·∥(X ) = supx,x′∈X ∥x− x′∥
f Neural network
ReLU Rectified linear unit; ReLU(·) = max{0, ·}
x, z Neural network input and output, respectively
x[k], ẑ[k] Neural network activations and preactivations at layer k, respectively
W [k] Neural network weights at layer k
l[k], u[k] Neural network preactivation lower and upper bounds at layer k, respectively
X Neural network input uncertainty set
f(X ) Neural network output uncertainty set given the input uncertainty set X
ϕ(X ) Optimal value of certification problem over the input uncertainty set X
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2.2 Problem Statement

Description of the Network and Uncertainty

In this chapter, we consider a pretrained K-layer ReLU neural network defined by

x[0] = x,

ẑ[k] = W [k−1]x[k−1] + b[k−1],

x[k] = ReLU(ẑ[k]),

z = x[K],

(2.1)

for all k ∈ {1, 2, . . . , K}. Here, the neural network input is x ∈ Rnx , the output is z ∈ Rnz ,
and the kth layer’s preactivation is ẑ[k] ∈ Rnk . The parameters W [k] ∈ Rnk+1×nk and b[k] ∈
Rnk+1 are the weight matrix and bias vector applied to the kth layer’s activation x[k] ∈ Rnk ,
respectively. Without loss of generality,1 we assume that the bias terms are accounted for
in the activations x[k], thereby setting b[k] = 0 for all layers k. We remark that, since we
make no assumptions on the linear transformations defined by W [k], our work also applies to
networks with linear convolutional layers. We let the function f : Rnx → Rnz denote the map
x 7→ z defined by (2.1). In the case that f is a classification network, the output dimension
nz equals the number of classes. The problem at hand is to certify the robustness in the
neural network output z when the input x is subject to uncertainty.

To model the input uncertainty, we assume that the network inputs are unknown but
contained in a compact set X ⊆ Rnx , called the input uncertainty set. We assume that the set
X is a convex polytope, so that the condition x ∈ X can be written as a finite number of affine
inequalities and equalities. In the adversarial robustness literature, the input uncertainty
set is commonly modeled as X = {x ∈ Rnx : ∥x − x̄∥∞ ≤ ϵ}, where x̄ ∈ Rnx is a nominal
input to the network and ϵ > 0 is an uncertainty radius [148, 115]. We remark that our
generalized polytopic model for X includes this common case. The primary theme of this
chapter revolves around partitioning the input uncertainty set in order to strengthen convex
robustness certification methods. Let us briefly recall the definition of a partition.

Definition 1 (Partition). The collection {X (j) ⊆ X : j ∈ {1, 2, . . . , p}} is said to be a
partition of the input uncertainty set X if X = ∪pj=1X (j) and X (j) ∩ X (k) = ∅ for all j ̸= k.

The set X (j) is called the jth input part.

We generally use the terminology branching to refer to partitioning with two parts, which
is typically applied in a recursive fashion.

Now, in order to describe the robustness of the network (2.1), we need a notion of
permissible outputs. For this, we consider a safe set, denoted S ⊆ Rnz . If an output z ∈ Rnz

1Note that Wx + b =
[
W b

] [x
1

]
=: W̃ x̃, so the bias term b can be eliminated by appending a fixed

value of 1 at the end of the activation x. This parameterization can be used throughout this chapter by
using matching lower and upper activation bounds of 1 in the last coordinate of each layer.
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is an element of S, we say that z is safe. It is common in the robustness certification literature
to consider (possibly unbounded) polyhedral safe sets. We take this same perspective, and
assume that S is defined by

S = {z ∈ Rnz : Cz ≤ d},
where C ∈ RnS×nz and d ∈ RnS are given. Note that, again, our model naturally includes
the classification setting. In particular, suppose that i⋆ ∈ argmaxi∈{1,2,...,nz} fi(x̄) is the true
class of the nominal input x̄. Then, define the ith row of C ∈ Rnz×nz to be

c⊤i = e⊤i − e⊤i⋆

and d to be the zero vector. Then it is immediately clear that an input x (which can be
thought of as a perturbed version of x̄) is safe if and only if fi(x) ≤ fi⋆(x) for all i, i.e., the
network classifies x into class i⋆. From this classification perspective, the safe set represents
the set of outputs without any misclassification (with respect to the nominal input x̄). From
here on, we consider f , X , and S in their general forms—we do not restrict ourselves to the
classification setting.

The Robustness Certification Problem

The fundamental goal of the robustness certification problem is to prove that all inputs in
the input uncertainty set map to safe outputs, i.e., that f(x) ∈ S for all x ∈ X . If this
certificate holds, the network is said to be certifiably robust, which of course is a property
that holds with respect to a particular input uncertainty set. The robustness condition can
also be written as f(X ) ⊆ S, or equivalently

sup
x∈X

(
c⊤i f(x)− di

)
≤ 0 for all i ∈ {1, 2, . . . , nS},

where c⊤i is the ith row of C.2 Under this formulation, the certification procedure amounts
to solving nS optimization problems. The methods we develop in this chapter can be applied
to each of these optimizations individually, and therefore in the sequel we focus on a single
optimization problem by assuming that nS = 1, namely supx∈X c

⊤f(x). We also assume
without loss of generality that d = 0. If d were nonzero, one may absorb d into the cost
vector c and modify the network model by appending a fixed value of 1 at the end of the
output vector f(x). Under these formulations, we write the robustness certification problem
as

ϕ⋆(X ) = sup{c⊤z : z = f(x), x ∈ X}, (2.2)

and recall that we seek to certify that ϕ⋆(X ) ≤ 0.
Since the function f is in general nonconvex, the nonlinear equality constraint z = f(x)

makes the optimization (2.2) a nonconvex problem and the set f(X ) a nonconvex set. Fur-
thermore, since the intermediate activations and preactivations of the network generally have

2In this chapter, we write the certification problem as a maximization. This is equivalent to the mini-
mization form of the problem upon negation of the objective function.
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a large dimension in practice, the problem (2.2) is typically a high-dimensional problem.
Therefore, computing an exact robustness certificate, as formulated in (2.2), is computation-
ally intractable. Instead of directly maximizing c⊤z over the nonconvex output set f(X ), one
can overcome these hurdles by optimizing over a convex outer approximation f̂(X ) ⊇ f(X ).
Indeed, this new problem is a convex relaxation of the original problem, so it is generally
easier and more efficient to solve. If the convex outer approximation is shown to be safe,
i.e., f̂(X ) ⊆ S, then the true nonconvex set f(X ) is also known to be safe, implying that
the robustness of the network is certified. Figure 2.1 illustrates this idea.

X

f̂(X )

f(X )

f

Figure 2.1: The set f̂(X ) is a convex outer approximation of the nonconvex set f(X ). If the
outer approximation is safe, i.e., f̂(X ) ⊆ S, then so is f(X ).

A fundamental drawback to the convex relaxation approach to robustness certification
is as follows: if the outer approximation f̂(X ) is too loose, then it may intersect with the
unsafe region of the output space, meaning f̂(X ) ⊈ S, even in the case where the true output
set is safe. In this scenario, the convex relaxation fails to issue a certificate of robustness,
since the optimal value to the convex relaxation is positive, which incorrectly suggests the
presence of unsafe network inputs within X . This situation is illustrated in Figure 2.2.

The fundamental goal of this chapter is to develop convex relaxation methods for ro-
bustness certification such that the outer approximation tightly fits f(X ), in effect granting
strong certificates while maintaining the computational and theoretical advantages of convex
optimization. We focus on two popular types of convex relaxations, namely, LP [148] and
SDP [115] relaxations. It has been shown that the SDP relaxation for ReLU networks is
tighter than the LP relaxation, with the tradeoff of being computationally more demanding.
Our general approach for both the LP and the SDP relaxations is based on partitioning
the input uncertainty set and solving a convex relaxation on each input part separately.
Throughout our theoretical development and numerical simulations, we will show that this
approach presents a valid, efficient, and effective way to tighten the relaxations of both
LP and SDP certifications, and we derive worst-case optimal branching strategies for both
relaxation methods. We now turn to mathematically formulating these relaxations.
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safe

unsafe
f̂(X )

f(X )

Figure 2.2: This scenario shows that if the convex outer approximation f̂(X ) is too large,
meaning the relaxation is too loose, then the convex approach fails to issue a certificate of
robustness.

LP Relaxation of the Network Constraints

We now introduce the LP relaxation. First, we remark that since X is bounded, the preac-
tivations at each layer are bounded as well. That is, for every k ∈ {1, 2, . . . , K}, there exist
preactivation bounds l[k], u[k] ∈ Rnk such that l[k] ≤ ẑ[k] ≤ u[k], where ẑ[k] is the kth layer’s
preactivation in (2.1), for all x ∈ X . We assume without loss of generality that l[k] ≤ 0 ≤ u[k]

for all k, since, if l
[k]
i > 0 for some i, the preactivation bound l

[k]
i ≤ ẑ

[k]
i can be replaced by

0 ≤ ẑ
[k]
i , and similarly for the case where u

[k]
i < 0. Although there exist various methods

in the literature for efficiently approximating these preactivation bounds, we consider the
bounds to be tight, i.e., ẑ[k] = l[k] for some x ∈ X , and similarly for the upper bound u[k].
Tjeng, Xiao, and Tedrake [133] provides efficient methods for computing these bounds. Now,
following the approach initially introduced in Wong and Kolter [148], we can relax the kth
ReLU constraint in (2.1) to its convex upper envelope between the preactivation bounds.
This is graphically shown in Figure 2.3.

We call the convex upper envelope associated with layer k the relaxed ReLU constraint
set, and its mathematical definition is given by three linear inequalities:

N [k]
LP = {(x[k−1], x[k]) ∈ Rnk−1 × Rnk : x[k] ≤ u[k] ⊙ (ẑ[k] − l[k])⊘ (u[k] − l[k]),

x[k] ≥ 0, x[k] ≥ ẑ[k], ẑ[k] = W [k−1]x[k−1]}.
(2.3)

Next, we define the relaxed network constraint set to be

NLP = {(x, z) ∈ Rnx×Rnz : (x, x[1]) ∈ N [1]
LP, (x

[1], x[2]) ∈ N [2]
LP, . . . , (x

[K−1], z) ∈ N [K]
LP }. (2.4)

In essence, NLP is the set of all input-output pairs of the network that satisfy the relaxed
ReLU constraints at every layer. Note that, since the bounds l[k] and u[k] are determined by
the input uncertainty set X , the set N [k]

LP is also determined by X for all layers k.
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ẑ
[k]
i

x
[k]
i

0l
[k]
i u

[k]
i

ReLU(ẑ
[k]
i )

Figure 2.3: Relaxed ReLU constraint set N [k]
LP at a single neuron i in layer k of the network.

Remark 1. For networks with one hidden layer (i.e., K = 1), the single relaxed ReLU

constraint set coincides with the relaxed network constraint set: N [1]
LP = NLP. Therefore, for

K = 1 we drop the k-notation and simply write z, ẑ, x, W , l, u, and NLP.

Finally, we introduce the LP relaxation of (2.2):

ϕ̂⋆
LP(X ) = sup{c⊤z : (x, z) ∈ NLP, x ∈ X}. (2.5)

Notice that, if x ∈ X and z = f(x), then (x, z) ∈ NLP by the definition of NLP. Furthermore,
since X is a bounded convex polytope and NLP is defined by a system of linear constraints,
we confirm that (2.5) is a linear program. Therefore, (2.5) is indeed an LP relaxation of
(2.2), so it holds that

ϕ⋆(X ) ≤ ϕ̂⋆
LP(X ). (2.6)

This analytically shows what Figure 2.1 and Figure 2.2 illustrate: the condition that

ϕ̂⋆
LP(X ) ≤ 0

is sufficient to conclude that the network is certifiably robust, but if ϕ̂⋆
LP(X ) > 0, the

relaxation fails to certify whether or not the network is robust, since it may still hold that
ϕ⋆(X ) ≤ 0.

SDP Relaxation of the Network Constraints

An alternative convex relaxation of the robustness certification problem can be formulated
as an SDP. This method was first introduced in Raghunathan, Steinhardt, and Liang [115].
Here, we will introduce the SDP relaxation for a network with a single hidden layer for no-
tational convenience. The extension to multilayer networks is straightforward and presented
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in Raghunathan, Steinhardt, and Liang [115]. In this formulation, the optimization variable
(x, z) ∈ Rnx+nz is lifted to a symmetric matrix

P =

1x
z

 [1 x⊤ z⊤
]
∈ Snx+nz+1.

We use the following block-indexing for P :

P =

P1 P⊤
x P⊤

z

Px Pxx Pxz

Pz Pzx Pzz

 ,
where P1 ∈ R, Px ∈ Rnx , Pz ∈ Rnz , Pxx ∈ Snx , Pzz ∈ Snz , Pxz ∈ Rnx×nz , and Pzx = P⊤

xz.
This lifting procedure results in the optimization problem

maximize
P∈Snx+nz+1

c⊤Pz

subject to Pz ≥ 0,

Pz ≥ WPx,

diag(Pxx) ≤ (l + u)⊙ Px − l ⊙ u,
diag(Pzz) = diag(WPxz),

P1 = 1,

P ⪰ 0,

rank(P ) = 1.

Here, there are no preactivation bounds, unlike the LP relaxation. The vectors l, u ∈ Rnx

are lower and upper bounds on the input, which are determined by the input uncertainty
set. For example, if X = {x ∈ Rnx : ∥x− x̄∥∞ ≤ ϵ}, then l = x̄− ϵ1nx and u = x̄+ ϵ1nx .

We remark that the above problem is equivalent to the original robustness certification
problem; no relaxation has been made yet. The only nonconvex constraint in this formulation
is the rank-1 constraint on P . Dropping this rank constraint, we obtain the SDP relaxed
network constraint set:

NSDP = {P ∈ Snx+nz+1 : Pz ≥ 0, Pz ≥ WPx, diag(Pzz) = diag(WPxz),

diag(Pxx) ≤ (l + u)⊙ Px − l ⊙ u, P1 = 1, P ⪰ 0}. (2.7)

Using this relaxed network constraint set as the feasible set for the optimization, we arrive
at the SDP relaxation

ϕ̂⋆
SDP(X ) = sup{c⊤Pz : P ∈ NSDP, Px ∈ X}. (2.8)

It is clear that by dropping the rank constraint, we have enlarged the feasible set, so
again we obtain a viable relaxation of the original problem (2.2): ϕ⋆(X ) ≤ ϕ̂⋆

SDP(X ). In the



CHAPTER 2. TOWARDS OPTIMAL BRANCHING FOR RELU NEURAL
NETWORKS 19

case the solution P ⋆ to (2.8) is rank-1, we can factorize it as

P ⋆ =

 1
x⋆

z⋆

 [1 x⋆⊤ z⋆⊤
]

and conclude that (x⋆, z⋆) solves the original nonconvex problem. However, it is generally
the case that the SDP solution will be of higher rank, leading to relaxation error and the
possibility of a void robustness certificate, similar to the LP relaxation. We now turn to
building upon the LP and SDP convex relaxations via input partitioning in order to tighten
their relaxations.

2.3 Partitioned LP Relaxation

Properties of Partitioned Relaxation

In this section, we investigate the properties and effectiveness of partitioning the input
uncertainty set when solving the LP relaxation for robustness certification. We start by
validating the approach, namely, by showing that solving the LP relaxation separately on
each input part maintains a theoretically guaranteed upper bound on the optimal value of
the unrelaxed problem (2.2). Afterwards, the approach is proven to yield a tighter upper
bound than solving the LP relaxation without partitioning.

Partitioning Gives Valid Relaxation

Proposition 1. Let {X (j) ⊆ X : j ∈ {1, 2, . . . , p}} be a partition of X . Then, it holds that
ϕ⋆(X ) ≤ max

j∈{1,2,...,p}
ϕ̂⋆
LP(X (j)). (2.9)

Proof. Assume that ϕ⋆(X ) > maxj∈{1,2,...,p} ϕ̂
⋆
LP(X (j)). Then,

ϕ⋆(X ) > ϕ̂⋆
LP(X (j)) for all j ∈ {1, 2, . . . , p}. (2.10)

Let (x⋆, z⋆) denote an optimal solution to the unrelaxed problem (2.2), i.e., x⋆ ∈ X , z⋆ =
f(x⋆), and

c⊤z⋆ = ϕ⋆(X ). (2.11)

Since ∪pj=1X (j) = X , there exists j⋆ ∈ {1, 2, . . . , p} such that x⋆ ∈ X (j⋆). Since x⋆ ∈ X (j⋆)

and z⋆ = f(x⋆), it holds that (x⋆, z⋆) ∈ N (j⋆)
LP , where N (j⋆)

LP is the relaxed network constraint
set defined by X (j⋆). Therefore,

c⊤z⋆ ≤ sup{c⊤z : x ∈ X (j⋆), (x, z) ∈ N (j⋆)
LP } = ϕ̂⋆

LP(X (j⋆)) < ϕ⋆(X ),
where the first inequality comes from the feasibility of (x⋆, z⋆) over the j⋆th subproblem
and the final inequality is due to (2.10). This contradicts the optimality of (x⋆, z⋆) given in
(2.11). Hence, (2.9) must hold.
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Despite the fact that Proposition 1 asserts an intuitively expected bound, we remark the
importance for its formal statement and proof. In particular, the inequality (2.9) serves as
the fundamental reason for why the partitioned LP relaxation can be used to certify that all
inputs in X map to safe outputs in the safe set S. Knowing that the partitioning approach
is valid for robustness certification, we move on to studying the effectiveness of partitioning.

Tightening of the Relaxation

We now show that the bound (2.6) can always be tightened by partitioning the input uncer-
tainty set. The result is given for networks with one hidden layer for simplicity. However,
the conclusion naturally generalizes to multilayer ReLU networks.

Proposition 2. Consider a feedforward ReLU neural network with one hidden layer. Let
{X (j) ⊆ X : j ∈ {1, 2, . . . , p}} be a partition of X . For the jth input part X (j), denote the
corresponding preactivation bounds by l(j) and u(j), where l ≤ l(j) ≤ Wx ≤ u(j) ≤ u for all
x ∈ X (j). Then, it holds that

max
j∈{1,2,...,p}

ϕ̂⋆
LP(X (j)) ≤ ϕ̂⋆

LP(X ). (2.12)

Proof. Let j ∈ {1, 2, . . . , p}. It will be shown that N (j)
LP ⊆ NLP. Let (x, z) ∈ N (j)

LP . Define
u′ = u(j), l′ = l(j), and

g(x) = u⊙ (Wx− l)⊘ (u− l),
g′(x) = u′ ⊙ (Wx− l′)⊘ (u′ − l′).

Then, by letting ∆g(x) = g(x)− g′(x) = a⊙ (Wx) + b, where

a = u⊘ (u− l)− u′ ⊘ (u′ − l′),
b = u′ ⊙ l′ ⊘ (u′ − l′)− u⊙ l ⊘ (u− l),

the following relations are derived for all i ∈ {1, 2, . . . , nz}:

g⋆i := inf
{x:l′≤Wx≤u′}

(∆g(x))i

≥ inf
{ẑ:l′≤ẑ≤u′}

(a⊙ ẑ + b)i

= inf
{ẑi:l′i≤ẑi≤u′

i}
(aiẑi + bi)

=

{
ail

′
i + bi if ai ≥ 0,

aiu
′
i + bi if ai < 0.

In the case that ai ≥ 0, we have that

g⋆i ≥ ail
′
i + bi =

(
ui

ui − li
− u′i
u′i − l′i

)
l′i +

(
u′il

′
i

u′i − l′i
− uili
ui − li

)
=

ui
ui − li

(l′i − li) ≥ 0,
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where the final inequality comes from the fact that u ≥ 0, l′ ≥ l, and u > l. On the other
hand, if ai < 0, it holds that

g⋆i ≥ aiu
′
i + bi

=

(
ui

ui − li
− u′i
u′i − l′i

)
u′i +

(
u′il

′
i

u′i − l′i
− uili
ui − li

)
=

ui
ui − li

(u′i − li)− u′i

=
u′i − ui
ui − li

li

≥ 0,

where the final inequality comes from the fact that u′ ≤ u, l ≤ 0, and u > l. Therefore,

g⋆ = (g⋆1, g
⋆
2, . . . , g

⋆
nz
) ≥ 0,

which implies that ∆g(x) = g(x)− g′(x) ≥ 0 for all x such that l(j) = l′ ≤ Wx ≤ u′ = u(j).

Hence, since (x, z) ∈ N (j)
LP , it holds that z ≥ 0, z ≥ Wx, and

z ≤ g′(x) ≤ g(x) = u⊙ (Wx− l)⊘ (u− l).
Therefore, we have that (x, z) ∈ NLP.

Since X (j) ⊆ X (by definition) and N (j)
LP ⊆ NLP, it holds that the solution to the problem

over the smaller feasible set gives a lower bound to the original solution: ϕ̂⋆
LP(X (j)) ≤ ϕ̂⋆

LP(X ).
Finally, since j was chosen arbitrarily, this implies the desired inequality (2.12).

Combining Proposition 1 and Proposition 2 shows that

ϕ⋆(X ) ≤ max
j∈{1,2,...,p}

ϕ̂⋆
LP(X (j)) ≤ ϕ̂⋆

LP(X ),

i.e., that the partitioned LP relaxation is theoretically guaranteed to perform at least as well
as the unpartitioned LP when solving the robustness certification problem. The improvement
in the partitioned LP relaxation is captured by the difference

ϕ̂⋆
LP(X )− max

j∈{1,2,...,p}
ϕ̂⋆
LP(X (j)),

which is always nonnegative. We remark that it is possible for the improvement to be null
in the sense that maxj∈{1,2,...,p} ϕ̂

⋆
LP(X (j)) = ϕ̂⋆

LP(X ). This may occur when the partition
used is poorly chosen. An example of such a poor choice may be if one were to partition
along a direction in the input space that, informally speaking, corresponds to directions
near-orthogonal to the cost vector c in the output space. In this case, one would expect all
improvements to be nullified, and for the partitioned relaxation to give the same optimal
value as the unpartitioned relaxation. Consequently, the following important question arises:
what constitutes a good partition so that the improvement ϕ̂⋆

LP(X )−maxj∈{1,2,...,p} ϕ̂
⋆
LP(X (j))

is strictly greater than zero and maximal? We address this question below, and again in
Section 2.4.
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Motivating Partition

In this section, we begin to answer our earlier inquiry, namely, how to choose a partition in
order to maximize the improvement ϕ̂⋆

LP(X )−maxj∈{1,2,...,p} ϕ̂
⋆
LP(X (j)) in the partitioned LP

relaxation. Recall that this is equivalent to minimizing the relaxation error relative to the
original unrelaxed problem, since ϕ⋆(X ) ≤ maxj∈{1,2,...,p} ϕ̂

⋆
LP(X (j)) ≤ ϕ̂⋆

LP(X ). To this end,
we construct a partition with finitely many parts, based on the parameters of the network,
which is shown to exactly recover the optimal value of the original unrelaxed problem (2.2).
For simplicity, we present the result for a single hidden layer, but the basic idea of partitioning
at the “kinks” of the ReLUs in order to collapse the ReLU upper envelope onto the ReLU
curve and eliminate relaxation error can be generalized to multilayer settings. At this point,
let us remark that in Proposition 3 below, we use a slight difference in notation for the
partition. Namely, we use the set of all nz-vectors with binary elements, J := {0, 1}nz =
{0, 1} × {0, 1} × · · · × {0, 1}, to index the parts of the partition. Under this setting, the
partition is composed of p = 2nz parts, so that X (j) is the part of the partition corresponding
to the binary vector j, which is an element of the index set J . This temporary change in
notation is chosen to simplify the proof of Proposition 3.

Proposition 3. Consider a feedforward ReLU neural network with one hidden layer and
denote the ith row of W by w⊤

i ∈ R1×nx for all i ∈ {1, 2, . . . , nz}. Define J = {0, 1}nz and
take the partition of X to be indexed by J , meaning that {X (j) ⊆ X : j ∈ J }, where for a
given j ∈ J we define

X (j) = {x ∈ X : w⊤
i x ≥ 0 for all i such that ji = 1, w⊤

i x < 0 for all i such that ji = 0}.
(2.13)

Then, the partitioned relaxation is exact, i.e.,

ϕ⋆(X ) = max
j∈J

ϕ̂⋆
LP(X (j)). (2.14)

Proof. We first show that {X (j) ⊆ X : j ∈ J } is a valid partition. Since X (j) ⊆ X for all
j ∈ J , the relation ∪j∈JX (j) ⊆ X is satisfied. Now, suppose that x ∈ X . Then, for all
i ∈ {1, 2, . . . , nz}, either w⊤

i x ≥ 0 or w⊤
i x < 0 holds. Define j ∈ {0, 1}nz as follows:

ji =

{
1 if w⊤

i x ≥ 0,

0 if w⊤
i x < 0,

for all i ∈ {1, 2, . . . , nz}. Then, by the definition of X (j) in (2.13), it holds that x ∈ X (j).
Therefore, the relation x ∈ X implies that x ∈ X (j) for some j ∈ {0, 1}nz = J . Hence,
X ⊆ ∪j∈JX (j), and therefore ∪j∈JX (j) = X .

We now show that X (j) ∩ X (k) = ∅ for all j ̸= k. Let j, k ∈ J with the property that
j ̸= k. Then, there exists i ∈ {1, 2, . . . , nz} such that ji ̸= ki. Let x ∈ X (j). In the case
that w⊤

i x ≥ 0, it holds that ji = 1 and therefore ki = 0. Hence, for all y ∈ X (k), it holds
that w⊤

i y < 0, and therefore x /∈ X (k). An analogous reasoning shows that x /∈ X (k) when
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w⊤
i x < 0. Therefore, one concludes that x ∈ X (j) and j ̸= k implies that x /∈ X (k), i.e., that
X (j) ∩ X (k) = ∅. Hence, {X (j) ⊆ X : j ∈ J } is a valid partition.

We now prove (2.14). Let j ∈ J . Since w⊤
i x ≥ 0 for all i such that ji = 1, the

preactivation lower bound becomes l
(j)
i = 0 for all such i. On the other hand, since w⊤

i x < 0

for all i such that ji = 0, the preactivation upper bound becomes u
(j)
i = 0 for all such i.

Therefore, the relaxed network constraint set (2.4) for the jth input part reduces to

N (j)
LP = {(x, z) ∈ Rnx × Rnz : zi = 0 for all i such that ji = 0,

zi = w⊤
i x = (Wx)i for all i such that ji = 1}.

That is, the relaxed ReLU constraint envelope collapses to the exact ReLU constraint through
the prior knowledge of each preactivation coordinate’s sign.

Therefore, we find that for all x ∈ X (j) it holds that (x, z) ∈ N (j)
LP if and only if z =

ReLU(Wx). Hence, the LP over the jth input part yields that

ϕ̂⋆
LP(X (j)) = sup{c⊤z : (x, z) ∈ N (j)

LP , x ∈ X (j)}
= sup{c⊤z : z = ReLU(Wx), x ∈ X (j)}
≤ sup{c⊤z : z = ReLU(Wx), x ∈ X}
= ϕ⋆(X ).

Since j was chosen arbitrarily, it holds that

max
j∈J

ϕ̂⋆
LP(X (j)) ≤ ϕ⋆(X ).

Since ϕ⋆(X ) ≤ maxj∈J ϕ̂
⋆
LP(X (j)) by the relaxation bound (2.9), the equality (2.14) holds,

as desired.

Although the partition proposed in Proposition 3 completely eliminates relaxation error
of the LP, using it in practice may be computationally intractable, as it requires solving 2nz

separate linear programs. Despite this limitation, the result provides two major theoretical
implications. First, our input partitioning approach is fundamentally shown to be a simple,
yet very powerful method, as the robustness certification problem can be solved exactly via a
finite number of linear program subproblems. Second, the partition proposed in Proposition 3
shows us the structure of an optimal partition, namely that the parts of the partition are
defined by the half-spaces generated by the rows ofW (see Figure 2.4). This result paves the
way to develop a tractable branching scheme that incorporates the reduction in relaxation
error endowed by the structure of this motivating partition. In the next section, we explore
this idea further, and seek to answer the following question: if we only partition along a
single row of the weight matrix, which one is the best to choose?
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X (1)
i

X (2)
i

wi

ẑi

zi

0li ui

ReLU(ẑi)

Figure 2.4: Partitioning based on row w⊤
i of the weight matrix. This partition results in an

exact ReLU constraint in coordinate i over the two resulting input parts X (1)
i = {x ∈ X :

w⊤
i x ≥ 0} and X (2)

i = X \ X (1)
i .

LP Branching Scheme

In this section, we propose an explicit, computationally tractable, and effective LP branching
scheme. The branching scheme is developed based on analyses for a single hidden layer.
However, the resulting branching scheme is still applicable to multilayer networks, and indeed
will be shown to remain effective on two-layer networks in the numerical simulations of
Section 2.6. The development of the partition boils down to two main ideas. First, we restrict
our attention to two-part partitions defined by rows of the weight matrix W , specifically,
X (1)

i = {x ∈ X : w⊤
i x ≥ 0} and X (2)

i = X \ X (1)
i , as motivated in the previous section.

Second, we seek which index i ∈ {1, 2, . . . , nz} gives the best partition, in the sense that
the relaxation error of the resulting partitioned LP is minimized. As will be shown below,
this second aspect is NP-hard to discern in general. Therefore, to find the optimal row to
partition along, we instead seek to minimize the worst-case relaxation error.

Worst-Case Relaxation Bound

We begin by bounding the relaxation error below.

Theorem 1. Consider a feedforward ReLU neural network with one hidden layer, with the
input uncertainty set X and preactivation bounds l, u ∈ Rnz . Consider also the relaxation
error ∆ϕ⋆(X ) := ϕ̂⋆

LP(X ) − ϕ⋆(X ). Let (x̃⋆, z̃⋆) and (x⋆, z⋆) be optimal solutions for the

relaxation ϕ̂⋆
LP(X ) and the unrelaxed problem ϕ⋆(X ), respectively. Given an arbitrary norm
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∥ · ∥ on Rnx, it holds that

∆ϕ⋆(X ) ≤
nz∑
i=1

(
ReLU(ci)

ui
ui − li

(min{∥wi∥∗d∥·∥(X ), ui} − li)

+ ReLU(−ci)min{∥wi∥∗d∥·∥(X ), ui}
)
,

(2.15)

where ∥ · ∥∗ is the dual norm of ∥ · ∥.

Proof. First, recall that X ⊆ Rnx is assumed to be compact, and is therefore bounded, and
hence d∥·∥(X ) <∞. The definitions of (x̃⋆, z̃⋆) and (x⋆, z⋆) give that

∆ϕ⋆(X ) =
nz∑
i=1

ci(z̃
⋆
i − z⋆i ) ≤

nz∑
i=1

∆ϕ⋆
i , (2.16)

where

∆ϕ⋆
i = sup

{
ci(z̃i − zi) : zi = ReLU(w⊤

i x), z̃i ≥ 0, z̃i ≥ w⊤
i x̃,

z̃i ≤
ui

ui − li
(w⊤

i x̃− li), x, x̃ ∈ X
}

for all i ∈ {1, 2, . . . , nz}. Note that

∆ϕ⋆
i = sup

{
ci(z̃i − zi) : zi = ReLU(ẑi), z̃i ≥ 0, z̃i ≥ ˆ̃zi, z̃i ≤

ui
ui − li

(ˆ̃zi − li),

ẑ = Wx, ˆ̃z = Wx̃, x, x̃ ∈ X
}
.

If x, x̃ ∈ X and ẑ, ˆ̃z satisfy ẑ = Wx, ˆ̃z = Wx̃, then they satisfy l ≤ ẑ, ˆ̃z ≤ u and |ˆ̃zk − ẑk| =
|w⊤

k (x̃−x)| ≤ ∥wk∥∗∥x̃−x∥ ≤ ∥wk∥∗d∥·∥(X ) for all k ∈ {1, 2, . . . , nz} by the Cauchy-Schwarz
inequality for dual norms. Therefore,

∆ϕ⋆
i ≤ sup

{
ci(z̃i − zi) : zi = ReLU(ẑi), z̃i ≥ 0, z̃i ≥ ˆ̃zi, z̃i ≤

ui
ui − li

(ˆ̃zi − li),

l ≤ ẑ, ˆ̃z ≤ u, |ˆ̃zk − ẑk| ≤ ∥wk∥∗d∥·∥(X ) for all k ∈ {1, 2, . . . , nz}, ẑ, ˆ̃z ∈ Rnz

}
= sup

{
ci(z̃i − zi) : zi = ReLU(ẑi), z̃i ≥ 0, z̃i ≥ ˆ̃zi, z̃i ≤

ui
ui − li

(ˆ̃zi − li),

li ≤ ẑi, ˆ̃zi ≤ ui, |ˆ̃zi − ẑi| ≤ ∥wi∥∗d∥·∥(X ), ẑi, ˆ̃zi ∈ R
}
.
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For ci ≥ 0, the above inequality yields that

∆ϕ⋆
i ≤ ci sup

{
z̃i − zi : zi = ReLU(ẑi), z̃i ≥ 0, z̃i ≥ ˆ̃zi, z̃i ≤

ui
ui − li

(ˆ̃zi − li),

li ≤ ẑi, ˆ̃zi ≤ ui, |ˆ̃zi − ẑi| ≤ ∥wi∥∗d∥·∥(X ), ẑi, ˆ̃zi ∈ R
}
.

The optimal solution to the above supremum is readily found by comparing the line z̃i =
ui

ui−li
(ˆ̃zi − li) to the function zi = ReLU(ẑi) over ˆ̃zi, ẑi ∈ [li, ui]. In particular, the max-

imum distance between z̃i and zi on the above feasible set occurs when zi = ẑi = 0,
ˆ̃zi = ∥wi∥∗d∥·∥(X ), and z̃i = ui

ui−li
(∥wi∥∗d∥·∥(X )− li). Therefore, we find that

∆ϕ⋆
i ≤ ci

ui
ui − li

(∥wi∥∗d∥·∥(X )− li), (2.17)

for all i ∈ {1, 2, . . . , nz} such that ci ≥ 0. We also note the trivial bound that z̃i − zi ≤ ui
on the feasible set of the above supremum, so that

∆ϕ⋆
i ≤ ciui = ci

ui
ui − li

(ui − li). (2.18)

The inequalities (2.17) and (2.18) together imply that

∆ϕ⋆
i ≤ ci

ui
ui − li

(min{∥wi∥∗d∥·∥(X ), ui} − li) (2.19)

for all i ∈ {1, 2, . . . , nz} such that ci ≥ 0.
On the other hand, for all i ∈ {1, 2, . . . , nz} such that ci < 0, we have that

∆ϕ⋆
i ≤ ci inf

{
z̃i − zi : zi = ReLU(ẑi), z̃i ≥ 0, z̃i ≥ ˆ̃zi, z̃i ≤

ui
ui − li

(ˆ̃zi − li),

li ≤ ẑi, ˆ̃zi ≤ ui, |ˆ̃zi − ẑi| ≤ ∥wi∥∗d∥·∥(X ), ẑi, ˆ̃zi ∈ R
}
.

The optimal solution to the above infimum is readily found by comparing the line z̃i = 0 to
the function zi = ReLU(ẑi) over ˆ̃zi, ẑi ∈ [li, ui]. In particular, the minimum value of z̃i − zi
on the above feasible set occurs when z̃i = ˆ̃zi = 0 and zi = ẑi = ∥wi∥∗d∥·∥(X ). Therefore, we
find that

∆ϕ⋆
i ≤ −ci∥wi∥∗d∥·∥(X ), (2.20)

for all i ∈ {1, 2, . . . , nz} such that ci < 0. We also note the trivial bound that z̃i − zi ≥ −ui
on the feasible set of the above infimum, so that

∆ϕ⋆
i ≤ −ciui. (2.21)

The inequalities (2.20) and (2.21) together imply that

∆ϕ⋆
i ≤ −ci min{∥wi∥∗d∥·∥(X ), ui} (2.22)

for all i ∈ {1, 2, . . . , nz} such that ci < 0. Substituting (2.19) and (2.22) into (2.16) gives
the desired bound (2.15).
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The value ∆ϕ⋆
i in the proof of Theorem 1 can be interpreted as the worst-case relaxation

error in coordinate i. From this perspective, Theorem 1 gives an upper bound on the worst-
case relaxation error of the overall network. Notice that, since min{∥wi∥∗d∥·∥(X ), ui} ≤ ui,
the bound (2.15) immediately gives rise to the simple bound that

∆ϕ⋆(X ) ≤
nz∑
i=1

(ReLU(ci) + ReLU(−ci))ui =
nz∑
i=1

|ci|ui,

the right-hand side of which equals the relaxation error incurred when, at every neuron, the
activations of the relaxation solution and the original nonconvex solution are at opposite
corners of the relaxed ReLU constraint set, i.e., the convex upper envelope illustrated in
Figure 2.3. On the other hand, when d∥·∥(X ) is small, i.e., the input uncertainty set is small,
one would expect the number of “kinks” in the graph of f over X to be small, and as a
consequence the relaxation error to decrease. This intuition is captured by the bound (2.15),
since, in this case, we find that

∆ϕ⋆(X ) ≤
nz∑
i=1

(
ReLU(ci)

ui
ui − li

(∥wi∥∗d∥·∥(X )− li) + ReLU(−ci)∥wi∥∗d∥·∥(X )
)

≈ −
nz∑
i=1

ReLU(ci)
uili
ui − li

≤
nz∑
i=1

|ci|ui.

To continue our development of a branching scheme that is optimal with respect to the
worst-case relaxation error, we use (2.15) to bound the relaxation error of the partitioned
LP in terms of the row w⊤

i that is used to define the partition. This bound is given in the
following lemma.

Lemma 1. Let i ∈ {1, 2, . . . , nz}. Consider a two-part partition of X given by {X (1)
i ,X (2)

i },
where X (1)

i = {x ∈ X : w⊤
i x ≥ 0} and X (2)

i = X \ X (1)
i . Consider also the partitioned

relaxation error ∆ϕ⋆({X (1)
i ,X (2)

i }) := maxj∈{1,2} ϕ̂
⋆
LP(X (j)

i )− ϕ⋆(X ). It holds that

∆ϕ⋆({X (1)
i ,X (2)

i }) ≤ |ci|min{∥wi∥∗d∥·∥(X ), ui}

+
nz∑
k=1
k ̸=i

(
ReLU(ck)

uk
uk − lk

(min{∥wk∥∗d∥·∥(X ), uk} − lk)

+ ReLU(−ck)min{∥wk∥∗d∥·∥(X ), uk}
)
.

(2.23)

Proof. Consider the relaxation solved over the first input part, X (1)
i , and denote by l(1), u(1) ∈

Rnz the corresponding preactivation bounds. Since w⊤
i x ≥ 0 on this input part, the preacti-
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vation bounds for the first subproblem ϕ̂⋆
LP(X (1)

i ) can be taken as

l(1) = (l1, l2, . . . , li−1, 0, li+1, . . . , lnz)

and u(1) = u. Thus, from (2.15) and the fact that d∥·∥(X (j)
i ) ≤ d∥·∥(X ) for j ∈ {1, 2}, it

follows that

∆ϕ⋆(X (1)
i ) ≤ |ci|min{∥wi∥∗d∥·∥(X ), ui}

+
nz∑
k=1
k ̸=i

(
ReLU(ck)

uk
uk − lk

(min{∥wk∥∗d∥·∥(X ), uk} − lk)

+ ReLU(−ck)min{∥wk∥∗d∥·∥(X ), uk}
)
.

(2.24)

Similarly, over the second input part, X (2)
i , we have that w⊤

i x < 0, and so the preactivation

bounds for the second subproblem ϕ̂⋆
LP(X (2)

i ) can be taken as l(2) = l and

u(2) = (u1, u2, . . . , ui−1, 0, ui+1, . . . , unz),

resulting in a similar bound to (2.24):

∆ϕ⋆(X (2)
i ) ≤

nz∑
k=1
k ̸=i

(
ReLU(ck)

uk
uk − lk

(min{∥wk∥∗d∥·∥(X ), uk} − lk)

+ ReLU(−ck)min{∥wk∥∗d∥·∥(X ), uk}
)
.

(2.25)

Putting the two bounds (2.24) and (2.25) together and using the fact that ϕ⋆(X (j)
i ) ≤ ϕ⋆(X )

for all j ∈ {1, 2}, we find that

∆ϕ⋆({X (1)
i ,X (2)

i }) = max
j∈{1,2}

(
ϕ̂⋆
LP(X (j)

i )− ϕ⋆(X )
)

≤ max
j∈{1,2}

(
ϕ̂⋆
LP(X (j)

i )− ϕ⋆(X (j)
i )
)

= max
j∈{1,2}

∆ϕ⋆(X (j)
i )

≤ |ci|min{∥wi∥∗d∥·∥(X ), ui}

+
nz∑
k=1
k ̸=i

(
ReLU(ck)

uk
uk − lk

(min{∥wk∥∗d∥·∥(X ), uk} − lk)

+ ReLU(−ck)min{∥wk∥∗d∥·∥(X ), uk}
)
,

as desired.
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Proposed Branching Scheme

Lemma 1 bounds the worst-case relaxation error for each possible row-based partition.
Therefore, our final step in the development of our branching scheme is to find which row
minimizes the upper bound (2.23). This worst-case optimal branching scheme is now pre-
sented.

Theorem 2. Consider the two-part partitions defined by the rows of W : {X (1)
i ,X (2)

i }, where
X (1)

i = {x ∈ X : w⊤
i x ≥ 0} and X (2)

i = X \ X (1)
i for all i ∈ {1, 2, . . . , nz} =: I. The optimal

partition that minimizes the worst-case relaxation error bound in (2.23) is given by

i⋆ ∈ argmin
i∈I

ReLU(ci)
li

ui − li
(
ui −min{∥wi∥∗d∥·∥(X ), ui}

)
. (2.26)

Proof. Denote the bound in (2.23) of Lemma 1 by

B(i) :=|ci|min{∥wi∥∗d∥·∥(X ), ui}

+
nz∑
k=1
k ̸=i

(
ReLU(ck)

uk
uk − lk

(min{∥wk∥∗d∥·∥(X ), uk} − lk)

+ ReLU(−ck)min{∥wk∥∗d∥·∥(X ), uk}
)
,

which is the quantity to be minimized over i ∈ I. We may rewrite this as

B(i) =
nz∑
k=1

(
ReLU(ck)

uk
uk − lk

(min{∥wk∥∗d∥·∥(X ), uk} − lk)

+ ReLU(−ck)min{∥wk∥∗d∥·∥(X ), uk}
)

+ |ci|min{∥wi∥∗d∥·∥(X ), ui}

−
(
ReLU(ci)

ui
ui − li

(min{∥wi∥∗d∥·∥(X ), ui} − li)

+ ReLU(−ci)min{∥wi∥∗d∥·∥(X ), ui}
)
.
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Hence, using the fact that |ci| = ReLU(ci) + ReLU(−ci), we find that

min
i∈I

B(i) = min
i∈I

(
|ci|min{∥wi∥∗d∥·∥(X ), ui}

−
(
ReLU(ci)

ui
ui − li

(min{∥wi∥∗d∥·∥(X ), ui} − li)

+ ReLU(−ci)min{∥wi∥∗d∥·∥(X ), ui}
))

= min
i∈I

(
min{∥wi∥∗d∥·∥(X ), ui}

(
|ci| − ReLU(ci)

ui
ui − li

− ReLU(−ci)
)

+ReLU(ci)
uili
ui − li

)

= min
i∈I

(
min{∥wi∥∗d∥·∥(X ), ui}

(
ReLU(ci)− ReLU(ci)

ui
ui − li

)

+ReLU(ci)
uili
ui − li

)
= min

i∈I
ReLU(ci)

li
ui − li

(
ui −min{∥wi∥∗d∥·∥(X ), ui}

)
,

as desired.

Theorem 2 provides the branching scheme that optimally reduces the worst-case re-
laxation error that we seek. We remark its simplicity: to decide which row to partition
along, it suffices to enumerate the values ReLU(ci)

li
ui−li

(ui − min{∥wi∥∗d∥·∥(X ), ui}) for
i ∈ {1, 2, . . . , nz}, then choose the row corresponding to the minimum amongst these values.
In practice (especially when using ∥ · ∥ = ∥ · ∥∞), d∥·∥(X ) tends to be relatively small, mak-
ing these values approximately equal to ReLU(ci)

uili
ui−li

. In our numerical simulations that
follow, we find that using these simplified values to select the partition does not degrade
performance. Note that this optimization over i scales linearly with the dimension nz, and
the resulting LP subproblems on each input part only require the addition of one extra linear
constraint, meaning that this partitioning scheme is highly efficient.

We also note that Theorem 2 can be immediately extended to design multi-part partitions
in two interesting ways. First, by ordering the values ReLU(ci)

uili
ui−li

, we are ordering the

optimality of the rows w⊤
i to partition along. Therefore, by partitioning along the np > 1

rows corresponding to the smallest np of these values, Theorem 2 provides a strategy to
design an effective 2np-part partition, in the case one prefers to perform more than just a two-
part partition. Second, Theorem 2 can be used directly in a branch-and-bound algorithm.
See Section 2.5 for implementation details. In our simulations that follow, we find that
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this technique works particularly well; our partition yields a branching method for branch-
and-bound that outperforms the state-of-the-art per-neuron branching technique for ReLU
networks.

Optimal Partitioning is NP-Hard

In this section, we show that finding a row-based partition that minimizes the actual LP
relaxation error is an NP-hard problem. Recall that this approach is in contrast to our
previous approach in the sense that our optimal partition in Theorem 2 minimizes the worst-
case relaxation error. Consequently, the results of this section show that the partition given
by Theorem 2 is in essence an optimal tractable LP partitioning scheme.

To start, recall the robustness certification problem for a K-layer ReLU neural network:

maximize c⊤x[K]

subject to x[0] ∈ X ,
x[k+1] = ReLU(W [k]x[k]), k ∈ {0, 1, . . . , K − 1},

(2.27)

where the optimal value of (2.27) is denoted by ϕ⋆(X ). Moreover, recall the LP relaxation
of (2.27):

maximize c⊤x[K]

subject to x[0] ∈ X ,
x[k+1] ≥ W [k]x[k], k ∈ {0, 1, . . . , K − 1},
x[k+1] ≥ 0, k ∈ {0, 1, . . . , K − 1},
x[k+1] ≤ u[k+1] ⊙ (W [k]x[k] − l[k+1])⊘ (u[k+1] − l[k+1]), k ∈ {0, 1, . . . , K − 1}.

(2.28)
As suggested by the motivating partition of Proposition 3, consider partitioning the input

uncertainty set into 2np parts based on np preactivation decision boundaries corresponding
to activation functions in the first layer. In particular, for each j ∈ Jp := {j1, j2, . . . , jnp} ⊆
{1, 2, . . . , n1} we partition the input uncertainty set along the hyperplane w

[0]⊤
j x[0] = 0,

giving rise to the partition {X (1),X (2), . . . ,X (2np )}. Note that, for all j ∈ Jp, the partition
implies that the jth coordinate of the first layer’s ReLU equality constraint becomes linear
and exact on each part of the partition. Therefore, for all j′ ∈ {1, 2, . . . , 2np}, we may write
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the LP relaxation over part X (j′) as

maximize c⊤x[K]

subject to x[0] ∈ X (j′),

x[k+1] ≥ W [k]x[k], k ∈ {0, 1, . . . , K − 1},
x[k+1] ≥ 0, k ∈ {0, 1, . . . , K − 1},
x[k+1] ≤ u[k+1] ⊙ (W [k]x[k] − l[k+1])⊘ (u[k+1] − l[k+1]), k ∈ {0, 1, . . . , K − 1},
x
[1]
j = ReLU(w

[0]⊤
j x[0]), j ∈ Jp,

(2.29)
with optimal objective value denoted by ϕ̂⋆

LP(X (j′)), and thus the partitioned LP relaxation
becomes

ϕ⋆
Jp
(X ) := max

j′∈{1,2,...,2np}
ϕ̂⋆
LP(X (j′)). (2.30)

To reiterate, the final equality constraint in (2.29) is linear over the restricted feasible set
X (j′), which makes the problem (2.30) a partitioned linear program.

If we now allow the indices used to define the partition, namely Jp, to act as a variable, we
can search for the optimal np rows of the first layer that result in the tightest partitioned LP
relaxation. To this end, the problem of optimal partitioning in the first layer is formulated
as

minimize
Jp⊆{1,2,...,n1}

f ⋆
Jp
(X )

subject to |Jp| = np.
(2.31)

In what follows, we prove the NP-hardness of the optimal partitioning problem (2.31),
thereby supporting the use of the worst-case sense optimal partition developed in Theorem 2.
To show the hardness of (2.31), we reduce an arbitrary instance of an NP-hard problem, the
Min-K-Union problem, to an instance of (2.31). The reduction will show that the Min-K-
Union problem can be solved by solving an optimal partitioning problem. Before we proceed,
we first recall the definition of the Min-K-Union problem.

Definition 2 (Min-K-Union problem [66]). Consider a collection of n sets {S1,S2, . . . ,Sn},
where Sj is finite for all j ∈ {1, 2, . . . , n}, and a positive integer K ≤ n. Find K sets in
the collection whose union has minimum cardinality, i.e., find a solution J ⋆ of the following
optimization problem:

minimize
J⊆{1,2,...,n}

∣∣∣∣∣⋃
j∈J

Sj
∣∣∣∣∣

subject to |J | = K.
(2.32)

Remark the similarities between the optimal partitioning problem and the Min-K-Union
problem. In particular, if we think of the convex upper envelopes of the relaxed ReLU
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constraints as a collection of sets, then the goal of finding the optimal np input coordinates
to partition along is intuitively equivalent to searching for the K = n1 − np convex upper
envelopes with minimum size, i.e., those with the least amount of relaxation. This perspective
shows that the optimal partitioning problem is essentially a Min-K-Union problem over the
collection of relaxed ReLU constraint sets. Since the Min-K-Union problem is NP-hard in
general, it is not surprising that the optimal partitioning problem is also NP-hard. Indeed,
this result is formalized in the following result.

Theorem 3. Consider the partitioned LP relaxation (2.30) of the K-layer ReLU neural net-
work certification problem. The optimal partitioning problem in the first-layer, as formulated
in (2.31), is NP-hard.

Proof. See Appendix 2.A.

This concludes our development and analysis for partitioning the LP relaxation. In the
next section, we follow a similar line of reasoning to develop a branching scheme for the
other popular convex robustness certification technique, i.e., the SDP relaxation. Despite
approaching this relaxation from the same partitioning perspective as the LP, the vastly
different geometries of the LP and SDP feasible sets make the branching procedures quite
distinct.

2.4 Partitioned SDP Relaxation

Tightening of the Relaxation

As with the LP relaxation, we begin by showing that the SDP relaxation error is decreased
when the input uncertainty set is partitioned. This proposition is formalized below.

Proposition 4. Consider a neural network with one hidden ReLU layer. Let {X (j) : j ∈
{1, 2, . . . , p}} be a partition of X . For the jth input part X (j), denote the corresponding input
bounds by l ≤ l(j) ≤ x ≤ u(j) ≤ u, where x ∈ X (j). Then, it holds that

max
j∈{1,2,...,p}

ϕ̂⋆
SDP(X (j)) ≤ ϕ̂⋆

SDP(X ). (2.33)

Proof. Let j ∈ {1, 2, . . . , p}. From the definition of the partition, it holds that X (j) ⊆ X .
What remains to be shown is that N (j)

SDP ⊆ NSDP.
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Let P ∈ N (j)
SDP. Define u

′ = u(j) and l′ = l(j). Since P ∈ N (j)
SDP, it follows that

Pz ≥ 0,

Pz ≥ WPx,

diag(Pzz) = diag(WPxz),

diag(Pxx) ≤ (l′ + u′)⊙ Px − l′ ⊙ u′,
P1 = 1,

P ⪰ 0.

To show that P ∈ NSDP, we should show that the above expressions imply that diag(Pxx) ≤
(l + u) ⊙ Px − l ⊙ u. To do so, define ∆li ≥ 0 and ∆ui ≥ 0 such that l′i = li + ∆li and
u′i = ui −∆ui for all i ∈ {1, 2, . . . , nx}. Then we find that

((l′ + u′)⊙ Px − l′ ⊙ u′)i = (l′i + u′i)(Px)i − l′iu′i
= (li + ui)(Px)i − liui + (∆li −∆ui)(Px)i

− (∆liui −∆uili −∆ui∆li)

= ((l + u)⊙ Px − l ⊙ u)i + (∆li −∆ui)(Px)i

− (∆liui −∆uili −∆ui∆li)

= ((l + u)⊙ Px − l ⊙ u)i +∆i,

where ∆i := (∆li−∆ui)(Px)i− (∆liui−∆uili−∆ui∆li). Therefore, it suffices to prove that
∆i ≤ 0 for all i. Since −liui ≥ −l′iu′i by definition, it holds that ∆liui−∆uili−∆ui∆li ≥ 0.
Thus, when (∆li − ∆ui)(Px)i ≤ 0, it holds that ∆i ≤ 0, as desired. On the other hand,
suppose that (∆li −∆ui)(Px)i ≥ 0. Then we find two cases:

1. (∆li −∆ui) ≥ 0 and (Px)i ≥ 0. In this case, the maximum value of (∆li −∆ui)(Px)i
is (∆li −∆ui)u

′
i. Therefore, the maximum value of ∆i is

∆i = (∆li −∆ui)u
′
i − (∆liui −∆uili −∆ui∆li)

= ∆li(u
′
i − ui)−∆uiu

′
i +∆uili +∆ui∆li

= ∆li(−∆ui) + ∆ui∆li −∆uiu
′
i +∆uili

= −∆uiu
′
i +∆uili.

Both of the two final terms are nonpositive, and therefore ∆i ≤ 0.

2. (∆li −∆ui) ≤ 0 and (Px)i ≤ 0. In this case, the maximum value of (∆li −∆ui)(Px)i
is (∆li −∆ui)l

′
i. Therefore, the maximum value of ∆i is

∆i = (∆li −∆ui)l
′
i − (∆liui −∆uili −∆ui∆li)

= −∆ui∆li +∆ui∆li +∆lil
′
i −∆liui

= ∆lil
′
i −∆liui.

Both of the two final terms are nonpositive, and therefore ∆i ≤ 0.
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Hence, we find that (l′ + u′)⊙ Px − l′ ⊙ u′ ≤ (l + u)⊙ Px − l ⊙ u for all P ∈ N (j)
SDP, proving

that P ∈ NSDP, and therefore N (j)
SDP ⊆ NSDP.

Since X (j) ⊆ X and N (j)
SDP ⊆ NSDP, it holds that the solution to the problem over the

smaller feasible set lower bounds the original solution: ϕ̂⋆
SDP(X (j)) ≤ ϕ̂⋆

SDP(X ). Finally, since
j was chosen arbitrarily, this implies the desired inequality (2.33).

Proposition 4 guarantees that partitioning yields a tighter SDP relaxation. However,
it is not immediately clear how to design the partition in order to maximally reduce the
relaxation error. Indeed, a poorly designed partition may even yield an equality in the
bound (2.33). One notable challenge in designing the SDP partition relates to an inherent
difference between the SDP relaxation and the LP relaxation. With the LP relaxation, the
effect of partitioning can be visualized by how the geometry of the feasible set changes; see
Figure 2.4. However, with the SDP, the relaxation comes from dropping the nonconvex rank
constraint, the geometry of which is more abstract and harder to exploit.

In the next section, we develop a bound measuring how far the SDP solution is from
being rank-1, which corresponds to an exact relaxation, where the improvement in (2.33) is
as good as possible. By studying the geometry of the SDP feasible set through this more
tractable bound, we find that the partition design for the SDP naturally reduces to a uniform
partition along the coordinate axes of the input set.

Motivating Partition

In this section, we seek the form of a partition that best reduces the SDP relaxation error. By
restricting our focus to ReLU networks with one hidden layer, we develop a simple necessary
condition for the SDP relaxation to be exact, i.e., for the matrix P to be rank-1. We then
work on the violation of this condition to define a measure of how close P is to being rank-1
in the case it has higher rank. Next, we develop a tractable upper bound on this rank-1 gap.
Finally, we formulate an optimization problem in which we search for a partition of the input
uncertainty set that minimizes our upper bound. We show that such a worst-case optimal
partition takes the form of a uniform division of the input set. The result motivates the use of
uniform partitions of the input uncertainty set, and below, we answer the question of which
coordinate is best to uniformly partition along. Note that, despite the motivating partition
being derived for networks with one hidden layer, the relaxation tightening in Proposition 4
still holds for multilayer networks. Indeed, the numerical simulations in Section 2.6 will show
that the resulting SDP branching scheme design maintains a relatively constant efficacy as
the number of layers increases.

Proposition 5. Let P ⋆ ∈ Snx+nz+1 denote a solution to the semidefinite programming re-
laxation (2.8). If the relaxation is exact, meaning that rank(P ⋆) = 1, then the following
conditions hold:

tr(P ⋆
xx) = ∥P ⋆

x∥22, tr(P ⋆
zz) = ∥P ⋆

z ∥22. (2.34)
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Proof. Since the SDP relaxation is exact, it holds that rank(P ⋆) = 1. Therefore, P ⋆ can be
expressed as

P ⋆ =

1v
w

 [1 v⊤ w⊤] =
1 v⊤ w⊤

v vv⊤ vw⊤

w wv⊤ ww⊤


for some vectors v ∈ Rnx and w ∈ Rnz . Recall the block decomposition of P ⋆:

P ⋆ =

P ⋆
1 P ⋆⊤

x P ⋆⊤
z

P ⋆
x P ⋆

xx P ⋆
xz

P ⋆
z P ⋆

zx P ⋆
zz

 .
Equating coefficients, we find that P ⋆

xx = vv⊤ = P ⋆
xP

⋆⊤
x and P ⋆

zz = ww⊤ = P ⋆
z P

⋆⊤
z . Therefore,

tr(P ⋆
xx) = tr(P ⋆

xP
⋆⊤
x ) = tr(P ⋆⊤

x P ⋆
x ) = ∥P ⋆

x∥22,
proving the first condition in (2.34). The second condition follows in the same way.

Enforcing the conditions (2.34) as constraints in the SDP relaxation may assist in pushing
the optimization variable P towards a rank-1 solution. However, because the conditions in
(2.34) are nonlinear equality constraints in the variable P , we cannot impose them directly on
the SDP without making the problem nonconvex. Instead, we will develop a convex method
based on the rank-1 conditions (2.34) that can be used to motivate the SDP solution to have
a lower rank.

In the general case that rank(P ) = r ≥ 1, P may be written as P = V V ⊤, where

V =

e⊤X
Z

 , e ∈ Rr, X ∈ Rnx×r, Z ∈ Rnz×r,

and where the vector e satisfies the equation e⊤e = ∥e∥22 = 1. The ith row of X (respectively,
Z) is denoted by X⊤

i ∈ R1×r (respectively, Z⊤
i ∈ R1×r). Under this expansion, we find that

Px = Xe, Pz = Ze, Pxx = XX⊤, and Pzz = ZZ⊤. Therefore, the conditions (2.34) can be
written as

tr(XX⊤) = ∥Xe∥22, tr(ZZ⊤) = ∥Ze∥22.
To simplify the subsequent analysis, we will restrict our attention to the first of these

two necessary conditions for P to be rank-1. As the simulation results in Section 2.6 show,
this restriction still yields significant reduction in relaxation error. Now, note that

tr(XX⊤) =
nx∑
i=1

(XX⊤)ii =
nx∑
i=1

∥Xi∥22,

where (XX⊤)ii is the (i, i) element of the matrix XX⊤, and also that

∥Xe∥22 =
nx∑
i=1

(Xe)2i =
nx∑
i=1

(X⊤
i e)

2,
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where (Xe)i is the ith element of the vector Xe. Therefore, the rank-1 necessary condition
is equivalently written as

g(P ) :=
nx∑
i=1

(∥Xi∥22 − (X⊤
i e)

2) = 0,

where g(P ) serves as a measure of the rank-1 gap. Note that g(P ) is solely determined by
P = V V ⊤, even though it is written in terms of X and e, which are blocks of V . In general,
g(P ) ≥ 0 when rank(P ) ≥ 1.

Lemma 2. Let P ∈ Snx+nz+1 be an arbitrary feasible point for the SDP relaxation (2.8).
The rank-1 gap g(P ) is nonnegative, and is zero if P is rank-1.

Proof. By the Cauchy-Schwarz inequality, we have that |X⊤
i e| ≤ ∥Xi∥2∥e∥2 for all i ∈

{1, 2, . . . , nx}. Since P is feasible for (2.8) we also have that ∥e∥2 = 1, so squaring both sides
of the inequality gives that (X⊤

i e)
2 ≤ ∥Xi∥22. Summing these inequalities over i gives

g(P ) =
nx∑
i=1

(∥Xi∥22 − (X⊤
i e)

2) ≥ 0.

If P is rank-1, then the dimension r of the vectors e and Xi is equal to 1. That is, e,Xi ∈ R.
Hence, ∥Xi∥2 = |Xi| and |e| = ∥e∥2 = 1, yielding ∥Xi∥22 − (X⊤

i e)
2 = X2

i − X2
i e

2 = 0.
Therefore, g(P ) = 0 in the case that rank(P ) = 1.

Since g(P ) = 0 is necessary for P to be rank-1 and g(P ) ≥ 0, it is desirable to make g(P ⋆)
as small as possible at the optimal solution P ⋆ of the partitioned SDP relaxation. Indeed,
this is our partitioning motivation: we seek to partition the input uncertainty set to minimize
g(P ⋆), in order to influence P ⋆ to be of low rank. However, there is a notable hurdle with
this approach. In particular, the optimal solution P ⋆ depends on the partition we choose,
and finding a partition to minimize g(P ⋆) in turn depends on P ⋆ itself. To overcome this
cyclic dependence, we propose first bounding g(P ⋆) by a worst-case upper bound, and then
choosing an optimal partition to minimize the upper bound. This will make the partition
design tractable, resulting in a closed-form solution.

To derive the upper bound on the rank-1 gap at optimality, let {X (j) : j ∈ {1, 2, . . . , p}}
denote the partition of X . For the jth input part X (j), denote the corresponding input
bounds by l(j), u(j). The upper bound is derived below.

Lemma 3. The rank-1 gap at the solution P ⋆ of the partitioned SDP satisfies

0 ≤ g(P ⋆) ≤ 1

4

nx∑
i=1

max
j∈{1,2,...,p}

(u
(j)
i − l(j)i )2. (2.35)



CHAPTER 2. TOWARDS OPTIMAL BRANCHING FOR RELU NEURAL
NETWORKS 38

Proof. The left inequality is a direct result of Lemma 2. For the right inequality, note that

g(P ⋆) ≤ max
j∈{1,2,...,p}

sup
P∈N (j)

SDP, Px∈X (j)

g(P ) ≤
nx∑
i=1

max
j∈{1,2,...,p}

sup
P∈N (j)

SDP, Px∈X (j)

(∥Xi∥22 − (X⊤
i e)

2).

(2.36)
Let us focus on the optimization over the jth part of the partition, namely,

sup
P∈N (j)

SDP, Px∈X (j)

(∥Xi∥22 − (X⊤
i e)

2).

To bound this quantity, we analyze the geometry of the SDP relaxation over part j, following
the methodology of Raghunathan, Steinhardt, and Liang [115]; see Figure 2.5.

0

e

u
(j)
i e

l
(j)
i e

1
2
(u

(j)
i + l

(j)
i )e

Xi
(X⊤

i e)e

∥Xi∥2

a b

r
(j)
i

Figure 2.5: Geometry of the SDP relaxation in coordinate i over part j of the partition. The
shaded region shows the feasible Xi satisfying the input constraint [115].

The shaded circle represents the set of feasible Xi over part j of the partition, namely,
those satisfying the ith coordinate of the constraint diag(Pxx) ≤ (l(j)+u(j))⊙Px− l(j)⊙u(j).
To understand this, note that the constraint is equivalent to ∥Xi∥22 ≤ (l

(j)
i +u

(j)
i )X⊤

i e−l(j)i u
(j)
i ,

or, more geometrically written, that ∥Xi − 1
2
(u

(j)
i + l

(j)
i )e∥22 ≤

(
1
2
(u

(j)
i − l(j)i )

)2
. This shows
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that Xi is constrained to a 2-norm ball of radius r
(j)
i = 1

2
(u

(j)
i − l(j)i ) centered at 1

2
(u

(j)
i + l

(j)
i )e,

as shown in Figure 2.5.
The geometry of Figure 2.5 immediately shows that ∥Xi∥22 = a2 + (X⊤

i e)
2 and r

(j)2
i =

(a+ b)2 + (X⊤
i e− 1

2
(u

(j)
i + l

(j)
i ))2, and therefore

∥Xi∥22 − (X⊤
i e)

2 = a2 = r
(j)2
i − (X⊤

i e− 1
2
(u

(j)
i + l

(j)
i ))2 − 2ab− b2.

Since a and b are nonnegative,

sup
P∈N (j)

SDP, Px∈X (j)

∥Xi∥22 − (X⊤
i e)

2

= sup
P∈N (j)

SDP, Px∈X (j)

(r
(j)2
i − (X⊤

i e− 1
2
(u

(j)
i + l

(j)
i ))2 − 2ab− b2)

≤ sup
P∈N (j)

SDP, Px∈X (j)

(r
(j)2
i − (X⊤

i e− 1
2
(u

(j)
i + l

(j)
i ))2)

≤ r
(j)2
i

=
1

4
(u

(j)
i − l(j)i )2.

Thus, (2.36) gives

g(P ⋆) ≤ 1

4

nx∑
i=1

max
j∈{1,2,...,p}

(u
(j)
i − l(j)i )2,

as desired.

With Lemma 3 in place, we now have an upper bound on the rank-1 gap at optimality,
in terms of the input bounds {l(j), u(j)}pj=1 associated with the partition. At this point, we
turn to minimizing the upper bound over all valid choices of p-part partitions of the input
uncertainty set along a given coordinate. Note that, in order for {l(j), u(j)}pj=1 to define
valid input bounds for a p-part partition, it must be that the union of the input parts
cover the input uncertainty set. In terms of the input bounds, this leads to the constraint
that [l, u] = ∪pj=1[l

(j), u(j)], where [l, u] := [l1, u1]× [l2, u2]× · · · × [lnx , unx ], and similarly for

[l(j), u(j)]. Since we consider the partition along a single coordinate k, this constraint becomes

equivalent to ∪pj=1[l
(j)
k , u

(j)
k ] = [lk, uk], because all other coordinates i ̸= k satisfy l

(j)
i = li and

u
(j)
i = ui for all j by assumption. We now give the worst-case optimal partitioning scheme

for the SDP that minimizes the upper bound in Lemma 3.
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Theorem 4. Let Ik = {1, 2, . . . , nx}\{k}. Consider the optimization problem of finding the
partition to minimize the upper bound (2.35), namely

minimize
P={l(j),u(j)}pj=1⊆Rnx

h(P) =
nx∑
i=1

max
j∈{1,2,...,p}

(u
(j)
i − l(j)i )2

subject to

p⋃
j=1

[l
(j)
k , u

(j)
k ] = [lk, uk], i ∈ Ik, j ∈ {1, 2, . . . , p},

l
(j)
i = li, i ∈ Ik, j ∈ {1, 2, . . . , p},
u
(j)
i = ui, i ∈ Ik, j ∈ {1, 2, . . . , p},

(2.37)

Consider also the uniform partition defined by P̄ = {l̄(j), ū(j)}pj=1 ⊆ Rnx, where

l̄
(j)
i =

{
j−1
p
(ui − li) + li if i = k,

li otherwise,

ū
(j)
i =

{
j
p
(ui − li) + li if i = k,

ui otherwise,

for all j ∈ {1, 2, . . . , p}. It holds that P̄ is a solution to (2.37).

Proof. To prove the result, we show that the proposed P̄ is feasible for the optimization,
and that h(P̄) ≤ h(P) for all feasible P . First, note that it is obvious by the definition of P̄
that l̄

(j)
i = li and ū

(j)
i = ui for all i ∈ {1, 2, . . . , nx} \ {k} and all j ∈ {1, 2, . . . , p}. Therefore,

to prove that P̄ is feasible, it suffices to show that ∪pj=1[l̄
(j)
k , ū

(j)
k ] = [lk, uk]. Indeed, since

ū
(j)
k =

j

p
(uk − lk) + lk =

(j + 1)− 1

p
(uk − lk) + lk = l̄

(j+1)
k

for all j ∈ {1, 2, . . . , p− 1},

l̄
(1)
k =

1− 1

p
(uk − lk) + lk = lk,

and
ū
(p)
k =

p

p
(uk − lk) + lk = uk,

we have that

p⋃
j=1

[l̄
(j)
k , ū

(j)
k ] = [l̄

(1)
k , ū

(1)
k ] ∪ [l̄

(2)
k , ū

(2)
k ] ∪ · · · ∪ [l̄

(p)
k , ū

(p)
k ] = [l̄

(1)
k , ū

(p)
k ] = [lk, uk].

Hence, P̄ = {l̄(j), ū(j)}pj=1 is feasible.
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The objective at the proposed feasible point can be computed as

h(P̄) =
nx∑
i=1

max
j∈{1,2,...,p}

(ū
(j)
i − l̄(j)i )2

=
nx∑
i=1
i ̸=k

max
j∈{1,2,...,p}

(ū
(j)
i − l̄(j)i )2 + max

j∈{1,2,...,p}
(ū

(j)
k − l̄

(j)
k )2

=
nx∑
i=1
i ̸=k

max
j∈{1,2,...,p}

(ui − li)2 + max
j∈{1,2,...,p}

(
j

p
(uk − lk) + lk −

j − 1

p
(uk − lk)− lk

)2

=
nx∑
i=1
i ̸=k

(ui − li)2 + max
j∈{1,2,...,p}

(
1

p
(uk − lk)

)2

= C +
1

p2
(uk − lk)2,

where C :=
∑nx

i=1
i ̸=k

(ui− li)2. Now, let P = {l(j), u(j)}pj=1 be an arbitrary feasible point for the

optimization (2.37). Then by a similar analysis as above, the objective value at P satisfies

h(P) =
nx∑
i=1

max
j∈{1,2,...,p}

(u
(j)
i − l(j)i )2

=
nx∑
i=1
i ̸=k

max
j∈{1,2,...,p}

(u
(j)
i − l(j)i )2 + max

j∈{1,2,...,p}
(u

(j)
k − l

(j)
k )2

= C + max
j∈{1,2,...,p}

(u
(j)
k − l

(j)
k )2

= C +

(
max

j∈{1,2,...,p}
(u

(j)
k − l

(j)
k )

)2

≥ C +

(
1

p

p∑
j=1

(u
(j)
k − l

(j)
k )

)2

= C +
1

p2

(
p∑

j=1

(u
(j)
k − l

(j)
k )

)2

.

Since P is feasible, it holds that [lk, uk] =
⋃p

j=1[l
(j)
k , u

(j)
k ]. Therefore, by subadditivity of

Lebesgue measure µ on the Borel σ-algebra of R, we have that

uk − lk = µ([lk, uk]) = µ

(
p⋃

j=1

[l
(j)
k , u

(j)
k ]

)
≤

p∑
j=1

µ([l
(j)
k , u

(j)
k ]) =

p∑
j=1

(u
(j)
k − l

(j)
k ).
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Substituting this into our above expressions, we conclude that

h(P̄) = C +
1

p2
(uk − lk)2 ≤ C +

1

p2

(
p∑

j=1

(u
(j)
k − l

(j)
k )

)2

≤ h(P).

Since P was an arbitrary feasible point for the optimization, this implies that P̄ is a solution
to the optimization.

Theorem 4 shows that by choosing the partition of the input set to be uniformly divided
amongst the p parts, we obtain a partition that minimizes the worst-case bound on the gap
of the rank-1 necessary condition (2.34). This gives a well-motivated, yet simple way to
design a partition of the input uncertainty set in order to push the SDP relaxation towards
being rank-1, thereby reducing relaxation error.

SDP Branching Scheme

With the motivating SDP partition now established, we turn our attention from the form
of a worst-case optimal SDP partition to the coordinate of a worst-case optimal partition.
In particular, we seek to find the best branching scheme to minimize relaxation error of the
SDP. Our above results suggest using a uniform partition, and in this section we seek to find
which coordinate to apply the partitioning to. Similar to the LP relaxation, we derive an
optimal branching scheme by first bounding the relaxation error in the worst-case sense.

Worst-Case Relaxation Bound

In the worst-case relaxation bound of Theorem 5 below, and the subsequent worst-case
optimal SDP branching scheme proposed in Theorem 6, we restrict our attention to a single
hidden ReLU layer and make the following assumption on the weight matrix.

Assumption 1. The rows of the weight matrix are assumed to be normalized with respect
to the ℓ1-norm, i.e., that ∥wi∥1 = 1 for all i ∈ {1, 2, . . . , nz}.

We briefly remark that Assumption 1 imposes no loss of generality, as it can be made to
hold for any network by a simple rescaling. In particular, if the assumption does not hold,
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the network architecture can be rescaled as follows:

z = ReLU(Wx) = ReLU



w⊤

1

w⊤
2
...
w⊤

nz

x


= ReLU

diag(∥w1∥1, ∥w2∥1, . . . , ∥wnz∥1)


w⊤

1

∥w1∥1
w⊤

2

∥w2∥1
...

w⊤
nz

∥wnz∥1

x
 = Wscale ReLU(Wnormx),

where Wscale = diag(∥w1∥1, ∥w2∥1, . . . , ∥wnz∥1) ∈ Rnz×nz and

Wnorm =


w⊤

1

∥w1∥1
w⊤

2

∥w2∥1
...

w⊤
nz

∥wnz∥1

 ∈ Rnz×nx

are the scaling and normalized factors of the weight matrix W , respectively. The scaling
factor can therefore be absorbed into the optimization cost vector c, yielding a problem with
normalized rows as desired.

Before introducing the worst-case relaxation bound of Theorem 5, we state a short lemma
that will be used in proving the relaxation bound.

Lemma 4. Let P ∈ Sn be a positive semidefinite matrix. Then |Pij| ≤ 1
2
(Pii + Pjj) for all

i, j ∈ {1, 2, . . . , n}.
Proof. Let i, j ∈ {1, 2, . . . , n}. Since P is positive semidefinite, the 2nd-order principal minor
PiiPjj − P 2

ij is nonnegative, and therefore

|Pij| ≤
√
PiiPjj. (2.38)

Furthermore, by the basic inequality that 2ab ≤ a2 + b2 for all a, b ∈ R, we have that√
PiiPjj ≤ 1

2
(Pii+Pjj). Substituting this inequality into (2.38) gives the desired bound.

Theorem 5. Consider a feedforward ReLU neural network with one hidden layer, and with
the input uncertainty set X . Let the network have input bounds l, u ∈ Rnx and preactivation
bounds l̂, û ∈ Rnz . Consider also the relaxation error ∆ϕ⋆

SDP(X ) := ϕ̂⋆
SDP(X ) − ϕ⋆(X ). Let

P ⋆ and (x⋆, z⋆) be optimal solutions for the relaxation ϕ̂⋆
SDP(X ) and the unrelaxed problem

ϕ⋆(X ), respectively. Given an arbitrary norm ∥ · ∥ on Rnx, it holds that

∆ϕ⋆
SDP(X ) ≤

nz∑
i=1

(
ReLU(ci)q(l, u) + ReLU(−ci)min{ûi, ∥wi∥∗d∥·∥(X )}

)
, (2.39)
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where ∥ · ∥∗ is the dual norm of ∥ · ∥, and where

q(l, u) = max
k∈{1,2,...,nx}

max{|lk|, |uk|}.

Proof. First, recall that X ⊆ Rnx is assumed to be compact, and is therefore bounded, and
hence d∥·∥(X ) <∞. The definitions of P ⋆

x and (x⋆, z⋆) give that

∆ϕ⋆
SDP(X ) =

nz∑
i=1

ci((P
⋆
z )i − z⋆i ) ≤

nz∑
i=1

∆ϕ⋆
i , (2.40)

where

∆ϕ⋆
i = sup

{
ci((Pz)i − zi) : zi = ReLU(w⊤

i x), Pz ≥ 0, Pz ≥ WPx,

diag(Pzz) = diag(WPxz), P1 = 1, P ⪰ 0, x, Px ∈ X
}

for all i ∈ {1, 2, . . . , nz}. Defining the auxiliary variables Pẑ = WPx and ẑ = Wx, this is
equivalent to

∆ϕ⋆
i = sup

{
ci((Pz)i − zi) : zi = ReLU(ẑi), Pz ≥ 0, Pz ≥ Pẑ, diag(Pzz) = diag(WPxz),

P1 = 1, P ⪰ 0, Pẑ = WPx, ẑi = w⊤
i x, x, Px ∈ X

}
.

If x, Px ∈ X and ẑ, Pẑ satisfy ẑ = Wx and Pẑ = WPx, then |(Pẑ)i − ẑi| = |w⊤
i (Px − x)| ≤

∥wi∥∗∥Px − x∥ ≤ ∥wi∥∗d∥·∥(X ) for all i ∈ {1, 2, . . . , nz} by the Cauchy-Schwarz inequality
for dual norms. Therefore,

∆ϕ⋆
i ≤ sup

{
ci((Pz)i − zi) : zi = ReLU(ẑi), Pz ≥ 0, Pz ≥ Pẑ,

diag(Pzz) = diag(WPxz), P1 = 1, P ⪰ 0, l̂ ≤ ẑ, Pẑ ≤ û,

|(Pẑ)k − ẑk| ≤ ∥wk∥∗d∥·∥(X ) for all k ∈ {1, 2, . . . , nz}, ẑ, Pẑ ∈ Rnz

}
.

We now translate the optimization variables in the above problem from ẑ ∈ Rnz and P ∈
S1+nx+nz to the scalars ẑi, (Pẑ)i ∈ R. To this end, we note that if P is feasible for the above
supremum, then

diag(Pzz)i = diag(WPxz)i = w⊤
i (Pxz)i ≤ ∥(Pxz)i∥∞∥wi∥1,

where (Pxz)i is the ith column of the matrix Pxz, and the inequality again comes from
Cauchy-Schwarz. By the weight matrix scaling assumption, this yields

diag(Pzz)i ≤ ∥(Pxz)i∥∞.
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Now, since P is positive semidefinite, Lemma 4 gives that

∥(Pxz)i∥∞ = max
k∈{1,2,...,nx}

|(Pxz)i|k = max
k∈{1,2,...,nx}

|(Pxz)ki|

≤ max
k∈{1,2,...,nz}

1

2

(
(Pxx)kk + (Pzz)ii

)
=

1

2
(Pzz)ii +

1

2
max

k∈{1,2,...,nx}
(Pxx)kk.

Noting that (Pzz)ii = diag(Pzz)i, the bound of interest becomes

diag(Pzz)i ≤ max
k∈{1,2,...,nz}

(Pxx)kk.

We now seek to bound (Pxx)kk. Recall that (Pxx)kk = diag(Pxx)k ≤ (lk + uk)(Px)k − lkuk.
If (lk + uk) ≥ 0, then (Px)k ≤ uk implies that (lk + uk)(Px)k ≤ (lk + uk)uk, and therefore
(Pxx)kk ≤ (lk + uk)uk − lkuk = u2k. On the other hand, if (lk + uk) < 0, then (Px)k ≥ lk
implies that (lk + uk)(Px)k ≤ (lk + uk)lk, and therefore (Pxx)kk ≤ (lk + uk)lk − lkuk = l2k.
Hence, in all cases, it holds that

(Pxx)kk ≤ I(lk + uk ≥ 0)u2k + I(lk + uk < 0)l2k.

We can further simplify this bound as follows. If lk + uk ≥ 0, then uk ≥ −lk and uk ≥ lk,
implying |lk| ≤ uk, so l2k ≤ u2k and therefore u2k = max{l2k, u2k}. On the other hand, if
lk + uk < 0, then an analogous argument shows that l2k = max{l2k, u2k}. Hence, we conclude
that the above bound on (Pxx)kk can be rewritten as

(Pxx)kk ≤ max{l2k, u2k}.
Therefore, returning to the bound on (Pzz)i, we find that

diag(Pzz)i ≤ max
k∈{1,2,...,nx}

max{l2k, u2k},

for all i ∈ {1, 2, . . . , nz}. Now, note that since P ⪰ 0, the Schur complement gives that[
Pxx − PxP

⊤
x Pxz − PxP

⊤
z

P⊤
xz − PzP

⊤
x Pzz − PzP

⊤
z

]
⪰ 0,

which implies that
diag(Pzz) ≥ diag(PzP

⊤
z ) = Pz ⊙ Pz.

Therefore, our upper bound on the diagonal elements of Pzz yields that

(Pz)i ≤ max
k∈{1,2,...,nx}

max{|lk|, |uk|} = q(l, u).

Hence, we have derived a condition on the component (Pz)i that all feasible P must satisfy.
The supremum of interest may now be further upper bounded giving rise to

∆ϕ⋆
i ≤ sup

{
ci((Pz)i − zi) : zi = ReLU(ẑi), (Pz)i ≥ 0, (Pz)i ≥ (Pẑ)i, (Pz)i ≤ q(l, u),

l̂i ≤ ẑi, (Pẑ)i ≤ ûi, |(Pẑ)i − ẑi| ≤ ∥wi∥∗d∥·∥(X ), ẑi, (Pẑ)i ∈ R
}
,

(2.41)
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which is now in terms of the scalar optimization variables ẑi and (Pẑ)i, as we desired. This
reformulation makes it tractable to compute the supremum in (2.41) in closed-form, which
we now turn to do.

First, consider the case that ci ≥ 0. Then we seek to maximize the difference (Pz)i − zi
subject to the given constraints. Noting that (Pz)i ≤ q(l, u) and zi ≥ 0 on the above feasible
set, we remark that the objective is upper bounded as ci((Pz)i − zi) ≤ ciq(l, u). Indeed,
this upper bound is attained at the feasible point defined by zi = ẑi = (Pẑ)i = 0 and
(Pz)i = q(l, u). Hence, we conclude that for all i ∈ {1, 2, . . . , nz} such that ci ≥ 0, it holds
that

∆ϕ⋆
i ≤ ciq(l, u). (2.42)

Now consider the case that ci < 0. Then we seek to minimize the difference (Pz)i − zi
subject to the given constraints. In this case, the optimal objective value depends on the
relative sizes of ûi and ∥wi∥∗d∥·∥(X ). In particular, when ûi ≤ ∥wi∥∗d∥·∥(X ), the constraint
ẑi ≤ ûi becomes active at optimum, yielding a supremum value of −ciui. Alternatively, when
∥wi∥∗d∥·∥(X ) ≤ ûi, the constraint |(Pẑ)i − ẑi| ≤ ∥wi∥∗d∥·∥(X ) becomes active at optimum,
yielding the supremum value of −ci∥wi∥∗d∥·∥(X ). Therefore, we conclude that for all i ∈
{1, 2, . . . , nz} such that ci < 0, it holds that

∆ϕ⋆
i ≤ −ci min{ûi, ∥wi∥∗d∥·∥(X )}. (2.43)

Substituting (2.42) and (2.43) into (2.40) gives the desired bound.

When the x-block P ⋆
x of the SDP relaxation stays close to the true solution x⋆, the bound

(2.39) shows that the worst-case relaxation error scales with the loosest input bound, i.e.,
the maximum value amongst the limits |lk| and |uk|. This fact allows us to choose which
coordinate to partition along in order to maximally reduce the relaxation bound on the
individual parts of the partition. We state our proposed SDP branching scheme next.

Proposed Branching Scheme

We now focus on developing a worst-case optimal branching scheme based on the relaxation
bound of Theorem 5. Similar to the partitioned LP relaxation, the diameter d∥·∥(X ) tends to
be small in practical settings, making the terms being summed in (2.39) approximately equal
to ReLU(ci)q(l, u). We restrict ourselves to this form in order to simplify the subsequent
analysis. The objective to optimize therefore takes the form

q(l, u)
nz∑
i=1

ReLU(ci), (2.44)

where
q(l, u) = max

k∈{1,2,...,nx}
max{|lk|, |uk|}.
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Since the design of the partition amounts to choosing input bounds l and u for the input
parts, the input bounds serve as our optimization variables in minimizing the above relax-
ation bound. By restricting the form of our partition to the uniform division motivated in
Theorem 4, it follows from the form of q that the best coordinate to partition along is that
with the loosest input bound, i.e., along coordinate i⋆ ∈ argmaxk∈{1,2,...,nx}max{|lk|, |uk|}.
This observation is formalized below.

Theorem 6. Consider the two-part partitions defined by dividing X uniformly along the
coordinate axes: {X (1)

i ,X (2)
i }, with X (1)

i = {x ∈ X : l
(1)
i ≤ x ≤ u

(1)
i } and X (2)

i = {x ∈
X : l

(2)
i ≤ x ≤ u

(2)
i }, where l(1)i = l, u

(1)
i = (u1, u2, . . . , ui−1,

1
2
(li + ui), ui+1, . . . , unx), l

(2)
i =

(l1, l2, . . . , li−1,
1
2
(li + ui), li+1, . . . , lnx), and u

(2)
i = u, for all i ∈ {1, 2, . . . , nx} =: I. Let

i⋆ ∈ argmax
k∈{1,2,...,nx}

max{|lk|, |uk|}, (2.45)

and assume that |li⋆| ≠ |ui⋆|. Then the partition {X (1)
i⋆ ,X (2)

i⋆ } is optimal in the sense that the

upper bound factor q(l
(j)
i⋆ , u

(j)
i⋆ ) in (2.44) equals the unpartitioned upper bound q(l, u) on one

part j of the partition, is strictly less than q(l, u) on the other part, and q(l
(j)
i , u

(j)
i ) = q(u, l)

for both j ∈ {1, 2} for all other i /∈ argmaxk∈{1,2,...,nx}max{|lk|, |uk|}.
Proof. First, consider partitioning along coordinate i /∈ argmaxk∈{1,2,...,nx}max{|lk|, |uk|}.
Then

q(l
(1)
i , u

(1)
i ) = max

k∈{1,2,...,nx}
max{|(l(1)i )k|, |(u(1)i )k|}

= max

{
|l1|, . . . , |lnx|, |u1|, . . . ,

∣∣∣∣ li + ui
2

∣∣∣∣ , . . . , |unx|
}

= max{|li⋆ |, |ui⋆|} = q(l, u),

since
∣∣ li+ui

2

∣∣ ≤ |li|+|ui|
2

< max{|li⋆ |, |ui⋆|} and i ̸= i⋆ implies that

max{|li⋆|, |ui⋆|} ∈
{
|l1|, . . . , |lnx|, |u1|, . . . ,

∣∣∣∣ li + ui
2

∣∣∣∣ , . . . , |unx|
}
.

In an analogous fashion, it follows that

q(l
(2)
i , u

(2)
i ) = q(l, u).

Now, consider partitioning along coordinate i⋆. Note that either

max
k∈{1,2,...,nx}

max{|lk|, |uk|} = |li⋆|, or max
k∈{1,2,...,nx}

max{|lk|, |uk|} = |ui⋆ |.

Suppose that the first case holds true. Then

q(l
(1)
i⋆ , u

(1)
i⋆ ) = max

k∈{1,2,...,nx}
max{|(l(1)i⋆ )k|, |(u(1)i⋆ )k|}

= max

{
|l1|, . . . , |lnx|, |u1|, . . . ,

∣∣∣∣ li⋆ + ui⋆

2

∣∣∣∣ , . . . , |unx|
}

= |li⋆| = q(l, u),
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since |(li⋆ + ui⋆)/2| ≤ (|l⋆i |+ |u⋆i |)/2 < |l⋆i | and

|li⋆| ∈ max

{
|l1|, . . . , |lnx|, |u1|, . . . ,

∣∣∣∣ li⋆ + ui⋆

2

∣∣∣∣ , . . . , |unx|
}
.

Over the second part of the partition,

q(l
(2)
i⋆ , u

(2)
i⋆ ) = max

k∈{1,2,...,nx}
max{|(l(2)i⋆ )k|, |(u(2)i⋆ )k|}

= max

{
|l1|, . . . ,

∣∣∣∣ li⋆ + ui⋆

2

∣∣∣∣ , . . . , |lnx|, |u1|, . . . , |unx|
}
< |li⋆| = q(l, u),

since |(li⋆ + ui⋆)/2| < |li⋆ | and

|l⋆i | /∈
{
|l1|, . . . ,

∣∣∣∣ li⋆ + ui⋆

2

∣∣∣∣ , . . . , |lnx |, |u1|, . . . , |unx |
}

since |li⋆| ≠ |ui⋆|. In the other case that maxk∈{1,2,...,nx}max{|lk|, |uk|} = |ui⋆|, it follows

via the same argument that q(l
(1)
i⋆ , u

(1)
i⋆ ) < q(l, u) and q(l

(2)
i⋆ , u

(2)
i⋆ ) = q(l, u). Since parti-

tioning along any other coordinate i /∈ argmaxk∈{1,2,...,nx}max{|lk|, |uk|} was shown to yield

q(l
(1)
i , u

(1)
i ) = q(l

(2)
i , u

(2)
i ) = q(u, l), we conclude that the coordinate i⋆ is optimal in the sense

proposed.

Intuitively, the branching scheme defined in Theorem 6 is optimal because any other
uniform partition along a coordinate axis cannot tighten the relaxation error bound (2.44).
On the other hand, Theorem 6 guarantees that using the partition coordinate in (2.45)
results in a strict tightening of the worst-case relaxation error on at least one part of the
partition.

2.5 Implementing the Branching Schemes

For the reader’s convenience, we give a pseudocode in Algorithm 1 to embed our branching
schemes (Theorem 2 and Theorem 6) into an overall branch-and-bound algorithm, which is
what we use to compute the simulation results in Section 2.6 below. The pseudocode for
the SDP branch-and-bound procedure is the same as in Algorithm 1 albeit with lines 2 and
3 modified to use Theorem 6 and (2.8), respectively. Solving the two subproblems in line
3 can be done independently, and in a parallel fashion, to enhance computational efficiency
and scalability.

2.6 Numerical Simulations

In this section, we experimentally corroborate the effectiveness of our proposed certification
methods. We first perform LP branch-and-bound on benchmark datasets to show that our
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Algorithm 1 LP branch-and-bound procedure for certification

Input: f , X , nbranches

1: for n = 1, . . . , nbranches

2: compute X (1)
i⋆ ,X (2)

i⋆ according to Theorem 2

3: compute ϕ̂⋆
LP(X (1)

i⋆ ), ϕ̂⋆
LP(X (2)

i⋆ ) according to (2.5)

4: if ϕ̂⋆
LP(X (1)

i⋆ ) ≥ ϕ̂⋆
LP(X (2)

i⋆ )

5: assign X ← X (1)
i⋆

6: else
7: assign X ← X (2)

i⋆

8: if maxj∈{1,2} ϕ̂
⋆
LP(X (j)

i⋆ ) ≤ 0
9: assign is certified ← True

10: else
11: assign is certified ← False

12: return is certified

proposed branching scheme beats the current state-of-the-art. We then compute the SDP
and branched SDP, and compare to the LP results. Finally, we explore the effectiveness
of branching on the LP and SDP as the network grows in size, namely, as the number of
inputs and the number of layers independently increase. All simulations are performed on a
standard laptop computer using Tensorflow 2.5 in Python 3.9. Training of networks is done
using the Adam optimizer [77], and certifications are performed using MOSEK in CVXPY
[41].

LP Results

In this simulation, we consider classification networks trained on three datasets: the Wis-
consin breast cancer diagnosis dataset with (nx, nz) = (30, 2) [42], the MNIST handwritten
digit dataset with (nx, nz) = (784, 10) [84], and the CIFAR-10 image classification dataset
with (nx, nz) = (3072, 10) [80]. The Wisconsin breast cancer dataset is characteristic of a
real-world machine learning setting in which robustness guarantees are crucial for safety; a
misdiagnosis of breast cancer may result in grave consequences for the patient under concern.
Each neural network is composed of an affine layer followed by a ReLU hidden layer followed
by another affine layer. For each network, we consider 15 different nominal inputs x̄ and
corresponding uncertainty sets X = {x ∈ Rnx : ∥x − x̄∥∞ ≤ ϵ}, where we choose a range
of attack radii ϵ. We also perform a sweep over the number of branching steps to use in
the branch-and-bound certification scheme. Recall that a negative optimal objective value
of the robustness certification problem proves that no perturbation of x̄ within X results in
misclassification.

Figure 2.6a, Figure 2.6b, Figure 2.7, and Figure 2.8 display the percent of test inputs
certified using the LP relaxation with our branching method and that with the state-of-
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the-art branching method, filtered smart branching (FSB) [39], that was used in the α, β-
CROWN branch-and-bound scheme to win the 2021 and 2022 VNN-COMP certification
competitions [141, 18]. We see that our LP branching method substantially outperforms FSB
on all three benchmark datasets, attaining higher certification percentages in fewer branching
steps and at larger radii than FSB, achieving around 8% (Wisconsin), 17% (MNIST), and
20% (CIFAR-10) increases in a variety of radius-number of branches settings. That is,
for a fixed problem setting (attack radius and number of branches in a branch-and-bound
scheme), our simulations show that simply replacing the filtered smart branching heuristic
with our worst-case optimal branching scheme may result in large increases in certification
percentages, and, according to our results, never performs any worse on average.

SDP Results

In this simulation, we consider the same ReLU neural network trained on the Wisconsin
breast cancer dataset as used in our LP results above. We solve the branched SDP using
our proposed branching scheme from Theorem 6, where the same test data and simulation
parameters are used as with the LP above. The results are shown in Figure 2.6c. In
comparing the SDP results to the LP results in Figure 2.6a and Figure 2.6b, we see that
our branched SDP achieves better certification percentages compared to the branched LP
approaches, up to 12% in some radius-number of branches settings. We remark that Zhang
[169] provides theoretical guarantees for the tightness of the SDP relaxation under some
technical conditions. However, since we find a strict increase in the certified percentages
upon branching on the SDP, we conclude that such conditions for exactness may not be
satisfied in general by practical networks, indicating that branching on the SDP may in fact
be necessary in settings where high accuracy is the primary concern at hand. As we will
see in the next experiment, this certification enhancement via SDP branching becomes even
more substantial as the network depth increases. We now move to this experiment, and
propose a general rule of thumb for when LP, SDP, and their branch-and-bound variants are
best applied based on depth and width of the network.

Effectiveness as Network Grows

In this section, we perform two experiments to test the effectiveness of branching as the
size and structure of the network changes. First, we consider two-layer networks of structure
nx×100×5, where nx is the input dimension. For each input size nx ∈ {5, 10, 20, 40, 80, 100},
we generate one network with standard normal random weights, and another network with
uniformly distributed weights (where each element is distributed uniformly on the interval
[0, 1]). The weights are normalized according to Assumption 1. For each network being
tested, we compute the LP, branched LP, SDP, and branched SDP relaxations at a fixed
nominal input x̄ using the input uncertainty set X = {x ∈ Rnx : ∥x− x̄∥∞ ≤ ϵ} with ϵ = 0.5.
The optimal values, corresponding computation times, and percentage improvements induced
by branching are reported in Table 2.2. The effectiveness of branching for the LP remains



CHAPTER 2. TOWARDS OPTIMAL BRANCHING FOR RELU NEURAL
NETWORKS 51

1 2 4 6 8 10

Number of Branches

0.05

0.19

0.33

0.47

0.61

0.75

R
ad

iu
s

Percent Certified (Wisconsin, LP, FSB)

0.0

0.2

0.4

0.6

0.8

1.0

(a) Filtered smart branching.

1 2 4 6 8 10

Number of Branches

0.05

0.19

0.33

0.47

0.61

0.75

R
ad

iu
s

Percent Certified (Wisconsin, LP, Ours)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Our LP branching.
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(c) Our SDP branching.

Figure 2.6: Percent certified on Wisconsin breast cancer diagnosis dataset using branching
on LP and SDP relaxations.

relatively constant between 5 and 10 percent improvement, whereas the branching appears
to lose its efficacy on the SDP as the input size grows. As expected, the two-part partitioned
convex relaxations take twice as long to solve as their unpartitioned counterparts. Note
that, despite the fact that branching works better for the LP with wide networks, the actual
optimal value of the SDP-based certificates are always lower (tighter) than the LP-based
ones. This matches what is known in the literature: the SDP is a tighter relaxation technique
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(a) Filtered smart branching.
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(b) Our branching.

Figure 2.7: Percent certified on MNIST dataset using branching on LP relaxation.

than the LP [115]. However, the computation times of the SDP and branched SDP quickly
increase as the network size increases, whereas the LP and branched LP computation times
are seen to slowly increase. All of this suggests the following: in the regime of shallow (i.e.,
one or two hidden layers) but very wide networks, the branched LP should be used, since
the branching remains effective in tightening the relaxation, yet the method is scalable to
large networks where the SDP cannot be feasibly applied.

In the second simulation of this section, we analyze the effectiveness of branching as the
depth of the network increases. In particular, we consider networks with normal random
weights having 5 inputs and 5 outputs, and each intermediate layer having 10 neurons. We
run the experiment on networks having 1 through 6 such intermediate layers. Note that
when the network has more than one hidden layer, an extra step is needed in order to apply
the worst-case optimal LP branching scheme from Theorem 2 since the number of rows n1

of the first layer’s weight matrix W [0] (i.e., the rows being partitioned along) may not equal
the dimension of the output space nz. The extra step is to generate a surrogate “c”-vector
of size n1 × 1 so that Theorem 2 can be applied using this surrogate cost vector. There are
a few ways of doing this. One such method is to treat the activation at the first hidden
layer, x[1], as the output and determine which coordinate i ∈ Rn1 of the nominal activation
x̄[1] = ReLU(W [0]x̄) is maximal. This means that i would be the class assigned to x̄ if the
output were after the first hidden layer. Then, we find the second-best coordinate j ̸= i
so that x̄

[1]
i ≥ x̄

[1]
j ≥ x̄

[1]
k for all other k. Afterwards, the surrogate vector c can be taken

as c = ej − ei, meaning that it serves as a measure of whether the classification after the
first hidden layer changes from i to j. In the case of our experiment, we choose the above
j ̸= i randomly for simplicity. Of course, the surrogate vector c is only used to compute the
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(a) Filtered smart branching.
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(b) Our branching.

Figure 2.8: Percent certified on CIFAR-10 dataset using branching on LP relaxation.

branching coordinate i⋆ in Theorem 2, and the full network and original cost vector c are
used in the resultant branched LP.

Unlike the branched LP, the SDP branching scheme given in Theorem 6 can directly be
applied to deep networks, without the need to use the intermediate steps to compute the
partition. We compute the LP, branched LP, SDP, and branched SDP on the networks at
hand and report the objective values and computation times in Table 2.3. In this simulation,
we see a stark contrast to the results in Table 2.2. Specifically, the percentage improvement
induced by branching on the LP reduces quickly to nearly zero percent for networks with 3 or
more intermediate 10-neuron hidden layers. Indeed, this is one fundamental drawback behind
the LP relaxation: the convex upper envelope is used independently at every neuron, so the
relaxation error quickly compounds as the network becomes deeper. On the other hand,
the SDP relaxation takes into account the coupling between the layers of the network. This
theoretical advantage is demonstrated empirically, as the percentage improvement gained by
the branched SDP hovers around 10% even for the deep networks tested here. Moreover, note
how the SDP computation time remains relatively close to that of the LP, unlike the rapid
increase in computation time seen when increasing the input size. This behavior suggests the
following: in the regime of deep but relatively narrow networks, the branched SDP should be
used, since the branching is effective in tightening the relaxation, yet the computational cost
grows relatively slowly as more layers are added (compared to the case where more inputs
are added).
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2.7 Conclusions

In this chapter, we propose intelligently designed closed-form branching schemes for linear
programming (LP) and semidefinite programming (SDP) robustness certification methods
of ReLU neural networks. The branching schemes are derived by minimizing the worst-case
error induced by the corresponding convex relaxations, which is theoretically justified by
showing that minimizing the true relaxation error is NP-hard. The proposed techniques
are experimentally substantiated by demonstrating significant reduction in relaxation error
on benchmark datasets. Our numerical simulations show that the LP and SDP branching
schemes exhibit tradeoffs between different regimes, namely, as the input size and the number
of layers are varied. The results conclude that both LP and SDP branching schemes yield
a reduction in relaxation error on the order of 10%, with LP best applying to shallow but
wide networks, and SDP best applying to deep but narrow networks.
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Table 2.2: Varying input size nx for nx × 100 × 5 ReLU network. Optimal values and
corresponding computation times reported. B-LP and B-SDP correspond to branched LP
and branched SDP, respectively. %-LP and %-SDP represent the percentage tightening of
the optimal values obtained from branching.

(a) Normally distributed network weights.

Input size LP B-LP %-LP SDP B-SDP %-SDP

5
126.93 117.92 7.10% 16.82 14.83 11.85%
0.71 s 1.46 s 104.18% 1.66 s 3.33 s 101.33%

10
187.57 176.19 6.07% 33.62 32.96 1.98%
0.77 s 1.36 s 76.13% 1.54 s 3.16 s 105.57%

20
386.49 364.53 5.68% 54.02 54.01 0.02%
0.71 s 1.42 s 100.49% 1.85 s 4.31 s 132.94%

40
874.70 864.56 1.16% 104.90 104.38 0.49%
1.27 s 2.68 s 110.93% 4.79 s 9.33 s 95.01%

80
1591.41 1496.23 5.98% 310.37 310.31 0.02%
1.76 s 2.97 s 69.00% 9.81 s 17.87 s 82.11%

100
2184.94 2175.87 0.42% 383.63 383.50 0.03%
0.78 s 1.84 s 136.93% 5.02 s 10.52 s 109.46%

(b) Uniformly distributed network weights.

Input size LP B-LP %-LP SDP B-SDP %-SDP

5
11.65 10.69 8.31% 5.95 5.74 3.44%
0.65 s 1.36 s 109.54% 1.39 s 2.20 s 58.32%

10
34.13 34.13 0.00% 12.61 11.92 5.47%
0.68 s 1.36 s 101.35% 1.32 s 2.48 s 87.45%

20
83.74 83.02 0.86% 19.20 19.00 1.06%
0.67 s 1.40 s 106.88% 1.31 s 2.85 s 118.39%

40
141.37 133.30 5.71% 25.89 25.69 0.74%
0.69 s 1.43 s 106.67% 1.63 s 3.23 s 97.62%

80
260.80 242.19 7.14% 21.86 21.68 0.84%
0.71 s 1.42 s 99.25% 2.82 s 5.44 s 92.97%

100
400.73 387.24 3.37% 102.87 102.35 0.51%
0.74 s 1.56 s 111.10% 3.33 s 6.89 s 106.64%
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Table 2.3: Varying number of hidden layers for a 5×10×10×· · ·×10×5 ReLU network with
normal random weights. Optimal values and corresponding computation times reported. B-
LP and B-SDP correspond to branched LP and branched SDP, respectively. %-LP and
%-SDP represent the percentage tightening of the optimal values obtained from branching.

Layers LP B-LP %-LP SDP B-SDP %-SDP

1
10.16 7.03 30.79% 4.70 4.65 1.12%
0.59 s 1.21 s 105.06% 0.68 s 1.29 s 91.17%

2
46.29 44.89 3.03% 2.42 1.94 19.94%
0.62 s 1.21 s 93.07% 0.71 s 1.49 s 108.81%

3
626.96 626.96 0.00% 36.29 34.36 5.31%
0.61 s 1.29 s 110.86% 0.72 s 1.47 s 103.32%

4
5229.32 5229.32 0.00% 179.79 167.34 6.93%
0.65 s 1.29 s 97.47% 0.99 s 1.88 s 89.81%

5
37625.91 37625.86 0.00% 628.78 561.60 10.68%

0.69 s 1.34 s 94.59% 1.13 s 2.04 s 80.35%

6
326743.55 326743.34 0.00% 3245.41 3050.69 6.00%

0.75 s 1.35 s 79.44% 1.19 s 2.35 s 98.01%
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Appendices

2.A Proof of Theorem 3

Theorem 3. Consider the partitioned LP relaxation (2.30) of the K-layer ReLU neural net-
work certification problem. The optimal partitioning problem in the first-layer, as formulated
in (2.31), is NP-hard.

Proof. We prove the result by reducing an arbitrary instance of the Min-K-Union problem
to an instance of the optimal partitioning problem (2.31). The proof is broken down into
steps. In Step 1, we introduce the Min-K-Union problem. We then construct a specific
neural network based on the parameters of the Min-K-Union problem in Step 2. In Step 3,
we construct the solution to the partitioned LP relaxation for our neural network in the
case that the partition is performed along all input coordinates. In Step 4, we construct
the solution to the partitioned LP relaxation in the case that only a subset of the input
coordinates are partitioned. Finally, in Step 5, we show that the solution to the Min-K-
Union problem can be constructed from the solution to the optimal partitioning problem,
i.e., by finding the best subset of coordinates to partition along in the fourth step. As a
consequence, we show that optimal partitioning is NP-hard.

Step 1: Arbitrary Min-K-Union Problem. Suppose that we are given an arbitrary
instance of the Min-K-Union problem, i.e., a finite number of finite sets S1,S2, . . . ,Sn and a
positive integer K ≤ n. Since each set Sj is finite, the set

⋃n
j=1 Sj is finite with cardinality

m :=
∣∣∣⋃n

i=j Sj
∣∣∣ ∈ N. Therefore, there exists a bijection between the elements of

⋃n
j=1 Sj

and the set {1, 2, . . . ,m}. Hence, without loss of generality, we assume Sj ⊆ N for all
j ∈ {1, 2, . . . , n} such that

⋃n
j=1 Sj = {1, 2, . . . ,m}. In this Min-K-Union problem, the

objective is to find K sets Sj1 ,Sj2 , . . . ,SjK among the collection of n given sets such that∣∣∣⋃K
i=1 Sji

∣∣∣ is minimized over all choices of K sets. In what follows, we show that the solution

to this problem can be computed by solving a particular instance of the optimal partitioning
problem (2.31).

Step 2: Neural Network Construction. Consider a 3-layer ReLU network, where
x[0], x[1] ∈ Rn and x[2], x[3] ∈ Rm. Let the weight vector on the output be c = 1m. Take
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the input uncertainty set to be X = [−1, 1]n. Let W [0] = In and W [2] = Im. In addition,
construct the weight matrix on the first layer to be W [1] ∈ Rm×n such that

W
[1]
ij =

{
1 if i ∈ Sj,
0 otherwise.

We remark that, since all entries of c = 1m, W
[0] = In, W

[1], and W [2] = Im are nonnegative,
the optimal value of the unrelaxed certification problem (2.27) is ϕ⋆(X ) = 1⊤

mW
[1]1n.

To finish defining the network and its associated LP relaxations, we must specify the
preactivation bounds at each layer. Since all weights of the neural network are nonnegative,
the largest preactivation at each layer is attained when the input is x[0] = 1n, the element-
wise maximum vector in X . The preactivations corresponding to this input are ẑ[1] = 1n,
ẑ[2] = W [1]1n, and ẑ

[3] = W [1]1n. Therefore, setting

u[1] = 21n,

u[2] =
3

2
W [1]1n,

u[3] =
5

4
W [1]1n +

1

8
1m,

we obtain valid preactivation upper bounds. Similarly, taking

l[k] = −u[k]

for all k ∈ {1, 2, 3} defines valid preactivation lower bounds.

Step 3: Densely Partitioned LP Relaxation. With the network parameters defined,
we now consider the first variant of our partitioned LP relaxation. In particular, we consider
the relaxation (2.30) where all coordinates of the first layer are partitioned. We denote by
ϕ̄(X ) the optimal objective value of this problem:

ϕ̄(X ) = max
j′∈{1,2,...,2n}

ϕ̂⋆
LP(X (j′)), (2.46)

where ϕ̂⋆
LP(X (j′)) denotes the optimal objective value of

maximize c⊤x[3]

subject to x[0] ∈ X (j′),

x[k+1] ≥ W [k]x[k], k ∈ {0, 1, 2},
x[k+1] ≥ 0, k ∈ {0, 1, 2},
x[k+1] ≤ u[k+1] ⊙ (W [k]x[k] − l[k+1])⊘ (u[k+1] − l[k+1]), k ∈ {0, 1, 2},
x[1] = ReLU(W [0]x[0]).

(2.47)
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This problem serves as a baseline; this is the tightest LP relaxation of the certification
problem among all those with partitioning along the input coordinates. (Recall that the
final equality constraint in (2.47) is linear over the restricted feasible set X (j′).)

We will now show that an optimal solution x̄ = (x̄[0], x̄[1], x̄[2], x̄[3]) of the partitioned LP
defined by (2.46) and (2.47) can be taken to satisfy

x̄[3] =
5

4
W [1]1n +

1

16
1m.

To see this, note that since all weights of the network and optimization (2.46) are nonnegative,
the optimal activations x̄ will be as large as possible in all coordinates and at all layers.
Therefore, since the input is constrained to X = [−1, 1]n, the optimal input for (2.46)
is x̄[0] = 1n. Since the ReLU constraint in (2.47) is exact, this implies that the optimal
activation over this part at the first layer is

x̄[1] = ReLU(W [0]x̄[0]) = ReLU(1n) = 1n.

Now, for the second layer, the activation attains its upper bound. Since u[2] = −l[2] =
3
2
W [1]1n, this implies that

x̄[2] = u[2] ⊙ (W [1]x̄[1] − l[2])⊘ (u[2] − l[2])
= u[2] ⊙ (W [1]x̄[1] + u[2])⊘ (2u[2])

=
1

2
(W [1]x̄[1] + u[2])

=
1

2

(
W [1]1n +

3

2
W [1]1n

)
=

5

4
W [1]1n.

Similarly, for the third layer, we find that the optimal activation attains its upper bound as
well. Since u[3] = −l[3] = 5

4
W [1]1n +

1
8
1m and W [2] = Im this gives that

x̄[3] = u[3] ⊙ (W [2]x̄[2] − l[3])⊘ (u[3] − l[3])
= u[3] ⊙ (x̄[2] + u[3])⊘ (2u[3])

=
1

2
(x̄[2] + u[3])

=
1

2

(
5

4
W [1]1n +

5

4
W [1]1n +

1

8
1m

)
=

5

4
W [1]1n +

1

16
1m,

as claimed in (3). It is easily verified that x̄ as computed above satisfies all constraints of
the problem (2.47) over the part of the partition containing x̄[0] = 1n.

Step 4: Sparsely Partitioned LP Relaxation. We now introduce the second variant
of the partitioned LP relaxation. In particular, let Jp ⊆ {1, 2, . . . , n} be an index set such
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that |Jp| = np = n − K. Denote the complement of Jp by J c
p = {1, 2, . . . , n} \ Jp. We

consider the partitioned LP defined in (2.30), which partitions along each coordinate in the
index set Jp. The optimal value of this problem is denoted by ϕ⋆

Jp
(X ), and we denote an

optimal solution by x̂ = (x̂[0], x̂[1], x̂[2], x̂[3]). We will compute x̂ in three steps.

Step 4.1: Upper Bounding the Solution. We start by upper bounding the final layer
activation of the solution. In particular, we claim that the optimal solution x̂ satisfies

x̂[3] ≤ t := u[3] − 1

16
1Ic . (2.48)

where I =
⋃

j∈J c
p
Sj ⊆ {1, 2, . . . ,m} and Ic = {1, 2, . . . ,m} \ I. Since x̄[3] = u[3]− 1

16
1m, the

bound (2.48) is equivalent to

x̂
[3]
i ≤ ti =

{
u
[3]
i if i ∈ I,
x̄
[3]
i if i ∈ Ic, (2.49)

for all i ∈ {1, 2, . . . ,m}. We now prove the element-wise representation of the bound, (2.49).
First, by the feasibility of x̂ and the definitions of u[3], l[3], it must hold for all i ∈

{1, 2, . . . ,m} that

x̂
[3]
i ≤

u
[3]
i

u
[3]
i − l[3]i

(w
[2]⊤
i x̂[2] − l[3]i ) =

1

2
(w

[2]⊤
i x̂[2] + u

[3]
i ),

and also that
x̂
[3]
i ≥ w

[2]⊤
i x̂[2].

Combining these inequalities, we find that x̂
[3]
i ≤ 1

2
(x̂

[3]
i + u

[3]
i ), or, equivalently, that

x̂
[3]
i ≤ u

[3]
i .

This bound holds for all i ∈ {1, 2, . . . ,m}, and therefore it also holds for i ∈ I. This proves
the first case in the bound (2.49).

We now prove the second case of the claimed upper bound. For this case, suppose i /∈ I.
Then i /∈ Sj for all j ∈ J c

p , which implies that

W
[1]
ij = 0 for all j ∈ J c

p ,

by the definition of W [1]. Therefore,

w
[1]⊤
i x̂[1] =

n∑
j=1

W
[1]
ij x̂

[1]
j =

∑
j∈J c

p

W
[1]
ij x̂

[1]
j +

∑
j∈Jp

W
[1]
ij x̂

[1]
j =

∑
j∈Jp

W
[1]
ij x̂

[1]
j .
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Now, note that for j ∈ Jp, the jth coordinate of the input is being partitioned, and therefore
the optimal solution must satisfy

x̂
[1]
j = ReLU(w

[0]⊤
j x̂[0]) = ReLU(e⊤j x̂

[0]) = ReLU(x̂
[0]
j ) ≤ 1,

since x̂
[0]
j ∈ [−1, 1]. Therefore,

w
[1]⊤
i x̂[1] ≤

∑
j∈J c

p

W
[1]
ij ≤

n∑
j=1

W
[1]
ij = w

[1]⊤
i 1n.

It follows from the feasibility of x̂ and the definitions of u[2], l[2] that

x̂
[2]
i ≤

u
[2]
i

u
[2]
i − l[2]i

(w
[1]⊤
i x̂[1] − l[2]i ) =

1

2
(w

[1]⊤
i x̂[1] + u

[2]
i )

≤ 1

2

(
w

[1]⊤
i 1n +

3

2
w

[1]⊤
i 1n

)
=

5

4
w

[1]⊤
i 1n = x̄

[2]
i ,

where x̄ is the solution computed for the densely partitioned LP relaxation in Step 3. There-
fore, we conclude that for all i /∈ I, it holds that

x̂
[3]
i ≤

u
[3]
i

u
[3]
i − l[3]i

(w
[2]⊤
i x̂[2] − l[3]i ) ≤ u

[3]
i

u
[3]
i − l[3]i

(w
[2]⊤
i x̄[2] − l[3]i ) = x̄

[3]
i ,

by our previous construction of x̄[3]. Thus, we have proven the second case in (2.49) holds.
Hence, the claimed bound (2.48) holds.

Step 4.2: Feasibility of Upper Bound. Let us define x = (x[0], x[1], x[2], x[3]), a point in
Rn × Rn × Rm × Rm, by

x[0] = 1n, x[1] = 1Jp +
5

4
1J c

p
, x[2] = u[3] − 1

8
1Ic , x[3] = u[3] − 1

16
1Ic .

Note that x[3] equals the upper bound t = (t1, t2, . . . , tm). We now show that x is feasible
for the partitioned LP defined by (2.29) and (2.30).

First, the input uncertainty constraint is satisfied, since x[0] = 1n ∈ X (j′) ⊆ X for some
part X (j′). Next, the relaxed ReLU constraints at the first layer are satisfied, since

x[1] = 1Jp +
5

4
1J c

p
≥ 0, (Layer 1 lower bound.)

x[1] −W [0]x[0] =
1

4
1J c

p
≥ 0, (Layer 1 lower bound.)

x[1] − u[1] ⊙ (W [0]x[0] − l[1])⊘ (u[1] − l[1]) = −1

2
1Jp −

1

4
1J c

p
≤ 0. (Layer 1 upper bound.)
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The relaxed ReLU constraints are also satisfied in the second layer, since

x[2] =
5

4
W [1]1n +

1

8
1I ≥ 0, (Layer 2 lower bound.)

x[2] −W [1]x[1] =
1

4
W [1]1Jp +

1

8
1I ≥ 0, (Layer 2 lower bound.)

x[2] − u[2] ⊙ (W [1]x[1] − l[2])⊘ (u[2] − l[2]) = 1

8
(1I −W [1]1J c

p
) ≤ 0. (Layer 2 upper bound.)

The final inequality above follows from the fact that either (1I)i = 0 or (1I)i = 1. For
coordinates i such that (1I)i = 0, the inequality obviously holds. For coordinates i such that
(1I)i = 1, we know that i ∈ I, implying that i ∈ Sj for some j ∈ J c

p . This in turn implies

that W
[1]
ij = 1 for some j ∈ J c

p , and therefore w
[1]⊤
i 1J c

p
=
∑

j∈J c
p
W

[1]
ij ≥ 1 = (1I)i.

Continuing to check feasibility of x, the relaxed ReLU constraints in the final layer are
also satisfied:

x[3] =
5

4
W [1]1n +

1

16
1m +

1

16
1I ≥ 0, (Layer 3 lower bound.)

x[3] −W [2]x[2] =
1

16
1Ic ≥ 0, (Layer 3 lower bound.)

x[3] − u[3] ⊙ (W [2]x[2] − l[3])⊘ (u[3] − l[3]) = 0 ≤ 0. (Layer 3 upper bound.)

Hence, the relaxed ReLU constraints are satisfied at all layers. The only remaining con-
straints to verify are the exact ReLU constraints for the partitioned input indices Jp. Indeed,
for all j ∈ Jp, we have that

x
[1]
j − ReLU(W [0]x[0])j = (1Jp)j +

5

4
(1J c

p
)j − ReLU(1n)j = 1 + 0− 1 = 0.

Hence, the ReLU equality constraint is satisfied for all input coordinates in Jp. Therefore,
our proposed point x is feasible for (2.30).

Step 4.3: Solution to Sparsely Partitioned LP. As shown in the previous step, the
proposed point x = (x[0], x[1], x[2], x[3]) is feasible for the partitioned LP defined by (2.29) and
(2.30). Recall from the upper bound (2.48) that our solution x̂ = (x̂[0], x̂[1], x̂[2], x̂[3]) satisfies
x̂[3] ≤ t. The objective value of the feasible point x gives that

c⊤x[3] =
m∑
i=1

x[3] =
m∑
i=1

ti ≥
m∑
i=1

x̂
[3]
i = ϕ⋆

Jp
(X ).

Since ϕ⋆
Jp
(X ) is the maximum value of the objective for all feasible points, it must be that

c⊤x[3] = ϕ⋆
Jp
(X ). Hence, the point x is an optimal solution to (2.30). Therefore, we can

write the final activation of our optimal solution x̂ to (2.30) as

x̂[3] = x[3] = t = u[3] − 1

16
1Ic . (2.50)
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Step 5: Min-K-Union from Optimal Partition. With the solutions constructed
in Step 3 and Step 4, we compute the difference in the objective values between the two
partitioned LP relaxations:

ϕ⋆
Jp
(X )− ϕ̄(X ) = c⊤x̂[3] − c⊤x̄[3] = c⊤

(
u[3] − 1

16
1Ic − 5

4
W [1]1n −

1

16
1m

)
= c⊤

(
5

4
W [1]1n +

1

8
1m −

1

16
1Ic − 5

4
W [1]1n −

1

16
1m

)
=

1

16
c⊤(1m − 1Ic)

=
1

16
c⊤1I =

1

16

∑
i∈I

1 =
1

16
|I| = 1

16

∣∣∣∣∣∣
⋃
j∈J c

p

Sj

∣∣∣∣∣∣ .
Therefore, ∣∣∣∣∣∣

⋃
j∈J c

p

Sj

∣∣∣∣∣∣ = 16
(
ϕ⋆
Jp
(X )− ϕ̄(X )

)
, (2.51)

which holds for all partition index sets Jp ⊆ {1, 2, . . . , n} such that |Jp| = np = n−K.
Now, let J ⋆

p be an optimal partition, i.e., a solution to (2.31) with our specified neural

network parameters. Then, by (2.51), we have
∣∣∣⋃j∈(J ⋆

p )c Sj
∣∣∣ = 16

(
ϕ⋆
J ⋆
p
(X )− ϕ̄(X )

)
≤

16
(
ϕ⋆
Jp
(X )− ϕ̄(X )

)
=
∣∣∣⋃j∈J c

p
Sj
∣∣∣ for all Jp with |Jp| = np. Since this holds for all J c

p with

|J c
p | = n−np = K, this shows that the set (J ⋆

p )
c is an optimal solution to the Min-K-Union

problem specified at the beginning of the proof. Now, suppose the optimal partitioning
problem in (2.31) could be solved for J ⋆

p in polynomial time. Then the optimal solution
(J ⋆

p )
c to the Min-K-Union problem is also computable in polynomial time. Since this holds

for an arbitrary instance of the Min-K-Union problem, this implies that the Min-K-Union
problem is polynomially solvable in general, which is a contradiction. Therefore, the problem
(2.31) is NP-hard in general.
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Chapter 3

Globally Optimal Certification of
Min-Max Affine Models

Although branch-and-bound approaches to solving the robustness certification problem are
capable of finding a global solution, doing so may require solving an exponential number of
subproblems in general. Instead, it is natural to wonder whether the certification problem
may be solved to global optimality in polynomial time. In this chapter, we obtain tight
robustness certificates over convex attack sets for min-max representations of ReLU neural
networks by developing a convex reformulation of the nonconvex certification problem. This
is done by “lifting” the problem to an infinite-dimensional optimization over probability
measures, leveraging recent results in distributionally robust optimization to solve for an
optimal discrete distribution, and proving that solutions of the original nonconvex problem
are generated by the discrete distribution under mild boundedness, nonredundancy, and
Slater conditions. As a consequence, optimal (worst-case) attacks against the model may
be solved for exactly. This contrasts prior state-of-the-art that either requires expensive
branch-and-bound schemes or loose relaxation techniques. Numerical simulations on robust
control and MNIST image classification examples highlight the benefits of our approach.

This chapter is based on the following previously published work:

[6] Brendon G. Anderson, Samuel Pfrommer, and Somayeh Sojoudi, “Tight certified robust-
ness via min-max representations of ReLU neural networks,” IEEE Conference on Decision
and Control (CDC), 2023.

3.1 Introduction

As discussed in Chapter 2, certifying a neural network’s robustness generally amounts to
solving an intractable nonconvex optimization problem [73], and hence various techniques
have been proposed to bound the problem as a tractable surrogate. In this chapter, we utilize
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an alternative representation of ReLU neural networks as a means to efficiently compute
tight robustness certificates using convex optimization (and hence in polynomial time). As a
consequence, we are able to exactly compute optimal (worst-case) attacks, which is generally
not possible using the popular local search-based attack methods such as projected gradient
descent [95] and the Carlini-Wagner attack [28].

Related Works

Robustness Certification

As introduced previously, certifying the robustness of a model amounts to solving the non-
convex optimization

inf
x∈X

g(x),

where X is a set of possible inputs or attacks (i.e., the “threat model”), and g(x) is either
the model output at an input x, or some linear transformation of the model output (e.g., a
classifier’s margin between two classes).

Convex relaxations work by optimizing over a convex outer-approximation of the set g(X )
of possible outputs. Popular relaxations involve linear bounding and programming [148, 166],
and semidefinite programming [115, 50], which constitutes a line of increasingly accurate yet
computationally complex relaxations. Convex relaxation-based certificates remain loose in
general, and their looseness has been shown to increase with model size [5].

The Lipschitz constant of a model provides a certified bound on how much the model
output may change given some change in its input. Thus, bounds on the Lipschitz constant
can yield efficient robustness certificates [51]. A number of works are devoted to comput-
ing Lipschitz bounds, but it has proven difficult to obtain tight enough bounds to grant
meaningful certificates [51, 146, 137, 72].

Mixed-integer programming and branch-and-bound have also been applied to robustness
certification for ReLU neural networks [133, 4, 141] (see also Chapter 2). In contrast to
convex relaxations and Lipschitz bounding, these methods are capable of obtaining tight
certificates if they are run to convergence, but this incurs exponential computational com-
plexity, preventing them from scaling to practically-sized models [141]. Some methods allow
for early termination of their optimizations to yield more efficient, yet loose certificates [141].

In this chapter, we take a different approach from the above works by changing our
mathematical representation of ReLU neural networks.

Representations of ReLU Neural Networks

ReLU neural networks are defined by compositions g = AL ◦ σ ◦ · · · ◦ σ ◦ A1 with affine
functions Al and element-wise activation functions σ = ReLU: x 7→ max{0, x}. The most
prevalent alternative representation of such a model is as a piecewise linear function, i.e., a
finite polyhedral partition of Rd with associated affine functions that agree with g on each
polyhedron [101, 11]. Another representation is as a rational function when working with
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tropical algebra, where addition ⊕ and multiplication ⊗ are defined by x ⊕ y = max{x, y}
and x ⊕ y = x + y [168]. Finally, min-max representations—discussed in Section 3.2—
have recently been introduced, where g is expressed as the pointwise minimum of pointwise
maxima of affine functions. These works restrict their focus to showcasing the impressive
approximation capabilities of ReLU models and their alternative representations.

Contributions

The primary contributions of this chapter are as follows:

1. We show that ReLU neural networks admit min-max representations and hence such
representations are universal function approximators.

2. By lifting the certification to an infinite-dimensional problem over probability measures,
we prove that, under mild boundedness, nonredundancy, and Slater conditions, exact
solutions to the original nonconvex problem are efficiently obtained for min-max repre-
sentations via reduction to a tractable finite-dimensional convex optimization problem.

3. Numerical simulations on robust control and MNIST image classification examples
demonstrate the effectiveness of our approach.

To the best of our knowledge, our work is the first to grant tight robustness certifi-
cates in polynomial time amongst those considering general ReLU neural networks and their
alternative representations.1

Organization

The remainder of this chapter is organized as follows. In Section 3.2, we introduce and
analyze the min-max representation of ReLU neural networks. We develop our tight robust-
ness certificates in Section 3.3. Numerical simulations illustrating the effectiveness of our
approach are given in Section 3.4, and concluding remarks are made in Section 3.5.

Notations

We now introduce the notations used throughout this chapter. The sets of natural, real,
nonnegative real, and extended real numbers are denoted by N, R, R+, and R = R∪{−∞,∞}
respectively. We let I,J ,K ⊆ N denote index sets {1, . . . ,m}, {1, . . . , n}, and {1, . . . , p},
respectively. The cardinality, convex hull, conic hull, and relative interior of a subset X of
Rd are denoted by |X |, conv(X ), cone(X ), and ri(X ), respectively. Furthermore, we define
B(X ) to be the Borel σ-algebra on X . We denote the set of probability measures on the

1See Awasthi, Dutta, and Vijayaraghavan [13] for a polynomial time solution to the special case of 2-layer
ReLU models.
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measurable space (X ,B(X )) by P(X ). For x ∈ Rd, the Dirac measure centered at x is
denoted by δx, which we recall is the probability measure defined by δx(A) = 0 if x /∈ A and
δx(A) = 1 if x ∈ A for all A ∈ B(X ). The set of all Dirac measures with center in X is
defined to be D(X ) = {µ ∈ P(X ) : µ = δx for some x ∈ X}. The set of continuous functions
from Rd into R is denoted by C(Rd,R). The effective domain of a function f : Rd → R is
defined to be the set dom(f) = {x ∈ Rd : f(x) < ∞}. If f is Borel measurable and µ is a
probability measure on (X ,B(X )), then we denote the expected value of f with respect to µ
by Ex∼µf(x) =

∫
X f(x)dµ(x). If f is convex, the subdifferential of f at x is denoted by ∂f(x).

Throughout, we let ∥·∥ denote an arbitrary norm on Rd, and we denote its dual norm by ∥·∥∗.
For a function f : Rd → R, we define Lip∥·∥(f) = inf{K ≥ 0 : |f(x) − f(x′)| ≤ K∥x − x′∥},
and if Lip∥·∥(f) < ∞, we say that f is Lipschitz continuous with constant Lip∥·∥(f) (with
respect to the norm ∥ · ∥).

3.2 Min-Max Affine Functions

In this section, we formally define min-max affine functions, discuss works related to these
functions, and show that every ReLU neural network admits such a representation.

Definition 3. A function g : Rd → R is a min-max affine function if there exist index sets
I,J1, . . . ,J|I| ⊆ N and associated aij ∈ Rd, bij ∈ R such that g(x) = mini∈I maxj∈Ji

(a⊤ijx+
bij) for all x ∈ Rd. In this case, the function x 7→ mini∈I maxj∈Ji

(a⊤ijx + bij) is called the
min-max representation of g.

The class of all min-max affine functions on Rd is denoted by G. Notice that g ∈ G is
the pointwise minimum of m = |I| convex functions gi : x 7→ maxj∈Ji

(a⊤ijx + bij), and is
therefore nonconvex in general. Without loss of generality, we henceforth assume that, for
every g ∈ G, there exists some J ⊆ N with n = |J | such that the min-max representation
of g satisfies Ji = J for all i ∈ I.2

Related works on min-max affine functions. In the mathematics literature, min-max
affine functions are also termed lattice polynomials [99]. The work Velasco-Forero and An-
gulo [136] shows that piecewise linear activation functions can be written in min-max affine
form, and that neural networks learned with such representations perform highly in image
classification tasks. The works Bagirov [14] and Bagirov and Ugon [15] study the theoretical
and algorithmic aspects of training min-max affine functions to separate data, and show that
separating {x1, . . . , xp} ⊆ Rd from {y1, . . . , yq} ⊆ Rd requires no more that pq affine compo-
nents. The authors of Rister and Rubin [117] use min-max representations of neural networks

2This is without loss of generality, since the value g(x) does not change upon appending affine global
underestimators of the convex function gi : x 7→ maxj∈Ji

(a⊤ijx + bij) to the set of affine components x 7→
a⊤ijx + bij of g. In other words, mini∈I maxj∈Ji(a

⊤
ijx + bij) = mini∈I maxj∈J (a⊤ijx + bij) if one defines

J = {1, . . . , n} with n = maxi∈I |Ji| and aij = vi, bij = gi(0) for j ∈ J \ Ji, for all i ∈ I, where vi ∈ Rd is
a subgradient of gi at 0 (which exists by Rockafellar [118, Theorem 23.4]).
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to characterize the training optimization landscape. The conversion of ReLU neural networks
into min-max affine form is characterized in Chen, Klivans, and Meka [31, Theorem 4.15].
An algorithm for nonlinear system identification using min-max affine functions is developed
in Wang and Narendra [142]. Finally, min-max affine functions have been used as consistent
statistical estimators, termed “Riesz estimators,” in the mathematical economics literature
[2]. To the best of our knowledge, our work is the first to exploit min-max representations
for purposes of robustness certification.

We now proceed with analyzing the representation power min-max affine functions. Let
F be the class of all ReLU neural networks on Rd. The following theorem shows that
every ReLU neural network can be represented as a min-max affine function, and therefore
min-max affine functions are universal function approximators.

Theorem 7. For every f ∈ F , there exist I,J ⊆ N and (aij, bij) ∈ Rd×R for i ∈ I, j ∈ J
such that

f(x) = min
i∈I

max
j∈J

(a⊤ijx+ bij) for all x ∈ Rd. (3.1)

Hence, the class G of min-max affine functions is dense in C(Rd,R) with respect to the
topology of uniform convergence on compact sets.

Proof. Every f ∈ F is piecewise affine, i.e., there is a finite collection Q of closed subsets of
Rd such that Rd =

⋃
Q∈QQ and f is affine on every Q ∈ Q. Hence, by Ovchinnikov [109,

Theorem 4.1], there exist I,J ⊆ N and (aij, bij) ∈ Rd × R for i ∈ I, j ∈ J such that (3.1)
holds. Thus, since F ⊆ G and F is dense in C(Rd,R) with respect to the topology of uniform
convergence on compact sets [114, Theorem 3.1], it holds that G is dense in C(Rd,R) in the
same sense.

The next result shows that min-max affine functions admit tight closed-form Lipschitz
bounds, unlike composition-based representations of ReLU models.

Proposition 6. Let the function g take the form g(x) = mini∈I maxj∈J (a
⊤
ijx + bij), and

assume that for all i ∈ I, j ∈ J there exists an open set U ⊆ Rd such that g(x) = a⊤ijx+ bij
for all x ∈ U . Then g is Lipschitz continuous with constant Lip∥·∥(g) = max(i,j)∈I×J ∥aij∥∗.

Proof. It is straightforward to see that, for f1, f2 : Rd → R with respective Lipschitz constants
L1, L2, the functions x 7→ min{f1(x), f2(x)} and x 7→ max{f1(x), f2(x)} both have Lipschitz
constants bounded above by max{L1, L2}. Therefore, since |a⊤ij(x−x′)| ≤ ∥aij∥∗∥x−x′∥ for
all i, j, x, x′, we have that Lip∥·∥(g) ≤ max(i,j)∈I×J ∥aij∥∗.

To show that the inequality holds with equality, let (i, j) ∈ argmax(i′,j′)∈I×J ∥ai′j′∥∗. By
assumption, there exists some open U ⊆ Rd such that g(x) = a⊤ijx + bij for all x ∈ U . Fix
such an x ∈ U , and let x′ ∈ Rd be such that ∥x′∥ = 1 and a⊤ijx

′ = ∥aij∥∗ (this is possible
since the dual norm supremum is attained). The set U contains an open ∥ · ∥-norm ball of
some radius r > 0 centered at x. Hence, there exists C > 0 such that ∥x′/C∥ < r, and thus
x+x′/C ∈ U . Therefore, g(x+x′/C)−g(x) = a⊤ijx

′/C = ∥aij∥∗/C = ∥aij∥∗∥(x+x′/C)−x∥
since ∥x′/C∥ = 1/C. This shows that indeed Lip∥·∥(g) = ∥aij∥∗ = max(i′,j′)∈I×J ∥ai′j′∥∗.
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Although global Lipschitz bounds may grant certificates of a model’s robustness to input
perturbations [51], the resulting robustness certificate is generally loose, even if the bound
on the global Lipschitz constant is tight. In the next section, we show how to tightly solve
the robustness certification problem for min-max affine representations of models.

3.3 Theoretical Robustness Certificates

In this section, we develop our theoretical robustness certificates. Consider a model g : Rd →
R, which may, for example, represent the output of a scalar-valued controller or the confi-
dence of a binary classifier f : Rd → {1, 2} defined by f(x) = 1 if g(x) ≥ 0 and f(x) = 2
if g(x) < 0. We consider the asymmetric robustness setting introduced in Pfrommer et al.
[111], where nonnegative outputs g(x) ≥ 0 are “sensitive” and we seek to certify that no input
within some convex uncertainty set X ⊆ Rd causes the output to leave the sensitive operat-
ing regime. This asymmetric setting accurately models realistic adversarial situations. For
example, an adversary may seek some imperceptible attack x ∈ X = {x′ ∈ Rd : ∥x′−x∥ ≤ ϵ}
to cause a vehicle’s image classifier to predict “no pedestrian” (g(x) < 0) when the nominal
image x has a pedestrian in view (the sensitive regime; g(x) ≥ 0), but not the other way
around. We leave as future work the extension to vector-valued models.

Formally, the certification problem we seek to solve in this chapter is written

p⋆ := inf
x∈X

g(x).

The model g is robust if and only if p⋆ ≥ 0. On the other hand, if x⋆ solves p⋆, then x⋆ is an
optimal (worst-case) attack in X , and it is successful if p⋆ < 0.

The problem p⋆ is nonconvex due to the nonconvexity of g. When g is a min-max affine
function, a naive reformulation of p⋆ yields that

p⋆ = inf
(x,i,t)∈X×I×R

{t : a⊤ijx+ bij ≤ t for all j ∈ J },

which removes the nonconvexity in x but is inefficient to solve in general due to the integer
variable i. Alternatively, one may attempt to directly reformulate the problem into a convex
one by minimizing the convex envelope of g. Although the resulting problem coincides
with our convex reformulation c (introduced below) on the relative interior of the direct
reformulation’s feasible set, it is difficult to obtain regularity conditions under which the
direct reformulation holds with respect to its entire feasible set.

We propose an alternative approach to solving p⋆ that consists of three steps: 1) lift
the problem to an optimization over probability measures, 2) leverage results and regularity
conditions in distributionally robust optimization to make a finite-dimensional reduction of
the problem, and 3) reformulate and solve the finite-dimensional reduction.
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Lifting the Problem

We lift the problem to an optimization over probability measures by noting that g(x) =∫
X g(x

′)dδx(x
′) = Ex′∼δxg(x

′) whenever x ∈ X :

p⋆ = inf
δx∈D(X )

Ex′∼δxg(x
′).

With this reformulation, the optimization objective is linear in the variable δx, but the
feasible set D(X ) is nonconvex, making the problem intractable as written. Therefore, we
consider relaxing the problem to an optimization over all probability measures:

p′ := inf
µ∈P(X )

Ex′∼µg(x
′).

The problem p′ is convex, but infinite-dimensional. We start by showing that the relaxation
is exact:

Proposition 7. It holds that p′ = p⋆.

Proof. SinceD(X ) ⊆ P(X ), it holds that p′ ≤ p⋆. Now, let µ ∈ P(X ). Then, since p⋆ ≤ g(x′)
for all x′ ∈ X , it holds that

p⋆ =

∫
X
p⋆dµ(x′) ≤

∫
X
g(x′)dµ(x′) = Ex′∼µg(x

′).

Since µ ∈ P(X ) is arbitrary, we conclude that p⋆ ≤ infµ∈P(X ) Ex′∼µg(x
′) = p′. Hence,

p′ = p⋆.

Next, we show that solutions of the nonconvex problem p⋆ are generated by discrete
solutions of the relaxation p′.

Proposition 8. If µ⋆ =
∑

i∈I λiδxi
is a discrete probability measure that solves p′, then

x⋆ := xi solves p
⋆ for all i ∈ I such that λi > 0.

Proof. Let i⋆ ∈ argmini∈I g(xi). Since λi ≥ 0 for all i,
∑

i∈I λi = 1, and g(xi⋆) ≤ g(xi) for
all i, it holds that

p⋆ ≤ g(xi⋆) =
∑
i∈I

λig(xi⋆) ≤
∑
i∈I

λig(xi) = Ex′∼µ⋆g(x′) = p′,

so xi⋆ solves p
⋆ by Proposition 7. If xi′ does not solve p

⋆ for some i′ ∈ I such that λi′ > 0, then
p⋆ = g(xi⋆) < g(xi′), implying that

∑
i∈I λig(xi⋆) <

∑
i∈I λig(xi) and hence that p⋆ < p′,

which contradicts Proposition 7.

The above results show that we may solve the problem p⋆ of interest by solving p′ for a
discrete optimal distribution. The remainder of this section is dedicated to this approach.



CHAPTER 3. GLOBALLY OPTIMAL CERTIFICATION OF MIN-MAX AFFINE
MODELS 71

Finite-Dimensional Reduction

To make our finite-dimensional reduction, we recall the definitions of conjugate and perspec-
tive functions.

Definition 4. The conjugate of a function f : Rd → R is the function f ∗ : Rd → R defined
by

f ∗(y) = sup
x∈dom(f)

(y⊤x− f(x)).

We write f ∗∗ to denote the biconjugate (f ∗)∗.

Definition 5. The perspective of a proper, closed, and convex function f : Rd → R is the
function Pf : Rd × R+ → R defined by

Pf (x, t) =

{
tf(x/t) if t > 0,

supy∈dom(f∗) y
⊤x if t = 0.

Recall that the perspective Pf of a convex function f is also convex, and that the
conjugate f ∗ is convex even when f is nonconvex [24].

Throughout the remainder of the chapter, we fix g and X to be min-max affine and
convex, respectively, via the following structural assumptions:

Assumption 2. It holds that g ∈ G, taking the form g(x) = mini∈I gi(x) with gi(x) =
maxj∈J (a

⊤
ijx+ bij).

Assumption 3. The set X takes the form X = {x ∈ Rd : ck(x) ≤ 0, k ∈ K} with
ck : Rd → R a proper, closed, and convex function for all k ∈ K.

We now make the reduction by introducing two finite-dimensional convex optimization
problems:

c := minimize
λi,ηi∈R
xi∈Rd

∑
i∈I

ηi

subject to Pck(xi, λi) ≤ 0, i ∈ I, k ∈ K,
Pgi(xi, λi) ≤ ηi, i ∈ I,∑
i∈I

λi = 1, λ ≥ 0.

c := maximize
α,βik∈R
yi,zik∈Rd

− α

subject to g∗i (yi) +
∑
k∈K

Pc∗k
(zik, βik) ≤ α, i ∈ I,

yi +
∑
k∈K

zik = 0, i ∈ I,

βik ≥ 0, i ∈ I, k ∈ K.
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Intuitively, c is minimizing a sort of “average” of the components gi at a finite number of
points xi with weights given by the probability vector λ, and c is its dual. We now leverage
recent results in distributionally robust optimization to show that the finite reductions c, c
allow us to solve the infinite-dimensional problem p′ under mild assumptions.

Definition 6. Let f0, f1, . . . , fm and h1, . . . , hn be extended real-valued functions defined
on Rd. The optimization problem p = inf{f0(x) : f1(x) ≤ 0, . . . , fm(x) ≤ 0, h1(x) =
0, . . . , hn(x) = 0, x ∈ Rd} admits a Slater point if there exists x ∈ ⋂m

i=0 ri(dom(fi)) ∩⋂n
j=1 ri(dom(hj)) such that fi(x) ≤ 0 and hj(x) = 0 for all i and all j, and such that

fi(x) < 0 for all i ̸= 0 such that fi is nonlinear.

Assumption 4. The set X is bounded and the optimization problem c admits a Slater
point.

The above boundedness assumption on X is standard in the adversarial robustness liter-
ature. The Slater condition may be verified by solving c with a small number ϵ > 0 added
to all of the nonlinear inequality constraints; replace fi(x) ≤ 0 with fi(x) + ϵ ≤ 0 for all
nonlinear constraint functions fi.

Theorem 8. If Assumption 4 holds, then c = p′ = c, and the discrete probability distribution∑
i∈I:λ⋆

i ̸=0 λ
⋆
i δx⋆

i /λ
⋆
i
solves p′ for all solutions (η⋆, λ⋆, x⋆) to c.

Proof. Since X is defined by a finite intersection of 0-sublevel sets of proper, closed, and
convex functions (Assumption 3), and since every gi : x 7→ maxj∈J (a

⊤
ijx + bij) is a proper,

closed, and convex function, the result follows from Zhen, Kuhn, and Wiesemann [171,
Theorem 12(ii)].

Theorem 8 together with our Proposition 7 and Proposition 8 show that we are able to
exactly compute an optimal attack solving the nonconvex problem p⋆ by solving the convex
optimizations c, c.

Reformulating and Solving the Finite Reduction

In order to solve c, c, we must derive the appropriate conjugates and perspectives. In this
subsection, we do so for the common cases where X is defined in terms of norm balls or
polyhedra. We will also see that computing the conjugate g∗i is highly nontrivial, and as a
result we turn to tractably reformulating the constraint involving g∗i using duality theory.

Proposition 9. The perspective of gi : x 7→ maxj∈J (a
⊤
ijx + bij) is given by Pgi(x, t) =

maxj∈J (a
⊤
ijx+ bijt) for all (x, t) ∈ Rd × R+.

Proof. Let x ∈ Rd. If t > 0, then

Pgi(x, t) = tgi(x/t) = tmax
j∈J

(a⊤ijx/t+ bij) = max
j∈J

(a⊤ijx+ bijt).
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If t = 0, then

Pgi(x, t) = lim inf
(x′,t′)→(x,0)

Pgi(x
′, t′)

= lim inf
(x′,t′)→(x,0)

max
j∈J

(a⊤ijx
′ + bijt

′)

= max
j∈J

a⊤ijx

= max
j∈J

(a⊤ijx+ bijt),

where the first equality comes from Theorem 13.3 and Corollary 8.5.2 in Rockafellar [118]
and the third equality comes from the continuity of (x, t) 7→ maxj∈J (a

⊤
ijx+ bijt).

Proposition 10. The perspective of ck : x 7→ ∥x−x∥−ϵ is given by Pck(x, t) = ∥x−tx∥−ϵt
for all (x, t) ∈ Rd × R+.

Proof. Following the same reasoning as in the proof of Proposition 9, we find that Pck(x, t) =
t(∥x/t−x∥− ϵ) = ∥x− tx∥− ϵt for t > 0 and Pck(x, t) = lim inf(x′,t′)→(x,0)(∥x′− t′x∥− ϵt′) =
∥x∥ = ∥x− tx∥ − ϵt for t = 0.

Proposition 11. The conjugate of ck : x 7→ ∥x− x∥ − ϵ is given for all z ∈ Rd by

c∗k(z) =

{
z⊤x+ ϵ if ∥z∥∗ ≤ 1,

∞ if ∥z∥∗ > 1.

Proof. Let z ∈ Rd be such that ∥z∥∗ ≤ 1. Then

sup
x∈Rd:x̸=x

z⊤(x− x)
∥x− x∥ = sup

x′∈Rd:∥x′∥≤1

z⊤x′ = ∥z∥∗ ≤ 1,

so z⊤(x − x) − ∥x − x∥ ≤ 0 for all x ̸= x. Also, z⊤(x − x) − ∥x − x∥ = 0 for x = x, and
therefore supx∈Rd(z⊤(x− x)− ∥x− x∥) = 0, indicating that

c∗k(z) = sup
x∈Rd

(z⊤(x− x)− ∥x− x∥) + z⊤x+ ϵ = z⊤x+ ϵ.

On the other hand, let z ∈ Rd be such that ∥z∥∗ > 1. Then there exists x′ ∈ Rd \ {0}
such that z⊤x′

∥x′∥ > 1, implying that z⊤x′ − ∥x′∥ > 0, and hence

c∗k(z) ≥ z⊤(x+ αx′)− ∥αx′∥+ ϵ

= α(z⊤x′ − ∥x′∥) + z⊤x+ ϵ

→∞

as α→∞. Thus, c∗k(z) =∞.
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Proposition 12. The perspective of the conjugate of ck : x 7→ ∥x − x∥ − ϵ is given for all
(z, t) ∈ Rd × R+ by

Pc∗k
(z, t) =

{
z⊤x+ ϵt if ∥z∥∗ ≤ t,

∞ if ∥z∥∗ > t.

Proof. Let t > 0. If z ∈ Rd is such that ∥z∥∗ ≤ t, then ∥z/t∥∗ ≤ 1, so Pc∗k
(z, t) = tc∗k(z/t) =

t((z/t)⊤x+ ϵ) = z⊤x+ ϵt. If ∥z∥∗ > t, then ∥z/t∥∗ > 1, so Pc∗k
(z, t) = tc∗k(z/t) =∞.

On the other hand, let t = 0. Then

Pc∗k
(z, t) = sup

x∈dom(c∗∗k )

z⊤x = sup
x∈Rd

z⊤x =

{
0 if z = 0,

∞ if z ̸= 0,

since c∗∗k = ck which has domain Rd, as ck is proper, closed, and convex [118, Theorem 12.2].
Since, when t = 0, the condition z = 0 is equivalent to ∥z∥∗ ≤ t and the condition z ̸= 0 is
equivalent to ∥z∥∗ > t, the proof is complete.

We also provide the conjugates and perspectives for polyhedral X :

Proposition 13. Let ck : x 7→ ψ⊤
k x + ωk for some ψk ∈ Rd and some ωk ∈ R. Then the

following all hold:

1. Pck(x, t) = ψ⊤
k x+ ωkt,

2. c∗k(z) =

{
−ωk if z = ψk,

∞ if z ̸= ψk,

3. and Pc∗k
(z, t) =

{
−ωkt if z = tψk,

∞ if z ̸= tψk.

The proof of Proposition 13 follows from a straightforward application of the definitions
of conjugate and perspective, and is hence omitted for brevity.

The conjugate g∗i is all that remains to compute. However, although computing g∗i in
closed form for the univariate (d = 1) function gi : x 7→ maxj∈J (aijx + bij) can be straight-
forward, generalizing the formula to higher-dimensional settings is nontrivial. In theory, it is
possible to express g∗i for d > 1 in closed form via Rockafellar [118, Theorem 19.2]. However,
this requires solving a vertex enumeration problem, i.e., determining finite sets V,R ⊆ Rd×R
such that the polyhedron epi(g∗i ) := {(x, t) ∈ Rd × R : a⊤ijx+ bij ≤ t for all j ∈ J } equals
conv(P ) + cone(R). The vertex enumeration problem is NP-hard in general [75]. See the
Minkowski-Weyl theorem [118, Theorem 19.1] for the theory on such representations of
polyhedra. In Theorem 9 that follows, we instead take a duality-based robust optimization
approach to tractably deal with the conjugate g∗i in a direct manner.

Lemma 5. It holds that dom(g∗i ) = conv{aij : j ∈ J }.
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Proof. Let y ∈ conv{aij : j ∈ J }. Then y =
∑

j∈J θjaij for some θ ∈ Rn such that θ ≥ 0

and
∑

j∈J θj = 1. Hence, for all x ∈ Rd, we find that

y⊤x−max
j∈J

(a⊤ijx+ bij) =
∑
j∈J

θja
⊤
ijx−max

j∈J
(a⊤ijx+ bij)

=
∑
j∈J

θj(a
⊤
ijx+ bij)−max

j∈J
(a⊤ijx+ bij)−

∑
j∈J

θjbij

≤
∑
j∈J

θj max
l∈J

(a⊤ilx+ bil)−max
j∈J

(a⊤ijx+ bij)−
∑
j∈J

θjbij

= −
∑
j∈J

θjbij,

and thus g∗i (y) ≤ −
∑

j∈J θjbij <∞, so y ∈ dom(g∗i ).
On the other hand, let y ∈ dom(g∗i ), so that g∗i (y) <∞. An epigraphic reformulation of

g∗i (y) yields that ∞ > g∗i (y) = supx∈Rd(y⊤x−maxj∈J (a
⊤
ijx + bij)) = sup(x,t)∈Rd×R{y⊤x− t :

a⊤ijx+ bij ≤ t for all j ∈ J }. This reformulation is a linear program with a finite optimal
value, and hence by Bertsekas [22, Proposition 3.1.3], the reformulation is attained by some
(x, t) ∈ Rd × R, and since it must be the case that t = a⊤ijx + bij for some j ∈ J at this
point (x, t), we conclude that this x solves the supremum defining g∗i (y) in its original form
(i.e., pre-epigraphic reformulation). Therefore, by the first-order optimality condition for
unconstrained convex optimization [118, Theorem 23.2], it holds that 0 ∈ ∂hi(x), where
hi : Rd → R is the convex function defined by hi(x) = maxj∈J (a

⊤
ijx + bij) − y⊤x. Using

the rules for subdifferentials of pointwise maxima and sums of proper convex functions [22,

Proposition B.22],[118, Theorem 23.8], we have that ∂hi(x) = conv
(⋃

j∈A(x){aij}
)
+ {−y},

where A(x) denotes the set of active indices at x: A(x) = {j ∈ J : a⊤ijx+bij = maxl∈J (a
⊤
ilx+

bil)}. Since 0 ∈ ∂hi(x), this yields that y ∈ conv
(⋃

j∈A(x){aij}
)
⊆ conv{aij : j ∈ J }. This

completes the proof.

Assumption 5. The functions gi are nonredundant in the sense that for all j ∈ J there
exists x ∈ Rd such that gi(x) = a⊤ijx+ bij.

It is easy to see that nonredundancy of gi is efficiently verified by solving the linear
(feasibility) programs inf{0 : (ail−aij)⊤x+(bil−bij) ≤ 0 for all l ∈ J , x ∈ Rd} for all j ∈ J .
Removing the affine components of gi with infeasible programs ensures that Assumption 5
holds and does not change the model’s predictions.

Theorem 9. Suppose that Assumption 5 holds, and let h : Γ→ R be an arbitrary real-valued
function defined on some nonempty set Γ. Then, for all y ∈ Rd and all γ ∈ Γ, it holds that
g∗i (y) ≤ h(γ) if and only if, for all j ∈ J , there exists νij ∈ Rn such that the following all
hold:

1. y =
∑

j∈J θjaij for some θ ∈ Rn such that θ ≥ 0 and
∑

j∈J θj = 1,
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2. νij ≥ 0,

3. y − aij +
∑

l∈J (νij)l(aij − ail) = 0,

4. and −bij +
∑

l∈J (νij)l(bij − bil) ≤ h(γ).

Proof. Let y ∈ Rd and γ ∈ Γ. If y ̸= ∑
j∈J θjaij for all θ ∈ Rn such that θ ≥ 0 and∑

j∈J θj = 1, then y /∈ conv{aij : j ∈ J } and hence y /∈ dom(g∗i ) by Lemma 5. In this case,
g∗i (y) = ∞ > h(γ) since h is real-valued. Therefore, the first condition enumerated in the
theorem is necessary for g∗i (y) ≤ h(γ).

Going forward, assume that y =
∑

j∈J θjaij for some θ ∈ Rn such that θ ≥ 0 and∑
j∈J θj = 1. Hence, g∗i (y) < ∞. Breaking up the conjugate’s supremum into n suprema

over the affine components of gi yields

g∗i (y) = sup
x∈Rd

(y⊤x−max
j∈J

(a⊤ijx+ bij))

= max
j∈J

sup
x∈Rd

{(y − aij)⊤x− bij : (ail − aij)⊤x+ (bil − bij) ≤ 0 for all l ∈ J }.

Denote the inner suprema by

pij := sup
x∈Rd

{(y − aij)⊤x− bij : (ail − aij)⊤x+ (bil − bij) ≤ 0 for all l ∈ J }.

Since, by Assumption 5, for all j ∈ J there exists x ∈ Rd such that maxl∈J (a
⊤
ilx + bil) =

gi(x) = a⊤ijx + bij, it holds that {x ∈ Rd : a⊤ijx+ bij ≥ a⊤ilx+ bil for all l ∈ J } ̸= ∅ for all
j ∈ J , implying that every pij is feasible, i.e., pij > −∞. Furthermore, since g∗i (y) <∞, it
must be the case that pij <∞ for all j ∈ J . Thus, every optimal value pij is finite. Therefore,
by Bertsekas [22, Proposition 3.1.3], every pij is attained, and therefore by Bertsekas [22,
Proposition 4.4.2] strong duality holds between pij and its dual problem, which we denote
by dij, and it also holds that dij is attained. A routine derivation via Lagrangian duality
therefore yields that

pij = dij

= inf
νij∈Rn

{∑
l∈J

(νij)l(bij − bil)− bij : y − aij +
∑
l∈J

(νij)l(aij − ail) = 0, νij ≥ 0

}
.

Hence, g∗i (y) ≤ h(γ) if and only if maxj∈J pij ≤ h(γ) if and only if pij ≤ h(γ) for all j ∈ J .
Thus, since dij is attained, it holds that g

∗
i (y) ≤ h(γ) if and only if, for all j ∈ J , there exists

νij ∈ Rn such that νij ≥ 0, y−aij+
∑

l∈J (νij)l(aij−ail) = 0, and −bij+
∑

l∈J (νij)l(bij−bil) ≤
h(γ). This completes the proof.

With the above conjugate and perspective derivations, our reformulations of c, c are
complete; they may now be directly solved using off-the-shelf convex optimization solvers.
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Remark 2. Our developments can be generalized, so long as one can compute the appropriate
conjugates and perspectives. In particular, the mathematical machinery yielding a discrete
distribution solution to p′ from a solution to an associated finite-dimensional convex opti-
mization problem may be applied to general convex functions gi and other (non-norm-based
and non-polyhedral) convex attack sets X [171]. In fact, moment constraints on µ ∈ P(X )
may even be added to the semi-infinite program p′, which may allow for modeling alterna-
tive “distributional attacks” beyond the standard “Dirac attack” at a single point considered
here.

3.4 Numerical Simulations

In this section, we illustrate the utility of our method in both robust control and image
classification settings.3

Robust Control Certification

We take an illustrative robust control example adapted from the well-known autonomous
vehicle collision avoidance problem [116, 138]. Consider two planar vehicles approaching an
intersection located at the origin (0, 0) ∈ R2. One vehicle travels east with state x(t) =
(x(t), ẋ(t)) ∈ R2 at time t. The other vehicle, which we control and hence term the “ego
vehicle,” travels north with state y(t) = (y(t), ẏ(t)). The eastbound uncontrolled vehicle has
a fixed velocity (ẍ(t) = 0 for all t). The full state (x(t), ẋ(t), y(t), ẏ(t)) is randomly initialized
at t = 0 within [−3,−2]× [1/2, 5/2]× [−3,−2]× [0, 2]. The vehicles are each 1 unit long and
1/2 unit wide, matching the width of the road. Thus, a vehicle is considered to be in the
intersection if the absolute value of its position is less than 3/4. If the vehicles collide, the
simulation is stopped. We simulate standard double integrator dynamics with a time step
∆t = 0.05 for 100 steps.

We control the northbound vehicle using a learned policy u(t) = −πθ (x(t),y(t)) that
enters the dynamics as ÿ(t) = Π[−1,1] (u(t)), where πθ : R4 → R is a min-max affine function
with m = n = 10 and Π[−1,1] is the natural projection mapping of R onto [−1, 1]. Our
robustness certificates apply for all training schemes, e.g., reinforcement learning and im-
itation learning. We train πθ using imitation learning on 500 trajectories generated by a
hand-programmed expert policy π⋆. We use the mean squared error loss function and train
for 20 epochs using the Adam optimizer at a learning rate of 0.01. The expert policy π⋆

is designed to stop the ego vehicle δ = 0.1 units before the intersection with a constant
acceleration, then apply no acceleration until the tail of the uncontrolled vehicle is δ units
past the intersection, and then accelerate with the maximum input of 1.

We now consider certifying the safety of our control system. Our goal is to guarantee
that the ego vehicle always brakes when the uncontrolled vehicle is approaching or inside the

3All simulations are conducted on a Ubuntu 22.04 instance with an Intel i7-9700K CPU and NVIDIA
RTX A6000 GPU.
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intersection. This enforcement of braking corresponds to ensuring that the largest accelera-
tion signal u(t) is less than zero, which amounts to minimizing the output of πθ over the set
of states for which we desire braking. This is formalized by requiring braking for all states
in the set

X = [−3 + δ, 3
4
]× [1

2
+ δ, 5

2
− δ]× [−3 + δ,−3

4
]× [δ, 2− δ],

which consists of states where the uncontrolled vehicle is approaching or in the intersection
and the ego vehicle is approaching the intersection. The small positive constant δ = 0.1
accounts for boundary states where expert trajectories may not have been sampled.

Utilizing our robustness certificates from Section 3.3, we verify that indeed u(t) =
−πθ (x(t),y(t)) < 0 for all states (x(t),y(t)) ∈ X . For visual purposes, we also consider
fixing a particular y(t) and computing the largest possible acceleration u(t) amongst all un-
controlled vehicle states x(t) captured by X . The solutions to this problem over a range of
y(t) are plotted in Figure 3.1. As expected, for all y(t), the ego vehicle is braking. As the
ego vehicle approaches the intersection (large y(t)) or becomes faster (large ẏ(t)), we certify
that the controller brakes more heavily.
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Figure 3.1: Largest possible acceleration over all uncontrolled vehicle states for particular
values of the ego vehicle state. The output is always negative, ensuring some level of braking.

Image Classification

We demonstrate the tightness and efficiency of our method on an image classification example
adapted from Pfrommer et al. [111]. The task is to distinguish between two visually similar
MNIST classes: the digits 3 and 8 [84]. As we consider the asymmetric setting, we aim
to certify predictions for one particular class, which we take to be the class of 3’s, while
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maintaining high clean accuracy for both classes. We consider the attack set X = {x ∈ Rd :
∥x− x∥∞ ≤ ϵ} over a range of radii ϵ > 0 around test images x. In this setting, certificates
ensure that pixelwise adversarial alterations of an image x of a 3 cannot fool the classifier
into predicting an 8.

We compare two approaches: 1) directly learning our min-max representation with n =
m = 15 and certifying via our convex optimization-based certificates, and 2) learning a
standard composition-based ReLU model and certifying via the state-of-the-art verifier α, β-
CROWN [141]. Since α, β-CROWN’s worst-case runtime scales exponentially with model
size, we instantiate the standard ReLU model with one hidden layer and 100 hidden units,
which is the smallest hidden layer size that yields comparable clean accuracy to our min-max
representation. We use adversarial training (see Madry et al. [95]) with ℓ∞-attacks starting
at a radius of 0.001 and linearly interpolate to a radius of ϵtrain over the first 20 epochs,
where ϵtrain = 0.05 for our model and ϵtrain = 0.3 for the standard ReLU model. Both models
are trained using the Adam optimizer with a learning rate of 0.001 for 60 epochs.

Figure 3.2 compares the certified accuracy (averaged over the test inputs) of our method
against that of α, β-CROWN. As certifying at a particular ϵ using our method is fast, for
each test input, the largest certifiable ℓ∞-radius is found using binary search in order to
yield a smooth certified accuracy curve. On the other hand, due to the expensive runtime
of α, β-CROWN, we only certify at the select radii shown. Our min-max representation
exceeds the state-of-the-art baseline certified radii at far faster runtimes: certifying a single
input-radius pair (x, ϵ) takes on average 3.67 seconds with α, β-CROWN versus only 0.48
seconds with our method. We note that our runtime comparisons are solely based off of
models with equivalent clean accuracy.
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Figure 3.2: Certified accuracies of our min-max representation and of α, β-CROWN on the
MNIST 3-versus-8 dataset.
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3.5 Conclusions

In this chapter, we exactly solve the nonconvex robustness certification problem over convex
attack sets for min-max representations of ReLU neural networks by developing a tractable
convex reformulation. An interesting line of future work may include developing more effi-
cient min-max representations or estimations for arbitrary ReLU neural networks, so that the
advantageous optimization properties derived in this chapter may be easily applied. Other
interest lies in comparing the number of affine regions of a general min-max affine function
versus that of a general ReLU neural network.
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Chapter 4

Data-Driven Certification for
Probabilistic Robustness

Most certification methods in the literature are designed for adversarial or worst-case inputs,
but researchers have recently shown a need for methods that consider random input noise.
In this chapter, we examine the setting where inputs are subject to random noise coming
from an arbitrary probability distribution. We propose a robustness certification method
that lower-bounds the probability that network outputs are safe. This bound is cast as
a chance-constrained optimization problem, which is then reformulated using input-output
samples to make the optimization constraints tractable. We develop sufficient conditions
for the resulting optimization to be convex, as well as on the number of samples needed to
make the robustness bound hold with overwhelming probability. We show for a special case
that the proposed optimization reduces to an intuitive closed-form solution. Case studies on
synthetic, MNIST, and CIFAR-10 networks experimentally demonstrate that this method is
able to certify robustness against various input noise regimes over larger uncertainty regions
than prior state-of-the-art techniques.

This chapter is based on the following previously published work:

[9] Brendon G. Anderson and Somayeh Sojoudi, “Data-driven certification of neural networks
with random input noise,” IEEE Transactions on Control of Network Systems, 2022.

4.1 Introduction

Much of the literature on robustness certification has revolved around adversarial inputs,
i.e., inputs with small-magnitude perturbations that are designed to cause a worst-case pre-
diction [148, 146, 115, 4]. However, as argued in Webb et al. [144] and Mangal, Nori,
and Orso [97], random input uncertainty better models reality in many applications. Ar-
eas that commonly use a probabilistic model of uncertainty include stochastic control and
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finance, where unpredictable measurement errors and state disturbances are assumed to be
random [12, 56]. The stochastic framework also naturally encapsulates applications where
unbounded uncertainties may exist, albeit with an extremely low probability. This is typical
in real-world applications such as aviation [160]. In fact, the International Organization for
Standardization (ISO) asserts in their guide on safety aspects that there is never absolute
safety, and therefore the goal is to achieve what they define to be tolerable risk [68, 70].
Not only are random uncertainties pervasive and realistic, they have been shown to pose
a legitimate threat—small uniform noise causes misclassification rates of well over 10% on
MNIST and CIFAR-10 networks, and for Bernoulli noise the misclassification rates become
drastically worse, sometimes reaching 100% [145].

The aforementioned motivations have led to an influx of recent works considering ro-
bustness against random inputs, which we review below. Many of them make stringent
assumptions on the structure of the network or input distribution, or the formal certification
guarantees are relaxed or eliminated in order to enhance computational tractability. Since
neural networks are more sensitive to adversarial inputs than to random input noise [57],
worst-case sensitivity analyses are too conservative for random input noise when the goal
at hand is to achieve a tolerable risk level, whereas high-probability robustness certificates
may completely fail in the presence of adversaries; the two settings are disjoint and should
be studied using distinct methods. The work in this chapter is intended to certify robust-
ness against random input noise with minimal conservatism, and is not intended to assess
adversarial robustness.

Related Works

In this section, we review the state-of-the-art methods for assessing robustness to random
inputs, highlight their usages, and address their limitations. For instance, Mangal, Nori,
and Orso [97] defines robustness as the network output being Lipschitz continuous with
high probability when two inputs are chosen randomly. Their proposed method is limited
to neural networks composed of conditional affine transformations, e.g., ReLU networks.
On the other hand, Weng et al. [145] analytically bounds the probability that a classifier’s
margin function exceeds a given value. Although this probabilistic method applies to general
neural network models, it assumes that the random input noise is constrained to an ℓp-norm
ball and is either Gaussian or has independent coordinates. Furthermore, their bounding
technique relies on worst-case analysis methods, making their resulting certificates relatively
loose (see Section 4.6).

In Webb et al. [144], robustness is measured by the probability that random input noise
results in misclassification. The authors propose a sampling-based approximation of the
robustness level. However, no theoretical guarantees are given to certify the network’s ro-
bustness. Contrarily, Dvijotham et al. [43] formally bounds the probability that a random
input maps to an unsafe output. However, the bounding function is nonconvex, and there-
fore obtaining tight bounds amounts to nonconvex optimization. Alternatively, Franceschi,
Fawzi, and Fawzi [57] bounds the size of a random input perturbation that causes a classifier
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prediction error with high probability. Their bounds provide elegant theoretical guarantees,
but they depend on the network’s worst-case robustness level, which is generally NP-hard
to compute without approximation errors or additional assumptions [146, 73].

The works Fazlyab, Morari, and Pappas [49] and Couellan [36] provide methods to guar-
antee that network outputs do not significantly deviate from the nominal output when the
input is subject to random uncertainty. This corresponds to the problem of localizing the
network outputs within the output space. The work Fazlyab, Morari, and Pappas [49] uses
the output localization to issue high-probability guarantees for the network’s robustness.
However, their method requires solving a semidefinite program, and their results are demon-
strated on small, single-layer networks, so it is not clear whether their method scales to
realistic applications. The concentration bounds presented in Couellan [36] can be applied
to deep networks, but their localization results do not immediately translate into a mean-
ingful certificate of robustness.

The authors of Devonport and Arcak [40] and Li et al. [89] use input-output samples to
learn how input noise is propagated to the output space through a method called scenario
optimization. This approach naturally embeds the stochastic nature of the input noise
into the assessment procedure. The work Devonport and Arcak [40] provides a method
to estimate a network’s set of possible outputs, but this localization may fail to determine
the safety of the output since the underlying optimization does not directly consider any
safety specifications, e.g., classification boundaries. We demonstrate this phenomenon in
our comparison to output set estimation in Section 4.6. Other scenario-based output set
estimation techniques for general nonlinear maps, such as Yang et al. [157], Fravolini et al.
[58], and Sartipizadeh et al. [124], suffer from the same limitation in the context of neural
network certification. Contrarily, Li et al. [89] directly considers output safety in their
scenario approach. However, their method makes use of an affine approximation to the
network’s nonlinear margin function, a worst-case analysis technique from the adversarial
robustness literature. In our numerical simulations, we show that this worst-case technique
yields loose robustness bounds as the size of the input noise increases.

Finally, Zakrzewski [160] also uses sampled data to bound the probability of failure. Their
guarantees take the probably approximately correct (PAC) form in terms of probability levels
ϵ, δ ∈ [0, 1], and they improve the sample complexity from O( 1

ϵ2
log 1

δ
) of the naive Chernoff

bound to O(1
ϵ
log 1

δ
). This is achieved by imposing a Bayesian framework and assuming that

the failure probability follows a uniform prior distribution. As the authors remark, this is
a “very conservative choice.” In contrast, the method to be proposed in this chapter solves
for the optimal (least conservative) robustness bound of this form with the same O(1

ϵ
log 1

δ
)

sample complexity.

Contributions

In this chapter, we develop a data-driven framework for certifying neural network robust-
ness against random input noise using scenario optimization. Our direct approach avoids
worst-case analysis techniques, such as those found in the adversarial robustness literature,
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e.g., Weng et al. [145], and also avoids the need for selecting a Bayesian prior distribution
governing the network’s failure probability, as in Zakrzewski [160]. The procedure is capable
of localizing network outputs into a general class of sets, and we develop sufficient conditions
on this class to ensure that the procedure amounts to a convex optimization problem. Fur-
thermore, we develop formal guarantees that the resulting robustness certificate holds with
overwhelming probability upon using sufficiently many samples in the scenario optimization.
Although the method is applicable to all neural networks and all input noise distributions,
we show how to exploit the structure of networks with affinely bounded activation functions
in order to reduce sample complexity.

Our numerical simulations demonstrate that the proposed optimization is capable of
issuing robustness certificates in cases where the two-step process of optimally localizing the
outputs (e.g., using Devonport and Arcak [40]) and then certifying them cannot, providing
a novel perspective that output set estimation techniques do not necessarily work well for
certification. Furthermore, we show on both synthetic networks and large MNIST and
CIFAR-10 networks that our robustness bounds are much tighter than those obtained by
the state-of-the-art method Weng et al. [145], particularly for large noise levels.

Outline

We begin by formulating the certification problem in Section 4.2. In Section 4.3 and Sec-
tion 4.4, we propose an optimization to solve for the high-probability robustness certificate,
and then show that it suffices to solve a data-driven convex optimization problem with suf-
ficiently many samples. Next, we demonstrate how to exploit the neural network structure
to reduce the sample complexity of the proposed method in Section 4.5. We numerically
illustrate the results and compare to state-of-the-art methods in Section 4.6. We conclude in
Section 4.7. Supporting lemmas and various supplementary materials are presented in the
appendices.

Notations

In this section, we define the notations used throughout this chapter. The ceiling of x ∈ R
is written ⌈x⌉. For x, y ∈ Rn, we define [x, y] = {z ∈ Rn : x ≤ z ≤ y}, where the
inequalities are interpreted element-wise. Given a set X , we denote its power set by P(X ).
The Minkowski sum of sets X and Y is defined as X + Y = {x + y : x ∈ X , y ∈ Y}. We
define R++ = {x ∈ R : x > 0}. For a function f : Rm → Rn, we write the image of X ⊆ Rm

under f as f(X ) = {f(x) ∈ Rn : x ∈ X}. If g : Rn → Rp is another function, we define the
composition g ◦ f : Rm → Rp by g ◦ f(x) = g(f(x)). If X : Ω → Rn is a random variable
on a probability space (Ω,F ,P), g : Rn → R is a Borel measurable function, and c ∈ R, we
use the notation P(g(X) ≥ c) to mean P({ω ∈ Ω : g(X(ω)) ≥ c}). Similarly, if S ⊆ Rm

is a Borel set and h : Rn → Rm is a Borel measurable function, we write P(h(X) ∈ S) to
mean P({ω ∈ Ω : h(X(ω)) ∈ S}). For a norm ∥ · ∥ on Rn we denote its dual norm by ∥ · ∥∗,
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where ∥y∥∗ = sup{x⊤y : ∥x∥ ≤ 1}. We assume throughout that optimization problems are
attained by a solution.

4.2 Problem Statement

Network Description, Safe Set, and Safety Level

In this chapter, we consider a Borel measurable neural network f : Rnx → Rny with arbitrary
structure and parameters.1 We assume that the input to the network is a random variable
X : ΩX → Rnx on a fixed probability space (ΩX ,FX ,PX).

2 We do not assume that the
distribution PX is exactly known—we only assume that we are able to sample from PX . The
support of the probability measure PX is called the input set, which is denoted by X ⊆ Rnx .
The output set of the network is defined to be Y = f(X ) ⊆ Rny .

Next, consider a given convex polyhedral safe set S = {y ∈ Rny : Ay + b ≥ 0}, where
A ∈ Rns×ny and b ∈ Rns . Without loss of generality, we assume that ns = 1, henceforth
setting A = a⊤ ∈ R1×ny and b ∈ R.3 The results of this chapter can be immediately
generalized to the case where ns > 1. See Appendix 4.B for a detailed explanation.

The elements of the set S are considered to be safe. For a point y in the output space
Rny , the value s(y) = a⊤y+ b is called the safety level of y. The point y is safe if and only if
its safety level is nonnegative. Broadly speaking, the overall goal of this chapter is to certify
that the random output Y = f(X) is safe. When this holds for all or many of the possible
outputs in Y , we obtain a natural certificate for the robustness of the network against the
random noise.

Example 1. When f is an ny-class classifier and x̄ ∈ Rnx is a deterministic nominal input
with class i⋆ ∈ argmaxi∈{1,2,...,ny}fi(x̄), a common goal is to certify that additive random
noise δ on x̄ does not cause misclassification [145]. This problem falls within our framework
by defining the safety level of f(X) to be the margin function value gi(X) := fi⋆(X)− fi(X)
for X = x̄+ δ.

1Borel measurability of the network is almost always satisfied in practice. Indeed, every continuous
function is Borel measurable.

2It is easily verified that all probabilistic expressions in this chapter are well-defined from a measure-
theoretic perspective. We leave out these measurability verifications for the sake of exposition.

3The polyhedral safe set assumption is without loss of generality. Suppose that the safe set is S = {y ∈
Rny : a⊤g(y) + b ≥ 0} for some nonlinear Borel measurable g : Rny → Rnz and some a ∈ Rnz , b ∈ R. Then
we can reduce the problem to our assumed form by considering f ′ := g ◦ f to be the (Borel measurable)
neural network and S ′ := {z ∈ Rnz : a⊤z + b ≥ 0} to be the (polyhedral) safe set, since then f(x) ∈ S if
and only if f ′(x) ∈ S ′, for all x ∈ X . The architecture-dependent results of Section 4.5 must be applied to
f ′ with care, since g must now be considered as another layer in the network, making Assumption 6 and
Assumption 7 to follow slightly more stringent.
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Various Notions of Robustness

We now use the safety level of outputs to introduce three meaningful notions of robustness
against random input noise, and discuss how they are related to one another.

Deterministic Robustness Level

The deterministic robustness level of the network is defined as

r⋆ = inf
y∈Y

a⊤y + b. (4.1)

If r⋆ ≥ 0, then Y ⊆ S, implying that the random output Y = f(X) is safe with probability
one. This notion of robustness coincides with that used when considering adversarial inputs
[148, 115, 4], but the resulting worst-case safety level is often much lower than the safety
levels of random outputs in practice [144]. Consequently, using r⋆ to assess robustness may
falsely indicate that the network is sensitive to the input noise.

Approximate Robustness Level

Although r⋆ can issue strong guarantees about the safety of the network output, (4.1)
amounts to an intractable nonconvex optimization problem, since Y is generally a nonconvex
set. Instead of computing r⋆, we can consider approximating it by

r̂(Ŷ) = inf
y∈Ŷ

a⊤y + b, (4.2)

where Ŷ ⊆ Rny , termed the surrogate output set, is more tractable than Y , and preferably
convex. We call (4.2) the approximate robustness level of the network. If Y ⊆ Ŷ , then
r̂(Ŷ) ≤ r⋆. In this case, if r̂(Ŷ) ≥ 0, then the random output Y = f(X) is safe with
probability one. In general, choosing Ŷ to cover Y makes r̂(Ŷ) an over-conservative measure
of robustness for the same reasons r⋆ is.

Probabilistic Robustness Level

The notion of deterministic robustness is too strong for applications involving random in-
put noise, as many input distributions have unbounded support or have their worst-case
inputs in regions of low probability measure [144]. Furthermore, (4.1) and (4.2) neglect the
distributional information given for X. This conservatism means that the robustness levels
(4.1) and (4.2), with Y ⊆ Ŷ , are generally unable to certify that Y is safe, even when Y
concentrates around safe outputs. Consequently, for a prescribed probability level ϵ ∈ [0, 1],
we define the more natural probabilistic robustness level of the network to be

r̄(ϵ) = sup{r ∈ R : PX(a
⊤f(X) + b ≥ r) ≥ 1− ϵ}. (4.3)
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Intuitively, the random output f(X) has a safety level at least r̄(ϵ) with high probability. In
the case that r̄(ϵ) ≥ 0, we certify that the random output Y = f(X) is safe with probability
1 − ϵ, and we say that the network is probabilistically robust.4 Another interpretation of
probabilistic robustness is that the majority of possible outputs (with respect to the dis-
tribution PX) are safe. The probabilistic robustness level is catered towards our setting of
random input noise, and, compared to the worst-case alternatives, reduces conservatism by
considering the actual likelihood of the possible inputs. This is precisely the notion of ro-
bustness we adopt in this chapter. We remark that this definition of probabilistic robustness
coincides with that used in Webb et al. [144] and Weng et al. [145], albeit our subsequent
analysis and guarantees vastly differ from these works.

Example 2. Consider again the classification network in Example 1. In this setting, if
r⋆ ≥ 0, then the probability of misclassification is zero, in which case the noise δ is not
important. On the other hand, if there exists a perturbed input x̄+δ in the input set X that
is misclassified, then r⋆ < 0. It may be the case, however, that this misclassification occurs
with a sufficiently low probability with respect to the tolerance ϵ. This is precisely what we
seek to certify: that the probability of misclassification is less than ϵ, which mathematically
amounts to showing that r̄(ϵ) ≥ 0.

In this chapter, we aim to certify the safety of Y = f(X) by lower-bounding the prob-
abilistic robustness level r̄(ϵ). A trivial lower bound is easily verified: r⋆ ≤ r̄(ϵ) for all
ϵ ∈ [0, 1], and r⋆ = r̄(0). However, as we will see in Section 4.6, this approach of considering
worst-case inputs instead of likely inputs, often results in a very loose lower bound, some-
times failing to issue a robustness guarantee at all. In the next section, we show that by
using a special type of surrogate output set in r̂(Ŷ), we can optimize a lower bound on r̄(ϵ)
and obtain an estimate of the output set Y as a natural byproduct.

4.3 Formulating the Certificate

Bounding the Probabilistic Robustness Level

As we have seen, r̂(Ŷ) ≈ r⋆ ≤ r̄(ϵ). Two natural questions arise. 1) Can one use r̂(Ŷ)
to certifiably lower-bound the quantity r̄(ϵ) of interest? 2) If so, how can Ŷ be chosen to
optimize the bound? In this section, we study the first question. As it turns out, such a
lower bound holds so long as Ŷ has high enough coverage over Y . Before proving this claim,
we formally define this notion of coverage.

Definition 7. Let Ŷ be a subset of Rny . For ϵ ∈ [0, 1], the set Ŷ is said to be an ϵ-cover of
Y = f(X ) if Ŷ is Borel measurable and PX(f(X) ∈ Ŷ) ≥ 1− ϵ.

4Note the distinction: “safety” is a property of outputs, whereas “robustness” is a property of the
neural network (with respect to the noisy input distribution PX). We are always careful when using these
terminologies.
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Intuitively, an ϵ-cover of Y is a set that contains Y = f(X) with high probability. If we
can compute an ϵ-cover of Y , then we will have localized the output with high confidence.
By restricting Ŷ in (4.2) to be an ϵ-cover of Y , we ensure that the approximate robustness
level takes into account the likely inputs X, but not necessarily the worst-case inputs. Con-
sequently, this permits r̂(Ŷ) to be greater than r⋆, reducing the conservatism in our measure
of robustness caused by unlikely worst-case inputs. We now show that this special type of
surrogate output set is a good enough estimate of Y to maintain the lower bound on r̄(ϵ)
that we seek.

Proposition 14. Let Ŷ be an arbitrary subset of Rny . If Ŷ is an ϵ-cover of Y = f(X ), then

r̂(Ŷ) ≤ r̄(ϵ). (4.4)

Proof. Note that y ∈ Ŷ implies that a⊤y + b ≥ r̂(Ŷ) by (4.2). Therefore, it holds that
PX(f(X) ∈ Ŷ) ≤ PX(a

⊤f(X) + b ≥ r̂(Ŷ)). Since Ŷ is an ϵ-cover of Y , we have that
PX(f(X) ∈ Ŷ) ≥ 1− ϵ. Hence,

1− ϵ ≤ PX(f(X) ∈ Ŷ) ≤ PX(a
⊤f(X) + b ≥ r̂(Ŷ)).

This shows that r̂(Ŷ) is feasible for the optimization (4.3). Therefore, r̂(Ŷ) ≤ r̄(ϵ), as
desired.

Optimizing the Bound

From Proposition 14, we know that ϵ-covers constitute good choices of the surrogate output
set Ŷ used to compute the approximate robustness level. This is because the random output
Y = f(X) is guaranteed to have safety level at least r̂(Ŷ) with high probability. However,
it is entirely possible that the choice of ϵ-cover results in r̂(Ŷ) < 0, even when the network
is probabilistically robust. In this case, r̂(Ŷ) fails to issue a high-probability certificate for
the safety of the random output Y = f(X), despite Ŷ being able to localize it.

To overcome the above problem, we turn to studying our second inquiry from earlier,
namely, how to optimize the lower bound (4.4). This amounts to finding an ϵ-cover of Y that
maximizes r̂(Ŷ). Since optimizing over all subsets of Rny is intractable, we restrict our search
to sets within a class H = {h(θ) : θ ∈ Θ} parameterized by a parameter set Θ ⊆ Rp and
a set-valued function h : Rp → P(Rny). We assume throughout that the class H is chosen
such that h(θ) is a Borel set for all parameters θ ∈ Θ. A concrete example of one such class
is given below.

Example 3. Let ∥ · ∥ be a fixed norm on Rny and Θ = Rny ×R++. Defining p = ny + 1, let
h : Rp → P(Rny) be defined by h(ȳ, r) = {y ∈ Rny : ∥y − ȳ∥ ≤ r}. Then, Θ and h(·) define
the class of ∥ · ∥-norm balls:

H =
{
{y ∈ Rny : ∥y − ȳ∥ ≤ r} : r > 0, ȳ ∈ Rny

}
.
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The problem of choosing h(·) and Θ (and therefore also H) is discussed in detail in
Section 4.4. By restricting our search for ϵ-covers to within the class H, our search reduces to
maximizing the approximate robustness level over the parameter set Θ. By slightly abusing
notation, we denote the dependence of the approximate robustness level on the parameter
θ explicitly as r̂(θ) = inf{a⊤y + b : y ∈ h(θ)}, and we formulate the following optimization
problem:

maximize
θ∈Θ

r̂(θ)− λv(θ)

subject to PX(f(X) ∈ h(θ)) ≥ 1− ϵ,
(4.5)

where λ ≥ 0 and v : Rp → R is taken to be a nonnegative convex function on Θ that
increases with the volume of h(θ). The objective r̂(θ) in (4.5) is the approximate robustness
level computed using the set h(θ) as the surrogate output set. The constraint PX(f(X) ∈
h(θ)) ≥ 1 − ϵ enforces that we only consider parameters θ such that h(θ) is an ϵ-cover of
Y . The regularization term −λv(θ) penalizes the size of h(θ). This makes the set h(θ) as
small as possible while maintaining its ϵ-coverage, thereby yielding the tightest localization
of the output Y . The regularization is done at the expense of a slightly suboptimal bound
(4.4), and can be eliminated by setting λ = 0, if no localization of the output Y is desired.
On the other hand, increasing λ amounts to putting more assessment effort into localizing
Y , making the ϵ-cover h(θ) a better estimate of Y . This certification-localization tradeoff is
experimentally explored in the illustrative example of Section 4.6.

4.4 Data-Driven Reformulation

Even when the set h(θ) is convex for all θ ∈ Θ, the probabilistic constraint in (4.5) is in
general nonconvex [107]. Constraints of this form are referred to as chance constraints, and
there exist various approaches to reformulating and relaxing them into convex constraints.
Since the problem at hand considers neural networks whose models are usually complicated to
analyze, but whose input-output samples are easily obtained, we seek a data-driven approach
to approximately enforcing the chance constraint in (4.5), without losing the robustness
certificate provided by the solution. The scenario approach is a popular method within the
stochastic optimization and robust control communities that replaces the chance constraint
with hard constraints on a number of random samples [107, 130, 26, 93]. The scenario
approach has been studied for general problems, even those with nonconvex objectives and
those whose resulting hard constraints are nonconvex [27]. However, the most powerful use of
scenario optimization arises when the resultant scenario problem is convex, as then a priori
probabilistic guarantees can be made about the solution’s feasibility for the original chance
constraint. As we will soon see, this sampling-based method fits nicely into the framework
of our problem, and maintains a lower bound on r̄(ϵ) with high probability, provided that a
sufficiently large number of samples is used and the scenario problem is convex.

To implement the scenario approach, suppose that {xj : j ∈ {1, 2, . . . , N}} ⊆ X is a set
of N independent and identically distributed samples drawn from PX . For each input xj,
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we compute its corresponding output yj = f(xj). Then, replacing the chance constraint in
(4.5) with N hard constraints on the samples yj yields the following scenario optimization:

maximize
θ∈Θ

r̂(θ)− λv(θ)

subject to yj ∈ h(θ) for all j ∈ {1, 2, . . . , N}.
(4.6)

Note that, because the data yj is random, solutions θ⋆ to (4.6) are random. We assume
throughout the chapter that (4.6) is attained by a solution θ⋆, and we denote the probability
space on which it is defined by (Ωθ⋆ ,Fθ⋆ ,Pθ⋆).

Remark 3. The above assumption of independent and identically distributed samples is
critical for relating the solution θ⋆ back to the original chance-constrained problem (4.5).
In particular, it is a key assumption on which the forthcoming high-probability robustness
certificate in Theorem 11 rests. Despite these assumptions holding in many practical models,
the independence may be violated in certain applications with inherent time-correlation
between samples, and the assumption prevents the use of selective sampling to improve the
efficiency of the scenario approach.

The identical distribution assumption is also critical, and it may be violated in two
main ways. First, the underlying distribution of the data used in (4.6) may change from
sample to sample, and second, the underlying noise distribution of the actual input may
be different in practice from the samples used in the robustness certification procedure.
Despite these sources of modeling error, our scenario-based approach can be modified into
a distributionally robust variant to still give high-probability robustness certificates in the
case that the distribution of the input is contained in a finite set of possible distributions.

As mentioned in Section 4.1, the scenario approach was used recently in reachable set
estimation for dynamical systems [40]. We remark that (4.6) recovers the scenario opti-
mization of Devonport and Arcak [40] in the special case that the objective is re-scaled to
1
λ
r̂(θ) − v(θ) and λ → ∞, the regularizer v(θ) equals the volume of the set h(θ), and H is

the norm ball class. This reduction amounts to finding the tightest norm ball ϵ-cover of Y ,
without regard to optimizing the lower bound (4.4) of interest. In our comparison to output
set estimation in Section 4.6, we demonstrate the necessity for the more general formulation
(4.6) by giving an example where reducing to the special case of Devonport and Arcak [40]
causes robustness certification to fail, despite finding the tightest ϵ-cover of Y .

Although the scenario approach has eliminated the chance constraint from (4.5), there
remain two problems to consider. First, it is not immediately clear whether (4.6) is convex or
computationally tractable, as it has an inherent max-min optimization structure. However,
it is important to ensure the problem’s convexity, since no a priori guarantees can be made
regarding the feasibility of θ⋆ for the original chance constraint in the general case of non-
convex scenario optimization [27]. In the next section, we leverage results from parametric
optimization to develop conditions on our choice of Θ and h(·) to ensure that (4.6) is convex.
Second, the solution of (4.6) gives a random approximation to the solution of (4.5), which
optimizes the bound (4.4) on r̄(ϵ). In the section after next, we develop formal guarantees
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showing that the solution of (4.6) maintains a lower bound on r̄(ϵ) with high probability,
provided that N is sufficiently large.

Conditions for Convex Optimization

In this section, we consider the choices of the parameter set Θ and the set-valued function
h(·) on lower-bounding r̄(ϵ), and on the tractability of the resulting scenario problem (4.6).
A key insight is this: an ϵ-cover of Y may in general be much larger than Y itself. This is
because regions of an ϵ-cover that do not intersect with Y also do not count towards the
coverage proportion 1 − ϵ. Therefore, if the class H from which we choose an ϵ-cover does
not have high enough complexity, then the ϵ-covers within H may need to be exceedingly
large in order to achieve ϵ-coverage.

The problem with unnecessarily large ϵ-covers is that the feasible set in the optimization
defining r̂(θ) includes many vectors y that may not be actual outputs in Y . In this case,
r̂(θ) is small, even though r̄(ϵ) may be large. To avoid this problem, our choice of Θ and h(·)
should ensure that the class H has high enough complexity. However, our choices should also
yield a scenario problem (4.6) that is convex. Indeed, Theorem 10 gives sufficient conditions
for the convexity of the scenario problem. Before presenting these conditions, let us recall a
fundamental definition for set-valued functions.

Definition 8. A set-valued function h : Rp → P(Rny) is said to be convex on a convex set
Θ ⊆ Rp if (

λh(θ1) + (1− λ)h(θ2)
)
⊆ h(λθ1 + (1− λ)θ2)

for all θ1, θ2 ∈ Θ and all λ ∈ [0, 1]. The function h(·) is said to be concave on Θ if

h(λθ1 + (1− λ)θ2) ⊆
(
λh(θ1) + (1− λ)h(θ2)

)
for all θ1, θ2 ∈ Θ and all λ ∈ [0, 1]. Finally, the function h(·) on Θ is said to be affine if it is
both convex and concave.

Example 4. Consider the norm ball class H given in Example 3. It is easily verified by
Definition 8 that the set-valued function h(·) defining the class H is affine on Θ = Rny×R++.

With tools for defining and proving convexity of set-valued functions now in place, we
can present conditions under which the scenario optimization (4.6) is convex, and therefore
easily solvable. In Theorem 11, we will also rely on this convexity to guarantee with high
probability that h(θ⋆) is an ϵ-cover of Y and that our desired lower bound r̂(θ⋆) ≤ r̄(ϵ) holds.
Generating such guarantees is in general not possible for nonconvex scenario optimization
[27], further illustrating the importance of Theorem 10 below.

Theorem 10. Consider the scenario problem (4.6). Suppose that Θ takes the form

Θ = {θ ∈ Rp : gi(θ) ≤ 0 for all i ∈ {1, 2, . . . ,m}},
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where every gi : Rp → R is convex. Furthermore, suppose that h(·) is a concave set-valued
function that takes the form

h(θ) = {y ∈ Rny : hi(y, θ) ≤ 0 for all i ∈ {1, 2, . . . , n}},

where hi : Rny × Rp → R and hi(y, ·) is convex for all y ∈ Rny . Then, (4.6) is a convex
optimization problem.

Proof. Since (4.6) is a maximization problem, we must show that under the assumptions on
Θ and h(·), the objective is concave on Θ and the constraints are convex.

Let us first consider the objective r̂(θ) − λv(θ), where r̂(θ) = inf{a⊤y + b : y ∈ h(θ)}.
Since

1. g(y, θ) := a⊤y + b is jointly concave on Rny ×Θ;

2. h(·) is a concave set-valued function on Θ;

3. and Θ is a convex set;

Proposition 3.1 of Fiacco and Kyparisis [52] gives that r̂(·) is a concave function on Θ. Since
v(·) is assumed to be convex on Θ and λ ≥ 0, we conclude that the objective is concave.

Now, let us consider the constraints. The constraints gi(θ) ≤ 0 are convex, so θ ∈ Θ is
a convex constraint. Next, the random constraint yj ∈ h(θ) is equivalent to the constraint
on θ that hi(yj, θ) ≤ 0 for all i. Since hi(yj, ·) is a convex function, the constraint is convex.
Since this holds for all i ∈ {1, 2, . . . , n} and all j ∈ {1, 2, . . . , N}, we conclude that all of the
constraints in (4.6) are convex.

Remark 4. Theorem 10 is easily extended to include affine equality constraints in the forms
taken by Θ and h(θ). Additionally, if hi(y, θ) in Theorem 10 is jointly convex in (y, θ) for all
i, one can show that h(·) is an affine set-valued function, and therefore r̂(·) in (4.6) is affine
(see, e.g., Proposition 4.2 of Fiacco and Kyparisis [52]). Therefore, if v(·) is also affine, the
scenario problem (4.6) has an affine objective.

Theorem 10 precisely answers our earlier inquiry: the class H should be complex enough
to contain tight ϵ-covers of the output set Y , but at the same time Θ should be defined by
convex constraints and h(·) should be taken as a concave set-valued function also defined
by convex constraints. Note that these conditions on h(·) are not as restrictive as they may
seem. In particular, Example 4 shows for the norm ball class that h(·) is affine (and therefore
concave) and defined by convex constraints, and that this holds for all norms on Rny , even
though norm functions themselves are not affine. Therefore, Theorem 10 guarantees that
the scenario optimization (4.6) using the norm ball class is a convex problem. We verify this
fact in the following example.
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Example 5. Recall the norm ball class of Example 3 and Example 4. We show that (4.6)
using this class is convex. Indeed, the approximate robustness level is

r̂(ȳ, r) = inf
∥y−ȳ∥≤r

a⊤y + b = a⊤ȳ − r∥a∥∗ + b,

which is affine in the optimization variable θ = (ȳ, r). Hence, the scenario problem reduces
to

maximize
(ȳ,r)∈Rny×R++

b+ a⊤ȳ − r∥a∥∗ − λv(ȳ, r)

subject to ∥yj − ȳ∥ ≤ r for all j ∈ {1, 2, . . . , N},
(4.7)

which is a convex problem since v(·) is convex.

High-Probability Guarantees

We now turn to consider the randomness of the scenario problem’s optimal value. In partic-
ular, we ask the following question: Does the random solution to (4.6) maintain a certified
lower bound on r̄(ϵ)? In Theorem 11, we show that the answer is affirmative with high
probability, provided that the problem is convex and a large enough number of samples is
used.

Theorem 11. Let ϵ, δ ∈ [0, 1]. Assume that the scenario optimization (4.6) is convex and
is attained by a solution θ⋆ ∈ Rp. If N ≥ 2

ϵ

(
log 1

δ
+ p
)
, then the following inequalities hold:

1. Pθ⋆(PX(f(X) ∈ h(θ⋆)) ≥ 1− ϵ) ≥ 1− δ;
2. Pθ⋆(r̂(θ

⋆) ≤ r̄(ϵ)) ≥ 1− δ.
Proof. Since the scenario problem is convex and N ≥ 2

ϵ

(
log 1

δ
+ p
)
, Theorem 1 of Campi,

Garatti, and Prandini [26] gives that, with probability at least 1−δ, the solution θ⋆ is feasible
for the chance-constrained problem (4.5). Therefore, Pθ⋆(PX(f(X) ∈ h(θ⋆)) ≥ 1−ϵ) ≥ 1−δ,
which proves the first conclusion.

To prove the second conclusion, recall the law of total probability: for an arbitrary
event A ∈ Fθ⋆ and an arbitrary partition {B1, B2} ⊆ Fθ⋆ of Ωθ⋆ such that Ωθ⋆ = B1 ∪ B2,
B1 ∩B2 = ∅, and Pθ⋆(Bi) > 0 for i ∈ {1, 2}, we have that

Pθ⋆(A) = Pθ⋆(A|B1)Pθ⋆(B1) + Pθ⋆(A|B2)Pθ⋆(B2),

where Pθ⋆(A|B1) = Pθ⋆ (A∩B1)
Pθ⋆ (B1)

denotes the probability of event A conditioned on event B1,

and similarly for B2. Choose the particular events A = {ω ∈ Ωθ⋆ : r̂(θ⋆(ω)) ≤ r̄(ϵ)},
B1 = {ω ∈ Ωθ⋆ : h(θ⋆(ω)) is an ϵ-cover of Y}, and B2 = Ωθ⋆ \ B1. Then, Proposition 14

shows that B1 ⊆ A, so Pθ⋆(A|B1) =
Pθ⋆ (B1)
Pθ⋆ (B1)

= 1. Furthermore, by the first conclusion proved

above, Pθ⋆(B1) = Pθ⋆(PX(f(X) ∈ h(θ⋆)) ≥ 1−ϵ) ≥ 1−δ. Hence, the law of total probability
gives that

Pθ⋆(A) ≥ 1− δ + Pθ⋆(A|B2)Pθ⋆(B2) ≥ 1− δ,
which proves the second conclusion.
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The conclusions of Theorem 11 assert that, with overwhelming probability, h(θ⋆) is an ϵ-
cover of Y and that the probabilistic robustness level is lower-bounded as r̂(θ⋆) ≤ r̄(ϵ). This
gives high-probability guarantees for the simultaneous localization and safety certification of
the output Y = f(X).

In Theorem 11, randomness of a solution θ⋆ to (4.6) is taken care of by the 1−δ probability
bound. In particular, h(θ⋆) may not actually be an ϵ-cover, albeit with probability at most
δ. For this reason, we slightly abuse terminology and call h(θ⋆) the optimal ϵ-cover. The
additional layer of uncertainty embedded into the parameter δ is precisely the price paid
for replacing the intractable chance-constrained problem (4.5) with the tractable scenario
problem (4.6). However, Theorem 11 shows that the additional randomness is not an issue,
since the requirement on N scales as log 1

δ
. Therefore, we can select a small value for δ while

maintaining a reasonable sample size N .

Remark 5. The guarantees in Theorem 11 are of the probably approximately correct (PAC)
form. In the language of PAC learning, the surrogate output set h(θ⋆) is the hypothesis of
the learner, which is selected from the concept class H = {h(θ) : θ ∈ Θ}. Theorem 11 asserts
that the hypothesis is probably approximately correct, where approximately correct means
the hypothesis (which is a set) contains the random output Y = f(X) with probability at
least 1− ϵ, and where probably means the hypothesis (which is selected based on the specific
instances x1, x2, . . . , xN) is approximately correct (for general X) with probability at least
1− δ. Since this PAC guarantee holds whenever the scenario problem is convex, Theorem 10
gives sufficient conditions for the concept class H to be PAC learnable, and our proposed
method can be viewed as learning robustness using the framework of PAC learning.

4.5 Exploiting Network Structure

In this section, we show how to exploit the structure of deep neural networks to reduce the
time complexity of our method. The basic idea is to utilize adversarial bounds on the deep
layers to replace f with a shallower neural network, in effect developing a hybrid adversarial-
probabilistic certification scheme. We assume that the network takes the form

f = σ(K) ◦ A(K−1) · · · ◦ σ(1) ◦ A(0),

where σ(k) : Rnk → Rnk is the kth layer’s activation function and A(k) : Rnk → Rnk+1 is the
affine map given by A(k)(z) = W (k)z + b(k). Note that n0 = nx and nK = ny.

Now, suppose that fL, fU : Rnx → Rny are two functions satisfying

fL(x) ≤ f(x) ≤ fU(x) for all x ∈ X ,

which are to be determined. Then, define the function f ′ : Rnx → Rny by

f ′
i(x) =

{
(fL(x))i if ai ≥ 0,

(fU(x))i if ai < 0,
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for all i ∈ {1, 2, . . . , ny} and all x ∈ Rnx . It is immediately clear that a⊤f ′(x)+b ≤ a⊤f(x)+b
for all x ∈ X , so f(x) ∈ S for all x ∈ X such that f ′(x) ∈ S. This shows that

PX(f
′(X) ∈ S) ≤ PX(f(X) ∈ S).

Therefore, to certify the probabilistic robustness of f , it suffices to apply our certification pro-
cedure to the function f ′. By bounding the deep layers’ activations in f by affine functions, we
will reduce the problem to analyzing a simpler and shallower network f ′ that allows for faster
sampling of the outputs yj. For notational simplicity, we let ϕ(k) = σ(k)◦A(k−1)◦· · ·◦σ(1)◦A(0)

for all k ∈ {1, 2, . . . , K}, so that ϕ(k)(x) is the activation at layer k corresponding to the
input x. Let ϕ(0) be the identity map on Rnx . We now recall the notion of preactivation
bounds, and make two assumptions.

Definition 9. A vector l(k) ∈ Rnk satisfying l(k) ≤ A(k−1) ◦ϕ(k−1)(x) for all x ∈ X is called a
kth layer preactivation lower bound. A vector u(k) ∈ Rnk satisfying A(k−1) ◦ ϕ(k−1)(x) ≤ u(k)

for all x ∈ X is called a kth layer preactivation upper bound.

Assumption 6. For all k ∈ {1, 2, . . . , K}, there exist kth layer preactivation lower and
upper bounds l(k) and u(k), respectively.

Assumption 7. For all k ∈ {1, 2, . . . , K}, there exist functions L(k),U (k) : Rnk → Rnk given
by

L(k)(z) = W
(k)
L z + b

(k)
L , U (k)(z) = W

(k)
U z + b

(k)
U ,

that satisfy L(k)(z) ≤ σ(k)(z) ≤ U (k)(z) for all z ∈ [l(k), u(k)].

Definition 9, Assumption 6, and Assumption 7 are standard in the adversarial robustness
literature. Notice that in many common architectures, n1 > n0 and the rank of A(0) is n0,
and in this case Assumption 6 requires the input set X to be bounded. For most common
activation functions and input sets, there exist a variety of methods for computing the above
preactivation bounds and affine bounding functions—see, e.g., Zhang et al. [166].

The following lemma transforms our affine bounds on each activation function σ(k) into
affine bounds relating the activation of one layer to the activation of the next layer.

Lemma 6. Suppose that Assumption 6 and Assumption 7 hold. For all k ∈ {1, 2, . . . , K},
it holds for all x ∈ X that

W̃
(k)
L ϕ(k−1)(x) + b̃

(k)
L ≤ ϕ(k)(x) ≤ W̃

(k)
U ϕ(k−1)(x) + b̃

(k)
U ,

where
W̃

(k)
L = W

(k)
L W (k−1), b̃

(k)
L = W

(k)
L b(k−1) + b

(k)
L ,

W̃
(k)
U = W

(k)
U W (k−1), b̃

(k)
U = W

(k)
U b(k−1) + b

(k)
U .

(4.8)
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Proof. Let k ∈ {1, 2, . . . , K} and let x ∈ X . Define z = A(k−1) ◦ ϕ(k−1)(x). Then, since
z ∈ [l(k), u(k)], it holds that L(k)(z) ≤ σ(k)(z) ≤ U (k)(z). Expanding this inequality using the
matrix-vector representation of the affine maps L(k),U (k),A(k−1), we obtain

W
(k)
L (W (k−1)ϕ(k−1)(x) + b(k−1)) + b

(k)
L ≤ σ(k)(A(k−1) ◦ ϕ(k−1)(x))

≤ W
(k)
U (W (k−1)ϕ(k−1)(x) + b(k−1)) + b

(k)
U ,

which gives the desired result upon substituting the definitions of W̃
(k)
L , W̃

(k)
U , b̃

(k)
L , b̃

(k)
U and

using the fact that σ(k)(A(k−1) ◦ ϕ(k−1)(x)) = ϕ(k)(x).

Next, we use the affine bounds between each neighboring layer in Lemma 6 to develop
one overall affine bound relating the activation at some layer k⋆ to the output ϕ(K)(x) of
the neural network. The proof technique follows the idea developed in Weng et al. [146]
and Zhang et al. [166], albeit allows for more general activation functions and allows us to
“start” the affine bounding within the interior of the neural network architecture.

Proposition 15. Suppose that Assumption 6 and Assumption 7 hold, and assume that
K ≥ 3. Let k⋆ ∈ {1, 2, . . . , K−2} and define M = K−k⋆. Consider the matrices W̃

(k)
L , W̃

(k)
U

and vectors b̃
(k)
L , b̃

(k)
U defined in (4.8). Define E1 = W̃

(k⋆+1)
L , F1 = b̃

(k⋆+1)
L , G1 = W̃

(k⋆+1)
U , and

H1 = b̃
(k⋆+1)
U . Also, for n ∈ {2, 3, . . . ,M}, define

En = min{0, W̃ (k⋆+n)
L }Gn−1 +max{0, W̃ (k⋆+n)

L }En−1,

Fn = min{0, W̃ (k⋆+n)
L }Hn−1 +max{0, W̃ (k⋆+n)

L }Fn−1 + b̃
(k⋆+n)
L ,

Gn = max{0, W̃ (k⋆+n)
U }Gn−1 +min{0, W̃ (k⋆+n)

U }En−1,

Hn = max{0, W̃ (k⋆+n)
U }Hn−1 +min{0, W̃ (k⋆+n)

U }Fn−1 + b̃
(k⋆+n)
U .

Then, for all x ∈ X , it holds that

EMϕ
(k⋆)(x) + FM ≤ ϕ(K)(x) ≤ GMϕ

(k⋆)(x) +HM .

Proof. Let x ∈ X . Then, by Lemma 6, it holds that

W̃
(k)
L ϕ(k−1)(x) + b̃

(k)
L ≤ ϕ(k)(x) ≤ W̃

(k−1)
U ϕ(k−1)(x) + b̃

(k)
U (4.9)

for all k ∈ {1, 2, . . . , K}. For all n ∈ {1, 2, . . . ,M + 1}, define

xn = ϕ(k⋆+n−1)(x).

Also, for all n ∈ {1, 2, . . . ,M}, define

An = W̃
(k⋆+n)
L , Bn = b̃

(k⋆+n)
L , Cn = W̃

(k⋆+n)
U , Dn = b̃

(k⋆+n)
U .
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Then it holds that E1 = A1, F1 = B1, G1 = C1, H1 = D1, and

En = min{0, An}Gn−1 +max{0, An}En−1,

Fn = min{0, An}Hn−1 +max{0, An}Fn−1 +Bn,

Gn = max{0, Cn}Gn−1 +min{0, Cn}En−1,

Hn = max{0, Cn}Hn−1 +min{0, Cn}Fn−1 +Dn,

for n ∈ {2, 3, . . . ,M}. Also, (4.9) gives that

Anxn +Bn ≤ xn+1 ≤ Cnxn +Dn

for all n ∈ {1, 2, . . . ,M}, so by Lemma 8, we conclude that

Enx1 + Fn ≤ xn+1 ≤ Gnx1 +Hn

for all n ∈ {1, 2, . . . ,M}. In particular, for n = M , this yields the following bound on
xM+1 = ϕ(K)(x) in terms of x1 = ϕ(k⋆)(x):

EMϕ
(k⋆)(x) + FM ≤ ϕ(K)(x) ≤ GMϕ

(k⋆)(x) +HM ,

which is the desired result.

Since ϕ(K)(x) = f(x), Proposition 15 shows that we may take the functions fL, fU to be
fL = AL ◦ ϕ(k⋆) and fU = AU ◦ ϕ(k⋆), where AL(z) = EMz + FM and AU(z) = GMz +HM .
In this case, our function f ′ becomes

f ′
i(x) =

{(
AL ◦ ϕ(k⋆)(x)

)
i

if ai ≥ 0,(
AU ◦ ϕ(k⋆)(x)

)
i

if ai < 0.

This function f ′ is a new neural network with the same first k⋆ < K nonlinear layers as f ,
and with one final affine transformation. Thus, a lower bound on the probabilistic robustness
level of this shallow surrogate network f ′ is also a lower bound on the probabilistic robustness
level of the deep original network f .

When k⋆ is chosen to be small, the depth of this surrogate network is reduced, making
it more efficient to sample outputs from it. As k⋆ increases, our method incorporates more
of the underlying nonlinear nature of the network f into the samples that we use to assess
f ’s robustness, meaning that the robustness certificate becomes tighter, but at the expense
of increased sampling time. Specifically, in the common setting where every activation σ(k)

is an element-wise operator with the time complexity O(nk), the time complexity of the
sampling procedure for f is O(N(n0n1+n1n2+ · · ·+nK−1nK)), whereas the time complexity
for f ′ is O(N(n0n1 +n1n2 + · · ·+nk⋆−1nk⋆ +nk⋆nK)). If, for example, every number nk is of
order O(n), then f would have the sampling time complexity O(NKn2), whereas f ′ would
be of order O(Nk⋆n2), giving a factor of k⋆/K reduction in time complexity. As we will see
in Section 4.6, this reduced time complexity is particularly helpful in deep neural network
settings.
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4.6 Numerical Simulations

Illustrative Example

We consider the distributed linear system x(t+1) = Ax(t)+Bu(t) for times t ∈ {0, 1, . . . , T},
T = 20, as constructed in Gama and Sojoudi [59]. The system has n = 10 nodes, with a
single state and input associated with every node; x(t), u(t) ∈ Rn. The system and control
matrices A,B respect the underlying graph topology of the system, encoded by the support
matrix S—see Gama and Sojoudi [59].

The control law is defined by a graph neural network:

u(t) = Φ(x(t), S) :=
K−1∑
k=0

h
(2)
k+1S

kσ

(
J−1∑
j=0

h
(1)
j+1S

jx(t)

)
,

with σ(·) = ReLU(·), K = J = 3, h(1) = (1
2
, 1
2
, 1
2
), and h(2) = (1, 1, 1). This neural network

controller, defined in terms of S, respects the distributed nature of the system [59]. In this
simulation, we consider the case where the graph support of the control law may be randomly
perturbed, so that u(t) = Φ(x(t), S ′) for some S ′ ∈ Rn×n with S ′

ij = XSij, where X is a
Bernoulli random variable equal to 1 with probability 0.8; the controller loses an edge in its
support graph with probability 0.2. We fix a (normal random) initial condition x(0) ∈ Rn,
and we consider the map f : Rn×n → R2 given by f(S ′) = (x1(T ), x2(T )), where x(T ) is the
terminal state of the system under the control law given by u(t) = Φ(x(t), S ′). The safe set
is defined by S1 = {y ∈ R2 : a⊤y + b ≥ 0}, where a = (1, 0) and b = 0.05. We seek to certify
that the first two elements of the (random) terminal state are safe even under the perturbed
control support S ′, i.e., that f(S ′) ∈ S1.

The norm ball class H of Example 3, Example 4, and Example 5 is employed with
∥ · ∥ being the ℓ2-norm, and with probability levels ϵ = 0.05 and δ = 10−5. We set N =⌈
2
ϵ
(log 1

δ
+ p)

⌉
= 581, then sample N inputs S ′

j and compute their corresponding outputs
f(S ′

j) by running the system. As shown in Example 4, h(·) is an affine set-valued function,
and therefore Θ and h(·) satisfy the conditions of Theorem 10. We choose the regularizer
for the scenario problem (4.7) to be the square of the norm ball radius, i.e., v(ȳ, r) = r2.
The optimization problem is convex as guaranteed by Theorem 10. We solve the scenario
problem first without regularization, and then with two different levels of regularization:
λ1 = 1 and λ2 = 100. The respective solutions are denoted by θ⋆, θ⋆λ1

, and θ⋆λ2
. Each

instance takes approximately 15 seconds to solve using CVX in Matlab on a standard
laptop with a 2.6GHz dual-core i5 processor. The resulting approximate robustness levels
are r̂(θ⋆) = 0.0058, r̂(θ⋆λ1

) = 0.0054, and r̂(θ⋆λ2
) = −0.0061. In the instances without

regularization and with regularization level λ1, Theorem 11 guarantees that the perturbed
terminal state (x1(T ), x2(T )) has a safety level of 0.005 with our prescribed high probability,
granting the probablistic robustness certificate we seek. On the other hand, since r̂(θ⋆λ2

) < 0,
the scenario problem using regularization level λ2 is not able to certify the safety of the
terminal state. This is due to the inherent tradeoff between localization and certification,
which we now discuss.
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The optimal ϵ-covers h(θ⋆), h(θ⋆λ1
), and h(θ⋆λ2

) are shown in Figure 4.1. The unregularized
set h(θ⋆) is massively over-conservative due to the choice λ = 0, which corresponds to pure
robustness certification. Indeed, h(θ⋆) is the ϵ-cover from our class of sets that is furthest
from the boundary of the safe set, making r̂(θ⋆) the tightest lower bound on r̄(ϵ). On the
other hand, the optimal ϵ-covers using λ = λ1 and λ = λ2 are seen to give tighter localizations
of the terminal state (x1(T ), x2(T )). The approximate robustness level using regularization
λ1 is only slightly lower than the unregularized value, but the regularization λ2 is large
enough to cause the approximate robustness level r̂(θ⋆λ2

) to become negative at the expense
of localization. This shows how overemphasizing localization may harm the certification
aspect of robustness assessment, and empirically demonstrates why output set estimation
methods may not be adequate for issuing robustness certificates. This is explored further in
our comparison to output set estimation below.

Figure 4.1: Optimal ℓ2-norm ball ϵ-covers for safe set S1.

We repeat the simulation with the more complicated safe set S2 = {y ∈ R2 : Ay+b ≥ 0},
where A = [ 1 0

−1 0 ] and b = (0.05, 0), applying our method to each row of S2 individually. To
do so, we set ϵ′ = ϵ/2, δ′ = δ/2, and N ′ = ⌈ 2

ϵ′

(
log 1

δ′
+ p
)
⌉ = 1217. For each of the two

half-spaces defining S2, we solve the scenario problem using N ′ independent and identically
distributed samples, and then intersect the two resulting ϵ′-covers. Doing so, we obtain an
ϵ-cover with probability at least 1 − δ. We repeat this process again using regularization
levels λ1 = 1 and λ2 = 100, and we find that each scenario problem takes approximately
30 seconds to solve. As seen in Figure 4.2, some samples may reside outside the resulting
intersection ϵ-covers—this is valid, and the robustness certificates still hold.

Again, we find robustness certificates for λ = 0 and λ = λ1. However, for λ = λ2, the
optimal ϵ-covers corresponding to both half-spaces are found to intersect the unsafe region
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of the state space, due to the increased emphasis on localization. Interestingly, the overall
localization after intersecting the two ϵ′-covers for λ = λ2 is in a sense looser than that of the
case λ = λ1, indicating that moderate regularization levels, like λ1 in this simulation, may
simultaneously perform best for both localization and certification in the case of safe sets
defined by more than one half-space. Optimizing λ in general poses an interesting problem
for future research.

Figure 4.2: Optimal intersections of two ℓ2-norm ball ϵ
2
-covers for safe set S2.

Comparison to Output Set Estimation

In this example, we compare our proposed method to an alternate approach. In the second
approach, we first estimate the output set of the neural network using the scenario-based
reachability analysis in Devonport and Arcak [40]. We then use the resulting output set es-
timate to assess robustness. Recall that our proposed scenario optimization (4.6) generalizes
the reachability analysis of Devonport and Arcak [40]. In addition to localizing the net-
work outputs, our approach directly takes the goal of robustness certification into account,
whereas the estimation technique of Devonport and Arcak [40] does not.

To illustrate our comparison, consider a simple ReLU neural network given by f : R2 →
R2, where fi(x) = max{0, xi} for i ∈ {1, 2}. The noisy input X is distributed uniformly
on the input set X = {x ∈ R2 : ∥x − x̄∥1 ≤ 1}, where x̄ = (1, 0). The safe set is given as
S = {y ∈ R2 : a⊤y + b ≥ 0}, where a = (0, 1) and b = 0.5. It is straightforward to show
that the output set is the top-half of the input set, namely, Y = X ∩ {y ∈ R2 : y2 ≥ 0}.
Hence, if y ∈ Y then a⊤y+ b = y2+ b ≥ b ≥ 0. Therefore, Y ⊆ S, and so the random output
Y = f(X) is safe with probability one.
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We now perform the two assessments at hand, computing our proposed solution first. We
choose the ℓ2-norm ball class for our candidate ϵ-covers and draw sufficiently many output
samples {yj}Nj=1 according to Theorem 11 with ϵ = 0.1 and δ = 10−5. Next, we choose the
regularizer v(ȳ, r) = r2 with λ = 0.1 and solve the scenario problem (4.7) for the ℓ2-norm ball
class. The solution correctly certifies that network outputs are safe with high probability;
see the blue set in Figure 4.3.

We now turn to the alternative method. We use the same ℓ2-norm ball class as above and
solve for the minimum volume ϵ-cover using the same N sampled outputs. The estimated
output set is shown in red in Figure 4.3. Despite being a tighter localization, a substantial
portion of the estimated output set exits the safe set, meaning that this approach cannot
certify the robustness of the network, even though the random output is truly safe with
probability one. This comparison shows that a good estimate of the output set may not be
the most informative set to use for assessing output safety. This observation endorses our
proposed method, which simultaneously encodes both goals of certification and localization.

Figure 4.3: The tightest ϵ-cover of the output set (red) does not correctly certify robustness.
Our approach (blue) correctly certifies robustness and maintains reasonable localization.

Comparison to PROVEN

In this simulation, we compare our approach using the half-space class H =
{
{y ∈ Rny :

c⊤y + d ≥ 0} : (c, d) ∈ Rny × R
}
, for which we solve the scenario problem using its closed-

form solution (see Appendix 4.D), to the state-of-the-art algorithm, PROVEN [145], for
assessing robustness against random input noise. Throughout, we use open-source neural
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Table 4.1: Average probabilistic robustness level lower bounds r̂(θ⋆) for MNIST ReLU net-
works subject to uniform noise over ℓ∞-norm ball. All values are averaged over 10 nominal
inputs with randomly chosen target classes i. Lower bounds giving certified robustness (on
average) are bolded, and the average certified adversarial radii computed using Zhang et al.
[166] are italicized.

(a) 2× [20] network.

Radius
ϵ = 0.001 ϵ = 0.1 ϵ = 0.25

PRVN Ours PRVN Ours PRVN Ours

0.01
24.51 14.11 24.79 14.26 24.88 14.28
1.491 s 0.605 s 1.405 s 0.004 s 1.370 s 0.003 s

0 .027
14.71 13.36 15.45 13.77 15.68 13.85
1.434 s 0.599 s 1.540 s 0.004 s 1.427 s 0.003 s

0.05
−1.33 12.34 0.02 13.11 0.44 13.26
1.511 s 0.597 s 1.468 s 0.004 s 1.423 s 0.003 s

0.1
−42.09 10.25 −39.43 11.66 −38.61 12.00
1.485 s 0.623 s 1.437 s 0.004 s 1.437 s 0.002 s

0.5
−404.42 −7.21 −391.05 −0.05 −386.96 1.71
1.525 s 0.645 s 1.472 s 0.004 s 1.432 s 0.002 s

(b) 3× [20] network.

Radius
ϵ = 0.001 ϵ = 0.1 ϵ = 0.25

PRVN Ours PRVN Ours PRVN Ours

0.01
29.24 17.28 29.59 17.45 29.70 17.49
1.416 s 0.380 s 1.345 s 0.003 s 1.388 s 0.001 s

0 .022
18.80 16.65 19.49 17.02 19.71 17.10
1.382 s 0.362 s 1.345 s 0.003 s 1.364 s 0.001 s

0.05
−22.31 15.19 −20.67 16.00 −20.17 16.19
1.377 s 0.345 s 1.325 s 0.003 s 1.374 s 0.001 s

0.1
−114.83 12.57 −111.59 14.19 −110.60 14.58
1.351 s 0.372 s 1.343 s 0.003 s 1.340 s 0.002 s

0.5
−866.28 −9.36 −857.82 −0.55 −855.22 0.36
1.385 s 0.368 s 1.351 s 0.003 s 1.336 s 0.003 s

(c) 2× [1024] network.

Radius
ϵ = 0.001 ϵ = 0.1 ϵ = 0.25

PRVN Ours PRVN Ours PRVN Ours

0.01
51.07 27.73 51.40 27.87 51.50 27.93
0.899 s 1.102 s 0.877 s 0.008 s 0.874 s 0.004 s

0 .032
30.34 26.69 31.37 27.13 31.69 27.32
0.869 s 1.202 s 0.858 s 0.008 s 0.846 s 0.004 s

0.05
6.95 25.83 8.59 26.53 9.09 26.82

0.846 s 1.125 s 0.851 s 0.008 s 0.844 s 0.004 s

0.1
−77.53 23.46 −74.13 24.84 −73.09 25.42
0.861 s 1.137 s 0.854 s 0.008 s 0.881 s 0.004 s

0.5
−914.36 4.83 −900.22 11.79 −895.89 14.45
0.869 s 1.159 s 0.883 s 0.008 s 0.868 s 0.004 s

(d) 3× [1024] network.

Radius
ϵ = 0.001 ϵ = 0.1 ϵ = 0.25

PRVN Ours PRVN Ours PRVN Ours

0.01
68.87 36.86 69.28 37.06 69.41 37.12
2.535 s 1.782 s 2.382 s 0.015 s 2.464 s 0.009 s

0 .024
44.14 35.97 45.18 36.44 45.50 36.58
2.434 s 2.026 s 2.448 s 0.013 s 2.510 s 0.008 s

0.05
−111.09 34.32 −108.25 35.32 −107.39 35.59
2.739 s 2.258 s 2.671 s 0.013 s 2.761 s 0.007 s

0.1
−729.24 31.10 −723.45 33.10 −721.68 33.69
3.081 s 2.325 s 2.916 s 0.014 s 2.912 s 0.007 s

0.5
−6872.3 6.89 −6849.5 15.85 −6842.5 18.56
2.877 s 1.955 s 2.996 s 0.014 s 3.012 s 0.007 s

network models provided in Weng et al. [145]. The underlying framework of PROVEN
relies on bounding a classifier’s margin function by affine functions. PROVEN uses the
affine functions to give closed-form bounds on the misclassification probability. We remark
that, since PROVEN does not rely on sampling, their lower bound on r̄(ϵ) is deterministic,
whereas our bound holds with probability 1− δ, which is taken to be 1− 10−5 = 0.99999 in
this simulation. The results in this section are computed using TensorFlow in Python on a
standard laptop with a 2.6GHz dual-core i5 processor.

We first consider a variety of pretrained MNIST digit classification networks with ReLU
activation functions [84]. A network model with m hidden layers, each having n neurons,
is denoted by m × [n]. We model the noisy input X as being distributed uniformly on
X = {x ∈ Rnx : ∥x − x̄∥∞ ≤ ϵx}. For 10 randomly selected nominal inputs x̄, we compute
a lower bound r̂(θ⋆) on the probabilistic robustness level r̄(ϵ). The robustness level of a
network (for a particular pair (ϵ, ϵx)) is evaluated by computing the average robustness level
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Table 4.2: Average probabilistic robustness level lower bounds r̂(θ⋆) for various other models.
Values for Models 1 and 2 are averaged over 10 inputs, and for Model 3 they are averaged
over 100 network realizations. Lower bounds giving certified robustness (on average) are
bolded, and the average certified adversarial radii computed using Zhang et al. [166] are
italicized.

Model 1 Model 2 Model 3
Radius PRVN Ours Radius PRVN Ours Radius PRVN Ours

0.005 7.81 19.01 0.001 48.80 33.26 0.01 1.96 1.97
0 .0068 2.20 18.96 0 .0023 10.90 33.17 0.05 1.71 1.79
0.01 −26.31 18.88 0.003 −91.20 33.12 0.1 1.40 1.56
0.05 −1769.97 17.83 0.005 −1056.85 32.98 0.5 −1.06 −0.29
0.1 −4493.02 16.48 0.01 −8717.05 32.62 1.0 −4.13 −2.60

lower bound across the 10 inputs.5 This is done for probability levels ϵ ∈ {0.001, 0.1, 0.25}
(with corresponding sample sizes N ∈ {25026, 251, 101}) and for a variety of noise levels
ϵx. We include the certified adversarial radius computed using Zhang et al. [166], which is
a lower bound on the smallest radius such that X contains an input that yields an unsafe
output. The targeted class i, which defines the margin function gi relative to the nominal
input’s true class i⋆, is randomly chosen for each input tested. See Example 1 and Example 2
for more information on this application. The average lower bound values computed using
our approach (denoted Ours) and PROVEN’s (denoted PRVN) are shown in Table 4.1.

As seen in Table 4.1, our method is able to certify larger input sets than PROVEN
for every network tested. Although PROVEN’s lower bound is tighter for small radii, at
large radii our bound is significantly tighter than PROVEN’s, particularly for the larger
networks in Table 4.1c and Table 4.1d. This indicates that our method is especially powerful
for certifying deep neural networks. The end-to-end affine bounding scheme in PROVEN
tends to become looser as the network becomes deeper and as the input set becomes larger
[145]. The technique comes from the adversarial robustness literature, and therefore it being
embedded into PROVEN is likely the reason why PROVEN fails for radii larger than the
certified adversarial radius. Our method bypasses this preliminary bound altogether. We
also remark that our method certifies much larger input set radii (sometimes up to 20 times
larger) compared to the certified adversarial radii (italicized) computed using the state-of-

5Despite r̄(ϵ) being an input-specific quantity, we follow the literature’s standard practice and average
our robustness metric over a collection of test inputs. This standard was popularized in Szegedy et al. [129],
where model robustness is evaluated using average certified input set radii. Our average robustness level
lower bound immediately gives an average certified input set radius when the bound is nonnegative. In the
probabilistic setting, it can be more natural to evaluate models in terms of misclassification probability, like
our bounds do, instead of in terms of certified input set radii, see, e.g., Zakrzewski [160], Webb et al. [144],
Fazlyab, Morari, and Pappas [49], and Couellan [36].
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the-art worst-case analysis Zhang et al. [166]. The exact minimum adversarial radii (averaged
across the 10 inputs) for the 2× [20] and 3× [20] ReLU networks are efficiently computed to
be around 0.07 using mixed-integer linear programming [133]. With the tolerance ϵ = 0.001,
our method certifies radii over 0.1 for these networks. This evidences the claim that worst-
case approaches, including exact ones, are over-conservative when applied to settings where
a small amount of risk may be tolerable, in effect justifying our data-driven framework.

In Table 4.2, we repeat the simulation using three variants in the neural network model.
Model 1 is an MNIST classifier with tanh(·) activation functions of size 4 × [1024]. On the
other hand, Model 2 is a CIFAR-10 network with ReLU activations of size 5 × [2048]. We
see that both Model 1 and Model 2 exhibit the same behavior as before; for small input
set radii, the lower bounds provided by PROVEN and our method are similar and both
yield high-probability robustness certificates. For larger radii, our lower bound significantly
outperforms PROVEN’s. Since the affine bounds in PROVEN are relatively tight for small
input sets radii, we suspect the PROVEN bound to closer match our bound for large input
set radii in the special case of linear classification networks.

Model 3 is a linear classifier, i.e., of the form f(x) = Wx+ b, with 50 inputs, 10 outputs,
and weights, biases, and nominal input all chosen randomly with elements uniform on [0, 1].
We computed lower bounds on r̄(ϵ) for 100 such models and averaged the results. Table 4.2
shows that indeed the PROVEN bound closely matches our bound for every radius tested in
this special case, and that the two methods succeed and fail to issue robustness certificates
simultaneously. These results show that the worst-case bounding techniques used in the
adversarial robustness literature may work satisfactorily for simple models with random
inputs, such as linear classifiers, but that these bounds are too loose for general nonlinear
networks.

Exploiting Network Structure

In this simulation, we implement the complexity-reducing method of Section 4.5. We consider
networks with 10 inputs, 10 outputs, and 250 neurons in every hidden layer. The number
of layers K varies from 3 to 25. The weights and biases for every architecture are chosen
randomly (with Gaussian elements, then normalized). Every activation function σ(k) is
chosen to be ReLU, with preactivation and affine bounds derived according to Weng et al.
[146]. We consider (randomly chosen Gaussian) clean inputs x̄ with uniform additive random
noise on the ℓ∞-norm ball with radius ϵx = 0.1, so that the noisy inputs X are distributed
uniformly on {x ∈ Rnx : ∥x− x̄∥∞ ≤ ϵx}.

For every architecture, we lower-bound the probabilistic robustness level for 50 different
realizations of the weights, biases, and inputs, where for each realization we solve the scenario
optimization problem using the class H =

{
{y ∈ Rny : c⊤y + d ≥ 0} : (c, d) ∈ Rny ×

R
}

of half-spaces with N = 1000 sampled inputs. This is done both using our baseline
methodology, maintaining the full nonlinearity of each deep network, as well as using the
shallow surrogate networks proposed in Section 4.5. Figure 4.4 displays the ratio Tf ′/Tf
between the sampling time Tf ′ (averaged over all realizations of a given depth) for the shallow



CHAPTER 4. DATA-DRIVEN CERTIFICATION FOR PROBABILISTIC
ROBUSTNESS 105

surrogate network f ′ and the sampling time Tf (again, averaged) for the deep network f . We
see that, when k⋆ = O(K), meaning that the majority of nonlinearity is maintained in f ′, the
sampling times remain roughly the same. On the other hand, when k⋆ = O(1), meaning the
majority of nonlinearity is replaced by affine bounds, the sampling time is reduced by nearly
two orders of magnitude, and the reduction follows the expected rate of k⋆/K = O(1/K).
For in-between surrogate architectures using k⋆ = O(logK) and k⋆ = O(

√
K), we find

respectable time complexity reductions, nearing an order of magnitude decrease in sampling
time. The decreases in the lower bound on the probabilistic robustness level are also shown
in Figure 4.4. The average lower bound rf without exploiting structure is 0.1. Therefore,
the degradation of the bound incurred by using the shallow surrogate networks is relatively
constant and minimal. The simulation results in the same conclusions when using tanh
activation functions, and when using smaller and larger input set radii ϵx.

Figure 4.4: Ratio between the average sampling time of the shallow surrogate network f ′

and that of the deep original network f , and the corresponding decrease in the lower bound
on the probabilistic robustness level.

4.7 Conclusions

In this chapter, we propose a data-driven method for certifying the robustness of neural
networks against random input noise. Sufficient conditions are developed for the convexity
of the resulting optimization, as well as on the number of samples to issue a high-probability
guarantee for the safety of the output. The method applies to general neural networks and
general input noise distributions. In cases where the activation functions can be affinely
bounded, we show how to exploit the network structure to reduce sample complexity. The



CHAPTER 4. DATA-DRIVEN CERTIFICATION FOR PROBABILISTIC
ROBUSTNESS 106

unified framework allows the user to balance the strength of the robustness bound with the
tightness of the resulting output set estimate. Our numerical simulations show that the
proposed method gives less conservative robustness bounds than the prior state-of-the-art
techniques, as it is capable of certifying larger input uncertainty regions on synthetic, MNIST,
and CIFAR-10 networks. In situations where neural network failure modes may exist but are
unlikely and hence robustness amounts to achieving tolerable risk, these results suggest that
re-tooling worst-case analysis techniques from the adversarial robustness literature results
in overly conservative bounds. We conclude that taking a data-driven approach to generate
probabilistic robustness guarantees, as developed in this chapter, is the better option in these
contexts.
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Appendices

4.A Supporting Lemmas

Lemma 7. Suppose that A1x1 + B1 ≤ x2 ≤ C1x1 + D1 and A2x2 + B2 ≤ x3 ≤ C2x2 + D2

for vectors xk, Bk, Dk and matrices Ak, Ck, all of compatible dimensions. Then

E2x1 + F2 ≤ x3 ≤ G2x1 +H2,

where

E2 = min{0, A2}C1 +max{0, A2}A1,

F2 = min{0, A2}D1 +max{0, A2}B1 +B2,

G2 = max{0, C2}C1 +min{0, C2}A1,

H2 = max{0, C2}D1 +min{0, C2}B1 +D2.

Proof. Let (z)i denote the ith element of a vector z and (Z)ij denote the (i, j)th element of
a matrix Z. It holds for all indices i that

(x3)i ≤ (C2x2 +D2)i

=
∑
j

(C2)ij(x2)j + (D2)i

=
∑

j:(C2)ij≥0

(C2)ij(x2)j +
∑

j:(C2)ij<0

(C2)ij(x2)j + (D2)i

≤
∑

j:(C2)ij≥0

(C2)ij(C1x1 +D1)j +
∑

j:(C2)ij<0

(C2)ij(A1x1 +B1)j + (D2)i

=
∑
j

(max{0, (C2)ij}(C1x1 +D1)j +min{0, (C2)ij}(A1x1 +B1)j) + (D2)i

=
(
max{0, C2}(C1x1 +D1) + min{0, C2}(A1x1 +B1) +D2

)
i
,

so

x3 ≤ (max{0, C2}C1+min{0, C2}A1)x1+max{0, C2}D1+min{0, C2}B1+D2 = G2x1+H2,
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which proves the upper bound on x3.
To prove the lower bound on x3, note that −x3 ≤ (−A2)x2+(−B2), so the above analysis

yields that

−x3 ≤ (max{0,−A2}C1 +min{0,−A2}A1)x1 +max{0,−A2}D1 +min{0,−A2}B1 −B2

= −(min{0, A2}C1 +max{0, A2}A1)x1 − (min{0, A2}D1 +max{0, A2}B1 +B2)

= −E2x1 − F2,

which concludes the proof.

Lemma 8. Let M ∈ N, M > 1. Suppose that

Anxn +Bn ≤ xn+1 ≤ Cnxn +Dn

for all n ∈ {1, 2, . . . ,M}, where the vectors xn, Bn, Dn and the matrices An, Cn are all of
compatible dimensions. For all n ∈ {2, 3, . . . ,M}, define

En = min{0, An}Gn−1 +max{0, An}En−1,

Fn = min{0, An}Hn−1 +max{0, An}Fn−1 +Bn,

Gn = max{0, Cn}Gn−1 +min{0, Cn}En−1,

Hn = max{0, Cn}Hn−1 +min{0, Cn}Fn−1 +Dn,

where E1 = A1, F1 = B1, G1 = C1, and H1 = D1. Then

Enx1 + Fn ≤ xn+1 ≤ Gnx1 +Hn (4.10)

holds for all n ∈ {1, 2, . . . ,M}.

Proof. The result holds for n = 1 by assumption. We prove the result for n ∈ {2, 3, . . . ,M}
by induction on n. Lemma 7 shows that the result holds for the base case n = 2. Now,
suppose that the result holds for some arbitrary n ∈ {2, 3, . . . ,M − 1}, so that

Enx1 + Fn ≤ xn+1 ≤ Gnx1 +Hn. (4.11)

Make the following definitions:

x′1 = x1, x′2 = xn+1, x′3 = xn+2,

A′
1 = En, B′

1 = Fn, C ′
1 = Gn, D′

1 = Hn,

A′
2 = An+1, B′

2 = Bn+1, C ′
2 = Cn+1, D′

2 = Dn+1.

Then by the assumption that An+1xn+1 +Bn+1 ≤ xn+2 ≤ Cn+1xn+1 +Dn+1 it holds that

A′
2x

′
2 +B′

2 ≤ x′3 ≤ C ′
2x

′
2 +D′

2. (4.12)
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Also, by the induction hypothesis (4.11), it holds that

A′
1x

′
1 +B′

1 ≤ x′2 ≤ C ′
1x

′
1 +D′

1. (4.13)

Therefore, (4.12) and (4.13) together with Lemma 7 give that

E ′
2x

′
1 + F ′

2 ≤ x′3 ≤ G′
2x

′
1 +H ′

2, (4.14)

where

E ′
2 = min{0, A′

2}C ′
1 +max{0, A′

2}A′
1,

F ′
2 = min{0, A′

2}D′
1 +max{0, A′

2}B′
1 +B′

2,

G′
2 = max{0, C ′

2}C ′
1 +min{0, C ′

2}A′
1,

H ′
2 = max{0, C ′

2}D′
1 +min{0, C ′

2}B′
1 +D′

2.

Substituting our earlier definitions for these values gives that E ′
2 = En+1, F

′
2 = Fn+1, G

′
2 =

Gn+1, and H
′
2 = Hn+1, and therefore in light of the fact that x′1 = x1 and x′3 = xn+2, (4.14)

becomes
En+1x1 + Fn+1 ≤ xn+2 ≤ Gn+1x1 +Hn+1,

so the induction step has been proven. Thus, the result (4.10) holds for all n ∈ {1, 2, . . . ,M}.

4.B Extension to General Polyhedral Safe Sets

In this section, we explicitly walk through the steps of generalizing our proposed assessment
method to the case where the safe set is a general polyhedral set defined by the intersection
of finitely many half-spaces.

Consider the polyhedral safe set S = {y ∈ Rny : Ay + b ≥ 0}, where A ∈ Rns×ny and
b ∈ Rns . Denote the ith row of A by a⊤i and the ith element of b by bi. In this setting, the
condition y ∈ S is equivalent to mini∈{1,2,...,ns} a

⊤
i y + bi ≥ 0. Therefore, the deterministic

robustness level is naturally formulated as

r⋆ = inf
y∈Y

min
i∈{1,2,...,ns}

a⊤i y + bi,

so that r⋆ ≥ 0 certifies that Y = f(X) is safe with probability one. Then the approximate
robustness level using a surrogate output set Ŷ becomes

r̂(Ŷ) = inf
y∈Ŷ

min
i∈{1,2,...,ns}

a⊤i y + bi.

Moreover, the condition that f(X) has safety level at least r with high probability is naturally
encoded in the following probabilistic robustness level:

r̄(ϵ) = sup

{
r ∈ R : PX

(
min

i∈{1,2,...,ns}
a⊤i f(X) + bi ≥ r

)
≥ 1− ϵ

}
.
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With our robustness levels defined for the general polyhedral safe set, we now outline
the procedure to generalize our main results from the single half-space case presented in
the chapter. To this end, start by prescribing probability levels ϵ, δ ∈ [0, 1] close to zero,
and define ϵ′ = ϵ/ns and δ′ = δ/ns. Then, for all i ∈ {1, 2, . . . , ns}, perform the proposed
assessment method for the single half-space setting using the parameters ϵ′, δ′, ai, and bi
in place of ϵ, δ, a, and b, respectively. In particular, for every i, use N ′ ≥ 2

ϵ′

(
log 1

δ′
+ p
)

independent and identically distributed samples in the scenario problem (4.6), ensuring that
the samples across different values of i are also independent. Notice that the sample size N ′

grows with ns like ns log(ns), so the increase in the number of samples used for each scenario
problem is modest, as it is nearly linear. However, the total number of samples needed across
all ns scenario problems grows with ns like n

2
s log(ns), and therefore the computational cost

may become prohibitive in the case the safe set is defined by a large number of half-spaces.
To remedy this, one may first compute a polyhedral inner-approximation of S with a much
smaller number of half-spaces, and then apply the methods outlined in this section.

Now, let θ⋆i denote the solution to the scenario problem (4.6) corresponding to row i of
the safe set. Remark that the solutions θ⋆i are all random, although they are not necessarily
defined on the same probability space, as their distributions depend on the particular values
for ai and bi used to compute them. For notational convenience, denote the probability
distribution of θ⋆i by Pi, and denote by P the product probability measure associated with
(θ⋆1, θ

⋆
2, . . . , θ

⋆
ns
). Then, Theorem 11 gives for all i that, with probability at least 1 − δ′, the

set h(θ⋆i ) is an ϵ
′-cover of Y = f(X ). That is,

Pi(PX(f(X) ∈ h(θ⋆i )) ≥ 1− ϵ′) ≥ 1− δ′.

Note that if Ŷi are
ϵ
nc
-covers of Y for all i ∈ {1, 2, . . . , nc}, then

⋂nc

i=1 Ŷi is an ϵ-cover, since

PX

(
f(X) ∈

nc⋂
i=1

Ŷi

)
= 1− PX

(
f(X) ∈

nc⋃
i=1

Ŷc
i

)

≥ 1−
nc∑
i=1

PX(f(X) ∈ Ŷc
i )

= 1−
nc∑
i=1

(1− PX(f(X) ∈ Ŷi))

≥ 1−
nc∑
i=1

ϵ

nc

= 1− ϵ,

where Ŷc
i denotes the complement Rny \ Ŷi. Using the monotonicity and subadditivity of the
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product measure P, we can apply this result to the sets h(θ⋆i ) to find that

P

(
PX

(
f(X) ∈

ns⋂
i=1

h(θ⋆i )

)
≥ 1− ϵ

)
≥ P(PX (f(X) ∈ h(θ⋆i )) ≥ 1− ϵ′ for all i)

= 1− P(PX(f(X) ∈ h(θ⋆i )) < 1− ϵ′ for some i)

≥ 1−
ns∑
i=1

Pi(PX(f(X) ∈ h(θ⋆i )) < 1− ϵ′)

= 1−
ns∑
i=1

(1− Pi(PX(f(X) ∈ h(θ⋆i )) ≥ 1− ϵ′))

≥ 1−
ns∑
i=1

δ′

= 1− δ.
Therefore, we conclude that

⋂ns

i=1 h(θ
⋆
i ) is an ϵ-cover of Y with probability at least 1− δ.

Note that every individual h(θ⋆i ) is an ϵ-cover of Y with probability at least 1− δ as well,
since it is an ϵ′-cover with probability at least 1− δ′ ≥ 1− δ by construction, and an ϵ′-cover
is certainly an ϵ-cover since ϵ′ ≤ ϵ. However, it is important to remark that the intersection⋂ns

i=1 h(θ
⋆
i ) is clearly a tighter ϵ-cover than any of the individual covers h(θ⋆i ), and therefore

it gives better probabilistic localization of the output. Furthermore, recall that the ϵ-cover
is used as a surrogate output set to compute the approximate robustness level in order to
lower-bound the probabilistic robustness level. Therefore, we’d like to choose the ϵ-cover so
that the approximate robustness level is maximal. Since

r̂

(
ns⋂
i=1

h(θ⋆i )

)
= inf

{
s(y) : y ∈

ns⋂
i=1

h(θ⋆i )

}

≥ inf
ns⋂
i=1

{s(y) : y ∈ h(θ⋆i )}

≥ max
i∈{1,2,...,ns}

inf{s(y) : y ∈ h(θ⋆i )}

= max
i∈{1,2,...,ns}

r̂(h(θ⋆i )),

where s(y) = mini∈{1,2,...,ns} a
⊤
i y + bi is the safety level of y with respect to the general

polyhedral safe set S, it is clear that using the intersection
⋂ns

i=1 h(θ
⋆
i ) will give a tighter

bound on the probabilistic robustness level than any of the individual covers h(θ⋆i ).
Since we know that

⋂ns

i=1 h(θ
⋆
i ) is an ϵ-cover with probability 1 − δ, the only result that

remains to be generalized is the second conclusion from Theorem 11, i.e., we want to formally
guarantee that r̂

(⋂ns

i=1 h(θ
⋆
j )
)
≤ r̄(ϵ) with probability 1 − δ. This follows readily from the

fact that P (PX (f(X) ∈ ⋂ns

i=1 h(θ
⋆
i )) ≥ 1− ϵ) ≥ 1 − δ together with Proposition 14 and the

law of total probability, just as in the proof of Theorem 11.
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Finally, note that when the class H of surrogate output sets is designed so that h(θ)
is convex for all θ ∈ Θ, the value r̂ (

⋂ns

i=1 h(θ
⋆
i )) = infy∈⋂ns

j=1 h(θ
⋆
j )
mini∈{1,2,...,ns} a

⊤
i y + bi =

mini∈{1,2,...,ns} infy∈
⋂ns

j=1 h(θ
⋆
j )
a⊤i y + bi is easily computable, as it involves ns minimizations of

affine functions over the convex set
⋂ns

i=1 h(θ
⋆
i ). This completes the generalization of our

assessment method to the case with a general polyhedral safe set.

4.C Distributionally Robust Extension

In this section, we formulate a distributionally robust variant of the proposed assessment
procedure. Consider the case where the neural network inputX has a finite number of known
possible probability distributions P1,P2, . . . ,Pq, but that at any point in time, the true input
distribution PX is unknown. For simplicity, we use the notation Pk(P (X)), where P is a
mathematical predicate, to mean the probability of the event P (X) when X is distributed
according to Pk. Naturally, we formulate the following distributionally robust variant to the
chance-constrained problem (4.5):

maximize
θ∈Θ

r̂(θ)− λv(θ)

subject to min
k∈{1,2,...,q}

Pk(f(X) ∈ h(θ)) ≥ 1− ϵ.

As before, we consider a scenario-based approximation to the above chance-constrained
problem. However, instead of directly analyzing the above problem, consider treating each
distribution separately. That is, let δ′ = δ/q, and for all k ∈ {1, 2, . . . , q}, formulate the
scenario problem

maximize
θ∈Θ

r̂(θ)− λv(θ)

subject to yj,k ∈ h(θ) for all j ∈ {1, 2, . . . , N ′},
where we take the sample size to be N ′ = ⌈2

ϵ

(
log 1

δ′
+ p
)
⌉, the samples x1,k, x2,k, . . . , xN ′,k

are drawn independently and identically from Pk, and yj,k = f(xj,k). Denote the solution
to the kth such scenario problem as θ⋆k and its associated probability distribution as Pθ⋆k

.
Also, denote by Pθ⋆ the product probability measure associated with (θ⋆1, θ

⋆
2, . . . , θ

⋆
q). Then

by Theorem 11, we have for all k that Pθ⋆k
(Pk(f(X) ∈ h(θ⋆k)) ≥ 1 − ϵ) ≥ 1 − δ′. Therefore,
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performing a similar line of analysis as in Appendix 4.B, we find that

Pθ⋆

(
PX

(
f(X) ∈

q⋃
k=1

h(θ⋆k)

)
≥ 1− ϵ

)
≥ Pθ⋆

(
Pj

(
f(X) ∈

q⋃
k=1

h(θ⋆k)

)
≥ 1− ϵ for all j

)
≥ Pθ⋆

(
Pj(f(X) ∈ h(θ⋆j )) ≥ 1− ϵ for all j

)
= 1− Pθ⋆

(
Pj(f(X) ∈ h(θ⋆j )) < 1− ϵ for some j

)
≥ 1−

q∑
j=1

Pθ⋆j

(
Pj(f(X) ∈ h(θ⋆j )) < 1− ϵ

)
≥ 1−

q∑
j=1

δ′

= 1− δ.

Therefore, the set
⋃q

k=1 h(θ
⋆
k) is an ϵ-cover of Y with probability at least 1 − δ. Note that

this distributionally robust approach naturally leads to the union of precomputed covers, in
contrast to the intersection found in Appendix 4.B. This is to be expected, since each set
h(θ⋆k) in the current discussion brings new information about where outputs could be located
when the input is distributed according to Pk, and this new information should be included
in the final ϵ-cover so as to ensure good localization of the output in a distributionally robust
sense. In contrast, since all of the samples in Appendix 4.B come from the same distribution,
it is reasonable to intersect the resulting output set estimates and still obtain a good estimate
of the true output set Y with high-probability localization guarantees.

Now, following the same analysis as in Appendix 4.B, it is easy to see that, with probabil-
ity 1− δ, the probabilistic robustness level is lower-bounded as r̂ (

⋃q
k=1 h(θ

⋆
k)) ≤ r̄(ϵ), where

r̂(·) and r̄(·) are as defined in (4.2) and (4.3), respectively. Finally, note that computing
r̂ (
⋃q

k=1 h(θ
⋆
k)) is simple, since

r̂

(
q⋃

k=1

h(θ⋆k)

)
= inf

{
a⊤y + b : y ∈

q⋃
k=1

h(θ⋆k)

}

= inf

q⋃
k=1

{a⊤y + b : y ∈ h(θ⋆k)}

= min
k∈{1,2,...,q}

inf{a⊤y + b : y ∈ h(θ⋆k)}

= min
k∈{1,2,...,q}

r̂(θ⋆k),

and the values r̂(θ⋆k) have already been computed using convex optimization.
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4.D Special Case: Class of Half-Spaces

In this section, we consider the special case of the scenario problem (4.6) where λ = 0,
Θ = Rny × R, and h : Θ → P(Rny) is given by h(c, d) = {y ∈ Rny : c⊤y + d ≥ 0}. Then
H is the class of all half-spaces within the output space Rny . We will show that, 1) the
scenario problem has a closed-form solution, and 2) the scenario problem coincides with the
optimization obtained by applying the scenario approach directly to the definition of r̄(ϵ).

Under the given conditions, the approximate robustness level becomes r̂(c, d) = inf{a⊤y+
b : c⊤y + d ≥ 0}. The Lagrangian for this minimization problem is

L(y, µ) = a⊤y + b− µ(c⊤y + d) = (a− µc)⊤y + b− µd,

where µ ≥ 0 denotes the Lagrange multiplier. Since the Lagrangian is affine in y, the dual
function is

g(µ) = inf
y∈Rny

L(y, µ) =

{
b− µd if a = µc,

−∞ otherwise.

Therefore, the dual problem corresponding to the primal minimization over y becomes

maximize
µ∈R

b− µd

subject to a = µc, µ ≥ 0.

Now, since the primal problem over y is a feasible linear program, we have that strong
duality holds [24]. Hence, r̂(c, d) = sup{b − µd : a = µc, µ ≥ 0}. Therefore, the scenario
optimization problem (4.6) reduces to

maximize
c∈Rny , d,µ∈R

b− µd

subject to a = µc, µ ≥ 0,

c⊤yj + d ≥ 0 for all j ∈ {1, 2, . . . , N}.
(4.15)

We now solve the scenario problem (4.15) in closed form. First, under the assumption
that the safe set is nontrivial, i.e., a ̸= 0, we remark that the constraint a = µc implies that
µ ̸= 0, and therefore can be rewritten as c = 1

µ
a. Eliminating c, the optimization becomes

maximize
d,µ∈R

b− µd

subject to µ > 0,
1

µ
a⊤yj + d ≥ 0, j ∈ {1, 2, . . . , N}.

Defining r̃ = b− µd, the problem further reduces to

maximize
r̃∈R

r̃

subject to a⊤yj + b ≥ r̃ for all j ∈ {1, 2, . . . , N}.
(4.16)
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It is clear that the reduced scenario problem (4.16) matches the formulation obtained by
directly applying the scenario approach to estimate r̄(ϵ) = sup{r ∈ R : PX(a

⊤f(X) +
b ≥ r) ≥ 1 − ϵ}. In fact, since the optimization defining r̄(ϵ) is univariate, whereas the
scenario problem (4.15) over Θ is (ny + 1)-dimensional, the number of samples indicated
by Theorem 11 is conservative for this problem. Instead of 2

ϵ
(log 1

δ
+ ny + 1) samples, only

N ≥ 2
ϵ
(log 1

δ
+ 1) samples are needed to obtain the high-probability guarantees provided by

Theorem 11. We also note that the optimization (4.16) is a univariate linear program, and
is clearly solved in closed-form by r̃⋆ = minj∈{1,2,...,N} a

⊤yj + b. This derivation results in the
following proposition:

Proposition 16. Let ϵ, δ ∈ [0, 1], N ≥ 2
ϵ
(log 1

δ
+ 1), and {xj : j ∈ {1, 2, . . . , N}} be a set

of N independently and identically distributed samples drawn from PX . Let yj = f(xj) for
all j ∈ {1, 2, . . . , N}. Then with probability 1 − δ, the probabilistic robustness level r̄(ϵ) is
lower-bounded by r̃⋆ = minj∈{1,2,...,N} a

⊤yj + b.

Despite being derived from our general framework, this special case reduces to a solution
that is remarkably simple and coincides with a heuristic one may first try using in practice.
That is, upon choosing H to be the class of half-spaces, the optimal sample-based method
for lower-bounding the probabilistic robustness level via the approximate robustness level
is to compute the minimum safety level amongst the collection of sampled outputs. If
sufficiently many samples are used and the minimum safety level is nonnegative, then we
certify with high probability that the unknown random output Y = f(X) is safe in practice.
Although this special case does not yield meaningful localization of the outputs and uses
a crude class of surrogate output sets, it certainly provides a fast analytical method for
certifying the network’s robustness against random input noise. Furthermore, our derivation
mathematically justifies the use of this otherwise heuristic method, and, contrarily, the
natural intuition behind this statistical estimator validates our framework that generalizes
it.

4.E Additional Numerical Simulations

Alternate Illustrative Example

In this section, we showcase an illustrative example similar to that in Section 4.6, albeit
now we consider the multilayer perceptron proposed in Example 2 in Xiang, Tran, and
Johnson [153]. The network uses a tanh(·) activation function and has two inputs and two
outputs, making the visualization of the input and output sets possible. See Xiang, Tran,
and Johnson [153] for more details of the network. The noisy input is distributed uniformly
on X = {x ∈ R2 : |x1 − 0.5| ≤ 1.5, |x2 − 0.5| ≤ 0.1}, where x̄ = (0.5, 0.5) is the nominal
input. The safe set is S1 = {y ∈ R2 : a⊤y + b ≥ 0}, where a = (1, 0) and b = 3.7.

The norm ball class H of Example 3, Example 4, and Example 5 is employed with ∥ · ∥
being the ℓ2-norm.
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The probability levels are chosen as ϵ = 0.1 and δ = 10−5. We set N =
⌈
2
ϵ
(log 1

δ
+ p)

⌉
=

291, then uniformly sample N inputs xj from X and compute their corresponding outputs
yj. As shown in Example 5, the scenario problem takes the form given in (4.7). We choose
the regularizer to be the square of the norm ball radius, i.e., v(ȳ, r) = r2. The optimization
problem is convex as guaranteed by Theorem 10.

We solve the scenario problem first without regularization, and then with two different
levels of regularization: λ1 = 0.001 and λ2 = 1. The respective solutions are denoted by θ⋆,
θ⋆λ1

, and θ⋆λ2
. Each instance takes approximately 5 seconds to solve using CVX in Matlab

on a standard laptop with a 2.6GHz dual-core i5 processor. The resulting approximate
robustness levels are r̂(θ⋆) = 0.423, r̂(θ⋆λ1

) = 0.419, and r̂(θ⋆λ2
) = −1.107. In the instances

without regularization and with regularization level λ1, Theorem 11 guarantees that the
probabilistic robustness level r̄(0.1) is at least 0.4 with probability at least 0.99999. In other
words, the random output Y = f(X) has a safety level of 0.4 with high probability, granting
the probablistic robustness certificate we seek. On the other hand, since r̂(θ⋆λ2

) < 0, the
scenario problem using regularization level λ2 is not able to certify the safety of the output.
This is due to the inherent tradeoff between localization and certification, which we now
discuss further.

The optimal ϵ-covers h(θ⋆), h(θ⋆λ1
), and h(θ⋆λ2

) are shown in Figure 4.5. The unregu-
larized set h(θ⋆) is massively over-conservative due to the choice λ = 0, which corresponds
to pure robustness certification. Indeed, h(θ⋆) is the ϵ-cover from our class of sets that is
furthest from the boundary of the safe set, making r̂(θ⋆) the tightest lower bound on r̄(ϵ).
On the other hand, the optimal ϵ-covers using λ = λ1 and λ = λ2 are seen to give tighter
localizations of the output Y . The approximate robustness level using regularization λ1 is
only slightly lower than the unregularized value, but the regularization λ2 is large enough
to cause the approximate robustness level r̂(θ⋆λ2

) to become negative at the expense of local-
ization. This shows how overemphasizing localization may actually harm the certification
aspect of robustness assessment, and empirically demonstrates why output set estimation
methods may not be adequate for issuing robustness certificates.

We now repeat the same simulation with a more complicated safe set. In particular, we
add an additional constraint to the safe set to match Example 2 given in Xiang, Tran, and
Johnson [153], so that it now takes the form S2 = {y ∈ R2 : Ay + b ≥ 0}, where A = [ 1 0

−1 0 ]
and b = (3.7,−1.5). In this case, we apply our proposed method to each row of the safe set
individually. To do so, we set ϵ′ = ϵ/2 and δ′ = δ/2, then define N ′ = ⌈ 2

ϵ′

(
log 1

δ′
+ p
)
⌉ = 609.

For each of the two half-spaces defining the safe set, we solve the scenario problem using
N ′ independent and identically distributed input-output samples, and then we take the
intersection of the two resulting ϵ′-covers. Doing so, we obtain an ϵ-cover of the output
set with probability at least 1 − δ. We repeat this process again using regularization levels
λ1 = 0.001 and λ2 = 1, and we find that each scenario problem takes approximately 11
seconds to solve. The resulting covers are shown in Figure 4.6.

We find that the approximate robustness levels corresponding to λ = 0 and λ = λ1 are
strictly positive for both half-spaces, certifying that the random output Y is safe with the
prescribed probability. However, for λ = λ2, the optimal ϵ-covers corresponding to both
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Figure 4.5: Optimal ℓ2-norm ball ϵ-covers for safe set S1.

half-spaces are found to intersect the unsafe region of the output space, due to the increased
emphasis on localization. Interestingly, the overall localization after intersecting the two ϵ′-
covers for λ = λ2 is in a sense looser than that of the case λ = λ1, indicating that moderate
regularization levels, like λ1 in this simulation, may simultaneously perform best for both
localization and certification in the case of general polyhedral safe sets defined by more than
one half-space. Optimizing λ in general poses an interesting problem for future research.

Comparison to DeepPAC

In this simulation, we use the half-space special case of our proposed robustness certification
method, as presented in Appendix 4.D. Recall that this method uses all optimization efforts
to certify the robustness of the network; the outputs are not localized within the output
space. For this example, we append a ReLU layer with normal random weights and biases to
the neural network presented in our illustrative example of Section 4.6, maintaining ny = 2,
and we consider the resulting network as a classifier. Ten nominal inputs are chosen randomly
at which we will perform robustness certification. The noisy input X is distributed uniformly
on the input set X = {x ∈ R2 : ∥x − x̄∥ ≤ ϵx}, where the radius ϵx is varied from 0.1 to 1.
We set the probabilistic confidence levels to be ϵ = 0.1 and δ = 10−5.

For each nominal input and input set radius, we compute a lower bound on the prob-
abilistic robustness level r̄(ϵ) first using our proposed methodology, and then using the
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Figure 4.6: Optimal intersections of two ℓ2-norm ball ϵ
2
-covers for safe set S2.

scenario-based approach presented in Li et al. [89], termed DeepPAC.6 Solving for such a
lower bound using DeepPAC first entails solving a scenario linear program for an affine bound
on the classifier’s margin function, and then requires optimizing this bound over the input set.
We remark that DeepPAC requires more samples (and therefore optimization constraints)
than our approach, specifically, DeepPAC requires N ≥ 2

ϵ
(log 1

δ
+ (nx + 1)(ny − 1) + 1),

and therefore we restrict our comparison to DeepPAC to this moderately sized example for
computational convenience. See our comparison to PROVEN in Section 4.6 for applications
of our approach to large MNIST and CIFAR-10 networks.

After computing the lower bounds on r̄(ϵ) using both methods, we average the values
over the nominal inputs, independently for each input set radius. The results are shown in
Figure 4.7. As seen, the lower bounds between the two methods remain close for small input
set radii, but our approach offers a tighter lower bound as the radii increase. At input set
radius ϵx = 0.4, our approach is able to issue a high-probability robustness certificate on
average, whereas DeepPAC fails. These observations are explained as follows.

DeepPAC works by using samples to learn an affine approximation to the nonlinear
margin function over X , so that high-probability bounds on the margin function values
at noisy inputs can be made using the learned affine function. Using affine functions to
bound the margin function is a technique that naturally applies when considering worst-

6Like our robustness certificates, those given by DeepPAC are of the probably approximately correct
form (see Remark 5), hence the name DeepPAC.
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case or adversarial inputs (e.g., Weng et al. [146] and Zhang et al. [166]). However, as the
input set becomes larger, affine approximations are no longer able to accurately capture
the nonlinearities of the margin function. Consequently, DeepPAC’s high-probability affine
bounds on the margin function values become loose, resulting in a looser lower bound on
the probabilistic robustness level. Our approach avoids this worst-case analysis technique by
directly learning a set in the output space instead of learning a mapping from the input to
the output space. This behavior is also seen in our comparison to PROVEN in Section 4.6.

Figure 4.7: Our lower bound closely matches that of DeepPAC for small input set radii, but
becomes noticeably tighter than DeepPAC as the input set becomes larger.

Comparison to Direct Bayesian Certification

In this section, we repeat the simulation from our comparison to PROVEN in Section 4.6 us-
ing the sample-based certification method given in Zakrzewski [160]. Recall that Zakrzewski
[160] imposes a Bayesian framework on the problem by directly assuming that the failure
probability follows a uniform prior distribution. In doing so, Zakrzewski [160] is able to
certify with probability 1− δ that PX(f(X) ∈ S) ≥ 1− ϵ, so long as the number of samples
used is N ≥ 1

ϵ
log 1

δ
− 1 and f(xj) ∈ S for all sampled inputs xj, j ∈ {1, 2, . . . , N}. In

comparing our method to Zakrzewski [160], two important remarks should be made. First,
our method is much more general, as we are able to localize the outputs in arbitrary surro-
gate output sets, so long as they satisfy the assumptions of Theorem 10, yielding a convex
scenario optimization problem, whereas the method of Zakrzewski [160] is only able to cer-
tify whether or not the outputs are contained in the safe half-space. Thus, to compare the
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methods, we restrict our method to the special case of half-space surrogate output sets from
Appendix 4.D. Second, for the same amount of samples (O(1

ϵ
log 1

δ
)), our method provides

more information regarding the robustness of the network than Zakrzewski [160] does. In
particular, we lower bound the probabilistic robustness level r̄(ϵ) with a continuous value,
whereas Zakrzewski [160] is only able to issue a binary certificate asserting whether or not
outputs are contained in the safe set with high probability. With this in mind, our method
is the only one of the two that is able to quantify how safe the outputs are by certifying a
continuous-valued safety margin.

Table 4.3: Average probabilistic robustness level lower bounds r̂(θ⋆) for MNIST ReLU net-
works subject to uniform noise over ℓ∞-norm ball. All values are averaged over 10 nominal
inputs with randomly chosen target classes i. Also reported are the percentages of inputs
that each method is able to certify. Lower bounds giving certified robustness (on average)
are bolded, and the average certified adversarial radii computed using Zhang et al. [166] are
italicized.

(a) 2× [20] network.

Radius
ϵ = 0.001 ϵ = 0.1 ϵ = 0.25

[160] Ours [160] Ours [160] Ours

0.01
0.00 14.11 0.00 14.26 0.00 14.28
100% 100% 100% 100% 100% 100%

0 .027
0.00 13.36 0.00 13.77 0.00 13.85
100% 100% 100% 100% 100% 100%

0.05
0.00 12.34 0.00 13.11 0.00 13.26
100% 100% 100% 100% 100% 100%

0.1
0.00 10.25 0.00 11.66 0.00 12.00
100% 100% 100% 100% 100% 100%

0.5
N/A −7.21 N/A −0.05 N/A 1.71
20% 20% 40% 40% 50% 50%

(b) 3× [20] network.

Radius
ϵ = 0.001 ϵ = 0.1 ϵ = 0.25

[160] Ours [160] Ours [160] Ours

0.01
0.00 17.28 0.00 17.45 0.00 17.48
100% 100% 100% 100% 100% 100%

0 .022
0.00 16.65 0.00 17.02 0.00 17.10
100% 100% 100% 100% 100% 100%

0.05
0.00 15.19 0.00 16.00 0.00 16.19
100% 100% 100% 100% 100% 100%

0.1
0.00 12.57 0.00 14.19 0.00 14.58
100% 100% 100% 100% 100% 100%

0.5
N/A −9.36 N/A −0.55 N/A 0.36
0% 0% 50% 50% 62.5% 62.5%

(c) 2× [1024] network.

Radius
ϵ = 0.001 ϵ = 0.1 ϵ = 0.25

[160] Ours [160] Ours [160] Ours

0.01
0.00 27.73 0.00 27.87 0.00 27.93
100% 100% 100% 100% 100% 100%

0 .032
0.00 26.69 0.00 27.13 0.00 27.32
100% 100% 100% 100% 100% 100%

0.05
0.00 25.83 0.00 26.53 0.00 26.82
100% 100% 100% 100% 100% 100%

0.1
0.00 23.46 0.00 24.84 0.00 25.42
100% 100% 100% 100% 100% 100%

0.5
N/A 4.83 0.00 11.79 0.00 14.45
80% 80% 100% 100% 100% 100%

(d) 3× [1024] network.

Radius
ϵ = 0.001 ϵ = 0.1 ϵ = 0.25

[160] Ours [160] Ours [160] Ours

0.01
0.00 36.86 0.00 37.06 0.00 37.12
100% 100% 100% 100% 100% 100%

0 .024
0.00 35.97 0.00 36.44 0.00 36.58
100% 100% 100% 100% 100% 100%

0.05
0.00 34.32 0.00 35.32 0.00 35.59
100% 100% 100% 100% 100% 100%

0.1
0.00 31.10 0.00 33.10 0.00 33.69
100% 100% 100% 100% 100% 100%

0.5
N/A 6.89 N/A 15.85 0.00 18.56
80% 80% 90% 90% 100% 100%

The results of the experimental comparison are given in Table 4.3. It is observed that
our method is always able to issue a robustness certificate whenever Zakrzewski [160] does,
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and furthermore, our lower bounds on the probabilistic robustness level are generally much
less conservative than those granted by Zakrzewski [160] (which are binary; either a lower
bound of 0, or failure to issue a certificate altogether). This emphasizes that, for the same
number of samples, a special case of our method is strictly more informative as Zakrzewski
[160], and always succeeds in issuing a robustness certificate whenever their method does.
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Part II

Designing Robust Models
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Chapter 5

Feature-Convex Neural Networks

Real-world adversarial attacks on machine learning models often feature an asymmetric
structure wherein adversaries only attempt to induce false negatives (e.g., classify a spam
email as not spam). In this chapter, we formalize the asymmetric robustness certification
problem and correspondingly present the feature-convex neural network architecture, which
composes an input-convex neural network (ICNN) with a Lipschitz continuous feature map
in order to achieve asymmetric adversarial robustness. We consider the aforementioned
binary setting with one “sensitive” class, and for this class we prove deterministic, closed-
form, and easily-computable certified robust radii for arbitrary ℓp-norms. We theoretically
justify the use of these models by extending the universal approximation theorem for ICNN
regression to the classification setting, and proving a lower bound on the probability that
such models perfectly fit even unstructured uniformly distributed data in sufficiently high
dimensions. Numerical simulations on Malimg malware classification and subsets of the
MNIST, Fashion-MNIST, and CIFAR-10 datasets show that feature-convex classifiers attain
substantial certified ℓ1-, ℓ2-, and ℓ∞-radii while being far more computationally efficient than
competitive baselines.

This chapter is based on the following previously published work:

[111] Samuel Pfrommer*, Brendon G. Anderson*, Julien Piet, and Somayeh Sojoudi, “Asym-
metric certified robustness via feature-convex neural networks,” Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2023. *Co-first author and equal contribution.

5.1 Introduction

The strength of neural network robustness certificates can be highly dependent on network
architecture. For instance, general off-the-shelf models tend to have large Lipschitz constants,
leading to loose Lipschitz-based robustness guarantees [65, 51, 158]. Consequently, lines
of work that impose certificate-amenable structures onto networks have been popularized,
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e.g., specialized model layers [134, 163], randomized smoothing-based networks [88, 35, 162,
156, 8], and ReLU networks that are certified using convex optimization and mixed-integer
programming [148, 146, 115, 4, 94]. The first category only directly certifies against one
specific choice of norm, producing poorly scaled radii for other norms in high dimensions.
The latter two approaches incur serious computational challenges: randomized smoothing
typically requires the classification of thousands of randomly perturbed samples per input,
while optimization-based solutions scale poorly to large networks.

Despite the moderate success of these certifiable classifiers, conventional assumptions in
the literature are unnecessarily restrictive for many practical adversarial settings. Specifi-
cally, most works consider a multiclass setting where certificates are desired for inputs of any
class. By contrast, many real-world adversarial attacks involve a binary setting with only
one sensitive class that must be robust to adversarial perturbations. Consider the represen-
tative problem of spam classification; a malicious adversary crafting a spam email will only
attempt to fool the classifier toward the “not-spam” class—never conversely [38]. Similar
logic applies for a range of applications such as malware detection [64], malicious network
traffic filtering [120], fake news and social media bot detection [37], hate speech removal [63],
insurance claims filtering [53], and financial fraud detection [29].

The important asymmetric nature of these classification problems has long been recog-
nized in various subfields, and some domain-specific attempts at robustification have been
proposed with this in mind. This commonly involves robustifying against adversaries ap-
pending features to the classifier input. In spam classification, such an attack is known as the
“good word” attack [91]. In malware detection, numerous approaches have been proposed
to provably counter such additive-only adversaries using special classifier structures such as
non-negative networks [54] and monotonic classifiers [69]. We note these works strictly focus
on additive adversaries and cannot handle general adversarial perturbations of the input
that are capable of perturbing existing features. In this chapter, we propose adding this
important asymmetric structure to the study of norm ball-certifiably robust classifiers. This
narrowing of the problem to the asymmetric setting provides prospects for novel certifiable
architectures, and we present feature-convex neural networks as one such possibility.

Problem Statement and Contributions

This section formalizes the asymmetric robustness certification problem for general norm-
bounded adversaries. Specifically, we assume a binary classification setting wherein one
class is “sensitive”—meaning we seek to certify that, if some input is classified into this
sensitive class, then adversarial perturbations of sufficiently small magnitude cannot change
the prediction.

Formally, consider a binary classifier fτ : Rd → {1, 2}, where class 1 is the sensitive
class for which we desire certificates. We take fτ to be a standard thresholded version of
a soft classifier g : Rd → R, expressible as fτ (x) = Tτ (g(x)), where Tτ : R → {1, 2} is the
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thresholding function defined by

Tτ (y) =

{
1 if y + τ > 0,

2 if y + τ ≤ 0,
(5.1)

with τ ∈ R being a user-specified parameter that shifts the classification threshold. A
classifier fτ is considered certifiably robust at a class 1 input x ∈ Rd with a radius r(x) ∈ R+

if fτ (x + δ) = fτ (x) = 1 for all δ ∈ Rd with ∥δ∥ < r(x) for some norm ∥ · ∥. Under the
terminology and notation introduced in previous chapters, the input uncertainty set that we
consider here is given by the norm ball X = {x′ ∈ Rd : ∥x′−x∥ < r(x)}, which is dependent
on the nominal input x. Note that τ induces a tradeoff between the clean accuracy on class
2 and certification performance on class 1. As τ → ∞, fτ approaches a constant classifier
which achieves infinite class 1 certified radii but has zero class 2 accuracy.

For a particular choice of τ , the performance of fτ can be analyzed similarly to a typical
certified classifier. Namely, it exhibits a class 2 clean accuracy α2(τ) ∈ [0, 1] as well as a
class 1 certified accuracy surface Γ with values Γ(r, τ) ∈ [0, 1] that capture the fraction of
the class 1 samples that can be certifiably classified by fτ at radius r ∈ R+. The class 1 clean
accuracy α1(τ) = Γ(0, τ) is inferable from Γ as the certified accuracy at r = 0.

The full asymmetric certification performance of the family of classifiers fτ can be cap-
tured by plotting the surface Γ(r, τ), as will be shown in Figure 5.1a. Instead of plot-
ting against τ directly, we plot against the more informative difference in clean accuracies
α1(τ) − α2(τ). This surface can be viewed as an asymmetric robustness analogue to the
classic receiver operating characteristic curve.

Note that while computing the asymmetric robustness surface is possible for our feature-
convex architecture (to be defined shortly), it is computationally prohibitive for conventional
certification methods. We therefore standardize our comparisons throughout this chapter to
the certified accuracy cross section Γ(r, τ ⋆) for a τ ⋆ such that clean accuracies are balanced in
the sense that α2(τ

⋆) = α1(τ
⋆), noting that α1 monotonically increases in τ and α2 monon-

ically decreases in τ . We discuss finding such a τ ⋆ in Appendix 5.D. This choice allows
for a direct comparison of the resulting certified accuracy curves without considering the
non-sensitive class clean accuracy.

With the above formalization in place, the goal at hand is two-fold: 1) develop a classifi-
cation architecture tailored for the asymmetric setting with high robustness, as characterized
by the surface Γ, and 2) provide efficient methods for computing the certified robust radii
r(x) used to generate Γ.

Contributions

We tackle the above two goals by proposing feature-convex neural networks and achieve the
following contributions:
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1. We exploit the feature-convex structure of the proposed classifier to provide asymmet-
rically tailored closed-form class 1 certified robust radii for arbitrary ℓp-norms, solving
the second goal above and yielding efficient computation of Γ.

2. We characterize the decision region geometry of convex classifiers, extend the universal
approximation theorem for input-convex ReLU neural networks to the classification
setting, and show that convex classifiers are sufficiently expressive for high-dimensional
data.

3. We evaluate against several baselines on MNIST 3-8 [84], Malimg malware classification
[106], Fashion-MNIST shirts [154], and CIFAR-10 cats-dogs [80], and show that our
classifiers yield certified robust radii competitive with the state-of-the-art, empirically
addressing the first goal listed above.

Related Works

Certified Adversarial Robustness

As mentioned in previous chapters, three of the most popular approaches for generating ro-
bustness certificates are Lipschitz-based bounds, randomized smoothing, and optimization-
based methods. Successfully bounding the Lipschitz constant of a neural network can give
rise to an efficient certified radius of robustness, e.g., via the methods proposed in Hein
and Andriushchenko [65]. However, in practice such Lipschitz constants are too large to
yield meaningful certificates, or it is computationally burdensome to compute or bound the
Lipschitz constants in the first place [137, 51, 158]. To overcome these computational limita-
tions, certain methods impose special structures on their model layers to provide immediate
Lipschitz guarantees. Specifically, Trockman and Kolter [134] uses the Cayley transform to
derive convolutional layers with immediate ℓ2-Lipschitz constants, and Zhang et al. [163]
introduces a ℓ∞-distance neuron that provides similar Lipschitz guarantees with respect to
the ℓ∞-norm. We compare with both these approaches in our numerical simulations of this
chapter.

Randomized smoothing, popularized by Lecuyer et al. [85], Li et al. [88], and Cohen,
Rosenfeld, and Kolter [35], uses the expected prediction of a model when subjected to Gaus-
sian input noise. These works derive ℓ2-norm balls around inputs on which the smoothed
classifier remains constant, but suffer from nondeterminism and high computational bur-
den. Follow-up works generalize randomized smoothing to certify input regions defined by
different metrics, e.g., Wasserstein, ℓ1-, and ℓ∞-norms [87, 131, 156]. Other works focus on
enlarging the certified regions by optimizing the smoothing distribution [162, 46, 7], incorpo-
rating adversarial training into the base classifier [121, 164], and employing dimensionality
reduction at the input [112].

Optimization-based certificates typically seek to derive a tractable over-approximation
of the set of possible outputs when the input is subject to adversarial perturbations, and
show that this over-approximation is safe. Various over-approximations have been proposed,
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e.g., based on linear programming and bounding [148, 146], semidefinite programming [115],
and branch-and-bound [4, 94, 141]. The α, β-CROWN method [141] uses an efficient bound
propagation to linearly bound the neural network output in conjunction with a per-neuron
branching heuristic to achieve state-of-the-art certified radii, winning both the 2021 and the
2022 VNN certification competitions [18, 102]. In contrast to optimization-based methods,
our approach in this chapter directly exploits the convex structure of input-convex neural
networks to derive closed-form robustness certificates, altogether avoiding any efficiency-
tightness tradeoffs.

Input-Convex Neural Networks

Input-convex neural networks, popularized by Amos, Xu, and Kolter [3], are a class of
parameterized models whose input-output mapping is convex. The authors develop tractable
methods to learn input-convex neural networks, and show that such models yield state-of-the-
art results in a variety of domains where convexity may be exploited, e.g., optimization-based
inference. Subsequent works propose novel applications of input-convex neural networks in
areas such as optimal control and reinforcement learning [34, 161], optimal transport [96],
and optimal power flow [33, 167]. Other works have generalized input-convex networks to
input-invex networks [123, 108] and global optimization networks [170] so as to maintain the
benign optimization properties of input-convexity. The authors of Siahkamari et al. [125]
present algorithms for efficiently learning convex functions, while Chen, Shi, and Zhang
[34] and Kim and Kim [76] derive universal approximation theorems for input-convex neural
networks in the convex regression setting. The work Sivaprasad et al. [126] shows that input-
convex neural networks do not suffer from overfitting, and generalize better than multilayer
perceptrons on common benchmark datasets. In this chapter, we incorporate input-convex
neural networks as a part of our feature-convex architecture and leverage convexity properties
to derive novel robustness guarantees.

Notations

We now introduce the notations used throughout this chapter. The sets of natural numbers,
real numbers, and nonnegative real numbers are denoted by N, R, and R+ respectively.
The d × d identity matrix is written as Id ∈ Rd×d, and the identity map on Rd is denoted
by Id: x 7→ x. For A ∈ Rn×d, we define |A| ∈ Rn×d by |A|ij = |Aij| for all i, j, and we
write A ≥ 0 if and only if Aij ≥ 0 for all i, j. The ℓp-norm on Rd is given by ∥ · ∥p : x 7→
(|x1|p + · · ·+ |xd|p)1/p for p ∈ [1,∞) and by ∥ · ∥p : x 7→ max{|x1|, . . . , |xd|} for p =∞. The
dual norm of ∥ · ∥p is denoted by ∥ · ∥p,∗. The convex hull of a set X ⊆ Rd is denoted by
conv(X). The subdifferential of a convex function g : Rd → R at x ∈ Rd is denoted by ∂g(x).
If ϵ : Ω → Rd is a random variable on a probability space (Ω,B,P) and P is a predicate
defined on Rd, then we write P(P (ϵ)) to mean P({ω ∈ Ω : P (ϵ(ω))}). Lebesgue measure on
Rd is denoted by m. We define ReLU: R → R as ReLU(x) = max{0, x}, and if x ∈ Rd,
ReLU(x) denotes (ReLU(x1), . . . ,ReLU(xd)). We recall the threshold function Tτ : R →
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{1, 2} defined by (5.1), and we define T = T0. For a function φ : Rd → Rq and p ∈ [1,∞],
we define Lipp(φ) = inf{K ≥ 0 : ∥φ(x)− φ(x′)∥p ≤ K∥x− x′∥p for all x, x′ ∈ Rd}, and if
Lipp(φ) < ∞ we say that φ is Lipschitz continuous with constant Lipp(φ) (with respect to
the ℓp-norm).

5.2 Feature-Convex Classifiers

Let d, q ∈ N and p ∈ [1,∞] be fixed, and consider the task of classifying inputs from a subset
of Rd into a fixed set of classes Y ⊆ N. In what follows, we restrict to the binary setting
where Y = {1, 2} and class 1 is the sensitive class for which we desire robustness certificates
(Section 5.1). In Appendix 5.A, we briefly discuss avenues to generalize our framework
to multiclass settings using one-versus-all and sequential classification methodologies and
provide a proof-of-concept example for the Malimg dataset.

We now formally define the classifiers considered in this chapter. Note that the classifi-
cation threshold τ discussed in Section 5.1 is omitted for simplicity.

Definition 10. Let f : Rd → {1, 2} be defined by f(x) = T (g(φ(x))) for some φ : Rd → Rq

and some g : Rq → R. Then f is said to be a feature-convex classifier if the feature map φ
is Lipschitz continuous with constant Lipp(φ) <∞ and g is a convex function.

We denote the class of all feature-convex classifiers by F . Furthermore, for q = d, the
subclass of all feature-convex classifiers with φ = Id is denoted by FId.

As we will see in Section 5.3, defining our classifiers using the composition of a convex
classifier with a Lipschitz feature map enables the fast computation of certified regions in the
input space. This naturally arises from the global underestimation of convex functions by
first-order Taylor approximations. Since sublevel sets of such g are restricted to be convex,
the feature map φ is included to increase the representation power of our architecture (see
Appendix 5.B for a motivating example). In practice, we find that it suffices to choose φ to
be a simple map with a small closed-form Lipschitz constant. For example, in our numerical
simulations that follow with q = 2d, we choose φ(x) = (x−µ, |x−µ|) with a constant channel-
wise dataset mean µ, yielding Lip1(φ) ≤ 2, Lip2(φ) ≤

√
2, and Lip∞(φ) ≤ 1. Although this

particular choice of φ is convex, the function g need not be monotone, and therefore the
composition g ◦φ is nonconvex in general. The prediction and certification of feature-convex
classifiers are illustrated in Figure 5.1b.

In practice, we implement feature-convex classifiers using parameterizations of g, which
we now make explicit. Following Amos, Xu, and Kolter [3], we instantiate g as a neural net-
work with nonnegative weight matrices and nondecreasing convex nonlinearities. Specifically,
we consider ReLU nonlinearities, which is not restrictive, as our universal approximation re-
sult in Theorem 13 proves.

Definition 11. A feature-convex ReLU neural network is a function f̂ : Rd → {1, 2} defined
by f̂(x) = T (ĝ(φ(x))) with φ : Rd → Rq Lipschitz continuous with constant Lipp(φ) < ∞
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Figure 5.1: (a) The asymmetric certified accuracy surface Γ(r, τ) for MNIST 3-8, as described
in Section 5.1. The “clean accuracy difference” axis plots α1(τ)− α2(τ), and the black line
highlights the certified robustness curve for when clean accuracy is equal across the two
classes. (b) Illustration of feature-convex classifiers and their certification. Since g is convex,
it is globally underapproximated by its tangent plane at φ(x), yielding certified sets for norm
balls in the higher-dimensional feature space. Lipschitzness of φ then yields appropriately
scaled certificates in the original input space.

and ĝ : Rq → R defined by

ĝ(x(0)) = A(L)x(L−1) + b(L) + C(L)x(0),

x(l) = ReLU
(
A(l)x(l−1) + b(l) + C(l)x(0)

)
,

for all l ∈ {1, 2, . . . , L− 1} for some L ∈ N, L > 1, and for some consistently sized matrices
A(l), C(l) and vectors b(l) satisfying A(l) ≥ 0 for all l ∈ {2, 3, . . . , L}.

Going forward, we denote the class of all feature-convex ReLU neural networks by F̂ .
Furthermore, if q = d, the subclass of all feature-convex ReLU neural networks with φ = Id
is denoted by F̂Id, which corresponds to the input-convex ReLU neural networks proposed
in Amos, Xu, and Kolter [3].

For every f̂ ∈ F̂ , it holds that ĝ is convex due to the rules for composition and non-
negatively weighted sums of convex functions [24, Section 3.2], and therefore F̂ ⊆ F and
F̂Id ⊆ FId. The “passthrough” weights C

(l) were originally included by Amos, Xu, and Kolter
[3] to improve the practical performance of the architecture. In some of our more challenging
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numerical simulations that follow, we remove these passthrough operations and instead add
residual identity mappings between hidden layers, which also preserves convexity. We note
that the transformations defined by A(l) and C(l) can be taken to be convolutions, which are
nonnegatively weighted linear operations and thus preserve convexity [3].

5.3 Certification and Analysis of Feature-Convex

Classifiers

We present our main theoretical results in this section. First, we derive asymmetric ro-
bustness certificates (Theorem 12) for our feature-convex classifiers. Then, we introduce the
notion of convexly separable sets in order to theoretically characterize the representation
power of our classifiers. Our primary representation results give a universal function approx-
imation theorem for our classifiers with φ = Id and ReLU activation functions (Theorem 13)
and show that such classifiers can perfectly fit convexly separable datasets (Theorem 14),
including the CIFAR-10 cats-dogs training data (Fact 1). We also show that this strong
learning capacity generalizes by proving that feature-convex classifiers can perfectly fit high-
dimensional uniformly distributed data with high probability (Theorem 15).

Certified Robustness Guarantees

In this section, we address the asymmetric certified robustness problem by providing class
1 robustness certificates for feature-convex classifiers f ∈ F . Such robustness corresponds
to proving the absence of false negatives in the case that class 1 represents positives and
class 2 represents negatives. For example, if in a malware detection setting class 1 represents
malware and class 2 represents non-malware, the following certificate gives a lower bound
on the magnitude of the malware file alteration needed in order to misclassify the file as
non-malware.

Theorem 12. Let f ∈ F be as in Definition 10 and let x ∈ f−1({1}) = {x′ ∈ Rd : f(x′) =
1}. If ∇g(φ(x)) ∈ Rq is a nonzero subgradient of the convex function g at φ(x), then
f(x+ δ) = 1 for all δ ∈ Rd such that

∥δ∥p < r(x) :=
g(φ(x))

Lipp(φ)∥∇g(φ(x))∥p,∗
.

Proof. Suppose that ∇g(φ(x)) ∈ Rq is a nonzero subgradient of g at φ(x), so that g(y) ≥
g(φ(x)) +∇g(φ(x))⊤(y − φ(x)) for all y ∈ Rq. Let δ ∈ Rd be such that ∥δ∥p < r(x). Then
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it holds that

g(φ(x+ δ)) ≥ g(φ(x)) +∇g(φ(x))⊤(φ(x+ δ)− φ(x))
≥ g(φ(x))− ∥∇g(φ(x))∥p,∗∥φ(x+ δ)− φ(x)∥p
≥ g(φ(x))− ∥∇g(φ(x))∥p,∗ Lipp(φ)∥δ∥p
> 0,

so indeed f(x+ δ) = 1.

Remark 6. For f ∈ F and x ∈ f−1({1}), a subgradient ∇g(φ(x)) ∈ Rq of g always exists at
φ(x), since the subdifferential ∂g(φ(x)) is a nonempty closed bounded convex set, as g is a
finite convex function on all of Rq—see Theorem 23.4 in Rockafellar [118] and the discussion
thereafter. Furthermore, if f is not a constant classifier, such a subgradient ∇g(φ(x)) must
necessarily be nonzero, since, if it were zero, then g(y) ≥ g(φ(x)) +∇g(φ(x))⊤(y − φ(x)) =
g(φ(x)) > 0 for all y ∈ Rq, implying that f identically predicts class 1, which is a contra-
diction. Thus, the certified radius given in Theorem 12 is always well-defined in practical
settings.

Theorem 12 is derived from the fact that a convex function is globally underapprox-
imated by any tangent plane. The nonconstant terms in Theorem 12 afford an intuitive
interpretation: the radius scales proportionally to the confidence g(φ(x)) and inversely with
the input sensitivity ∥∇g(φ(x))∥p,∗. In practice, Lipp(φ) can be made quite small as men-
tioned in Section 5.2, and furthermore the subgradient ∇g(φ(x)) is easily evaluated as the
Jacobian of g at φ(x) using standard automatic differentiation packages. This provides fast,
deterministic class 1 certificates for any ℓp-norm without modification of the feature-convex
network’s training procedure or architecture. We emphasize that our robustness certificates
of Theorem 12 are independent of the architecture of f .

Representation Power Characterization

We now restrict our analysis to the class FId of feature-convex classifiers with an identity
feature map. This can be equivalently considered as the class of classifiers for which the
input-to-logit map is convex. We therefore refer to models in FId as input-convex classifiers.
While the feature map φ is useful in boosting the practical performance of our classifiers,
the theoretical results in this section suggest that there is significant potential in using
input-convex classifiers as a standalone solution.

Classifying Convexly Separable Sets

We begin by introducing the notion of convexly separable sets, which are intimately related
to decision regions representable by the class FId.

Definition 12. Let X1, X2 ⊆ Rd. The ordered pair (X1, X2) is said to be convexly separable
if there exists a nonempty closed convex set X ⊆ Rd such that X2 ⊆ X and X1 ⊆ Rd \X.
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Notice that it may be the case that a pair (X1, X2) is convexly separable yet the pair
(X2, X1) is not. Although low-dimensional intuition may raise concerns regarding the con-
vex separability of binary-labeled data, we will soon see in Fact 1 and Theorem 15 that
convex separability typically holds in high dimensions. We now show that convexly sepa-
rable datasets possess the property that they may always be perfectly fit by input-convex
classifiers.

Proposition 17. For any nonempty closed convex set X ⊆ Rd, there exists f ∈ FId such
that X = f−1({2}) = {x ∈ Rd : f(x) = 2}. In particular, this shows that if (X1, X2) is a
convexly separable pair of subsets of Rd, then there exists f ∈ FId such that f(x) = 1 for all
x ∈ X1 and f(x) = 2 for all x ∈ X2.

Proof. Let X ⊆ Rd be a nonempty closed convex set. By Lemma 9, there exists a convex
function g : Rd → R such that X = {x ∈ Rd : g(x) ≤ 0}. Define f : Rd → {1, 2} by f(x) = 1
if g(x) > 0 and f(x) = 2 if g(x) ≤ 0. Clearly, it holds that f ∈ FId. Furthermore, for all
x ∈ X it holds that g(x) ≤ 0, implying that f(x) = 2 for all x ∈ X. Conversely, if x ∈ Rd is
such that f(x) = 2, then g(x) ≤ 0, implying that x ∈ X. Hence, X = {x ∈ Rd : f(x) = 2}.

If (X1, X2) is a convexly separable pair of subsets of Rd, then there exists a nonempty
closed convex set X ⊆ Rd such that X2 ⊆ X and X1 ⊆ Rd \ X, and therefore there exists
f ∈ FId such that X2 ⊆ X = f−1({2}) and X1 ⊆ Rd \X = f−1({1}), implying that indeed
f(x) = 1 for all x ∈ X1 and f(x) = 2 for all x ∈ X2.

We also show that the converse of Proposition 17 holds: the geometry of the decision
regions of classifiers in FId consists of a convex set and its complement.

Proposition 18. Let f ∈ FId. The decision region under f associated to class 2, namely
X := f−1({2}) = {x ∈ Rd : f(x) = 2}, is a closed convex set.

Proof. For all x ∈ Rd, it holds that f(x) = 2 if and only if g(x) ≤ 0. Since f ∈ FId, g is
convex, and hence, X = {x ∈ Rd : g(x) ≤ 0} is a (nonstrict) sublevel set of a convex function
and is therefore a closed convex set.

Note that this is not necessarily true for our more general feature-convex architectures
with φ ̸= Id. We continue our theoretical analysis of input-convex classifiers by extending
the universal approximation theorem for regressing upon real-valued convex functions (given
in Chen, Shi, and Zhang [34]) to the classification setting. In particular, Theorem 13 below
shows that any input-convex classifier f ∈ FId can be approximated arbitrarily well on any
compact set by ReLU neural networks with nonnegative weights. Here, “arbitrarily well”
means that the set of inputs where the neural network prediction differs from that of f can
be made to have arbitrarily small Lebesgue measure.

Theorem 13. For any f ∈ FId, any compact convex subset X of Rd, and any ϵ > 0, there
exists f̂ ∈ F̂Id such that m({x ∈ X : f̂(x) ̸= f(x)}) < ϵ.
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Proof. Let f ∈ FId and let X be a compact convex subset of Rd. By Lemma 12, there exists
a sequence {f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that ĝn(x) < ĝn+1(x) < g(x) for all x ∈ X and all
n ∈ N and ĝn converges uniformly to g on X as n→∞. Fix this sequence.

For all n ∈ N, define
En = {x ∈ X : f̂n(x) ̸= f(x)},

i.e., the set of points in X for which the classification under f̂n does not agree with that
under f . Since ĝn(x) < g(x) for all x ∈ X and all n ∈ N, we see that

En = {x ∈ X : ĝn(x) > 0 and g(x) ≤ 0} ∪ {x ∈ X : ĝn(x) ≤ 0 and g(x) > 0}
= {x ∈ X : ĝn(x) ≤ 0 and g(x) > 0}.

Since g is a real-valued convex function on Rd, it is continuous [118, Corollary 10.1.1], and
therefore g−1((0,∞)) = {x ∈ Rd : g(x) > 0} is measurable. Similarly, ĝ−1

n ((−∞, 0]) =
{x ∈ Rd : ĝn(x) ≤ 0} is also measurable for all n ∈ N since ĝn is continuous. Furthermore,
X is measurable as it is compact. Therefore, En is measurable for all n ∈ N. Now, since
ĝn(x) < ĝn+1(x) for all x ∈ X and all n ∈ N, it holds that En+1 ⊆ En for all n ∈ N. It is
clear that to prove the result, it suffices to show that limn→∞m(En) = 0. Therefore, if we
show that m

(⋂
n∈NEn

)
= 0, then the fact that m(E1) ≤ m(X) <∞ together with Lebesgue

measure’s continuity from above yields that limn→∞m(En) = 0, thereby proving the result.
It remains to be shown that m

(⋂
n∈NEn

)
= 0. To this end, suppose for the sake of

contradiction that
⋂

n∈NEn ̸= ∅. Then there exists x ∈ ⋂n∈NEn, meaning that g(x) > 0 and
ĝn(x) ≤ 0 for all n ∈ N. Thus, for this x ∈ X, we find that lim supn→∞ ĝn(x) ≤ 0 < g(x),
which contradicts the fact that ĝn uniformly converges to g on X. Therefore, it must be that⋂

n∈NEn = ∅, and thus m
(⋂

n∈NEn

)
= 0, which concludes the proof.

An extension of the proof of Theorem 13 combined with Proposition 17 yields that input-
convex ReLU neural networks can perfectly fit convexly separable sampled datasets.

Theorem 14. If (X1, X2) is a convexly separable pair of finite subsets of Rd, then there
exists f̂ ∈ F̂Id such that f̂(x) = 1 for all x ∈ X1 and f̂(x) = 2 for all x ∈ X2.

Proof. Throughout this proof, we denote the complement of a set Y ⊆ Rd by Y c = Rd \ Y .
Suppose that X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 = {y(1), . . . , y(N)} ⊆ Rd are such that

(X1, X2) is convexly separable. Then, by definition of convex separability, there exists a
nonempty closed convex set X ′ ⊆ Rd such that X2 ⊆ X ′ and X1 ⊆ Rd \ X ′. Let X =
X ′ ∩ conv(X2). Since X2 ⊆ X ′ and both sets X ′ and conv(X2) are convex, the set X is
nonempty and convex. By finiteness of X2, the set conv(X2) is compact, and therefore by
closedness of X ′, the set X is compact and hence closed.

By Proposition 17, there exists f ∈ FId such that f−1({2}) = X. Since conv(X1 ∪X2) is
compact and convex, Lemma 12 gives that there exists a sequence {f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id

such that ĝn(x) < ĝn+1(x) < g(x) for all x ∈ conv(X1 ∪X2) and all n ∈ N and ĝn converges
uniformly to g on conv(X1 ∪X2) as n→∞. Fix this sequence.
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Let x ∈ X2. Then, since X2 ⊆ X ′ and X2 ⊆ conv(X2), it holds that x ∈ X ′∩conv(X2) =
X = f−1({2}), implying that f(x) = 2 and hence g(x) ≤ 0. Since ĝn(x) < g(x) for all
n ∈ N, this shows that f̂n(x) = 2 for all n ∈ N. On the other hand, let i ∈ {1, . . . ,M}
and consider x = x(i) ∈ X1. Since X1 ⊆ Rd \ X ′ = Rd ∩ (X ′)c ⊆ Rd ∩ (X ′ ∩ conv(X2))

c =
Rd ∩Xc = Rd ∩ f−1({1}), it holds that f(x) = 1 and thus g(x) > 0. Suppose for the sake
of contradiction that f̂n(x) = 2 for all n ∈ N. Then ĝn(x) ≤ 0 for all n ∈ N. Therefore, for
this x ∈ X1, we find that lim supn→∞ ĝn(x) ≤ 0 < g(x), which contradicts the fact that ĝn
uniformly converges to g on conv(X1 ∪X2). Therefore, it must be that there exists ni ∈ N
such that f̂ni

(x) = 1, and thus ĝni
(x) > 0. Since ĝn(x) < ĝn+1(x) for all n ∈ N, this implies

that ĝn(x) > 0 for all n ≥ ni. Hence, f̂n(x) = f̂n(x
(i)) = 1 for all n ≥ ni.

Let n⋆ be the maximum of all such ni, i.e., n
⋆ = max{ni : i ∈ {1, . . . ,M}}. Then the

above analysis shows that f̂n⋆(x) = 2 for all x ∈ X2 and that f̂n⋆(x) = 1 for all x ∈ X1.
Since f̂n⋆ ∈ F̂Id, the claim has been proven.

Theorem 13 and Theorem 14, being specialized to models with ReLU activation functions,
theoretically justify the particular parameterization in Definition 11 for learning feature-
convex classifiers to fit convexly separable data.

Empirical Convex Separability

Interestingly, we find empirically that high-dimensional image training data is convexly sep-
arable. We illustrate this in Appendix 5.D by attempting to reconstruct a CIFAR-10 cat
image from a convex combination of the dogs and vice versa; the error is significantly positive
for every sample in the training dataset, and image reconstruction is visually poor. This
fact, combined with Theorem 14, immediately yields the following result.

Fact 1. There exists f̂ ∈ F̂Id such that f̂ achieves perfect training accuracy for the unaug-
mented CIFAR-10 cats-versus-dogs dataset.

The gap between this theoretical guarantee and our practical performance is large; with-
out the feature map, our CIFAR-10 cats-dogs classifier achieves just 73.4% training accuracy
(Table 5.4). While high training accuracy does not necessarily imply strong test set perfor-
mance, Fact 1 demonstrates that the typical deep learning paradigm of overfitting to the
training dataset is theoretically attainable [105]. We thus posit that there is substantial
room for improvement in the design and optimization of input-convex classifiers. We leave
the challenge of overfitting to the CIFAR-10 cats-dogs training data with an input-convex
classifier as an open research problem for the field.

Open Problem 1. Learn an input-convex ReLU neural network that achieves 100% training
accuracy on the unaugmented CIFAR-10 cats-versus-dogs dataset.
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Convex Separability in High Dimensions

We conclude by investigating why the convex separability property that allows for Fact 1 may
hold for natural image datasets. We argue that dimensionality facilitates this phenomenon
by showing that data is easily separated by some f ∈ F̂Id when d is sufficiently large. In
particular, although it may seem restrictive to rely on models in F̂Id with convex class
2 decision regions, we show in Theorem 15 below that even uninformative data distributions
that are seemingly difficult to classify may be fit by such models with high probability as
the dimensionality of the data increases.

Theorem 15. Consider M,N ∈ N. Let X1 = {x(1), . . . , x(M)} and X2 = {y(1), . . . , y(N)} be
subsets of Rd with all samples x

(i)
k , y

(j)
l drawn independently and identically from the uniform

probability distribution on [−1, 1]. Then, it holds that

P
(
(X1, X2) is convexly separable

)
≥

1−
(
1− M !N !

(M+N)!

)d
for all d ∈ N,

1 if d ≥M +N.
(5.2)

In particular, F̂Id contains an input-convex ReLU neural network that classifies all x(i) into
class 1 and all y(j) into class 2 almost surely for sufficiently large dimensions d.

Proof. Throughout the proof, we denote the cardinality of a set S by |S|. For the reader’s
convenience, we also recall that, for n ∈ N, the symmetric group Sn consists of all permu-
tations (i.e., bijections) on the set {1, 2, . . . , n}, and that |Sn| = n!. If σ : {1, 2, . . . , n} →
{1, 2, . . . , n} is a permutation in Sn, we denote the restriction of σ to the domain I ⊆
{1, 2, . . . , n} by σ|I : I → {1, 2, . . . , n}, which we recall is defined by σ|I(i) = σ(i) for all
i ∈ I, and is not necessarily a permutation on I in general.

Consider first the case where d ≥M +N . Let b ∈ RM+N be the vector defined by bi = 1
for all i ∈ {1, . . . ,M} and bi = −1 for all i ∈ {M + 1, . . . ,M +N}. Then, since x(i)k , y

(j)
l are

independent uniformly distributed random variables on [−1, 1], it holds that the matrix

x(1)
⊤

...

x(M)⊤

y(1)
⊤

...

y(N)⊤


∈ R(M+N)×d
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has rank M +N almost surely, and therefore the linear system of equations

x(1)
⊤

...

x(M)⊤

y(1)
⊤

...

y(N)⊤


a = b

has a solution a ∈ Rd with probability 1, and we note that from this solution we find that
X2 is a subset of the nonempty closed convex set {x ∈ Rd : a⊤x ≤ 0} and that X1 is a subset
of its complement. Hence, (X1, X2) is convexly separable with probability 1 in this case.

Now let us consider the general case: d ∈ N and in general it may be the case that
d < M +N . For notational convenience, let P be the probability of interest:

P = P
(
(X1, X2) is convexly separable

)
.

Suppose that there exists a coordinate k ∈ {1, 2, . . . , d} such that x
(i)
k < y

(j)
k for all pairs

(i, j) ∈ {1, 2, . . . ,M} × {1, 2, . . . , N} and that

a := min{y(1)k , . . . , y
(N)
k } < max{y(1)k , . . . , y

(N)
k } =: b.

Then, let X = {x ∈ Rd : xk ∈ [a, b]}. That is, X is the extrusion of the convex hull of the

projections {y(1)k , . . . , y
(N)
k } along all remaining coordinates. The set X is a nonempty closed

convex set, and it is clear by our supposition that X2 ⊆ X and X1 ⊆ Rd \X. Therefore, the
supposition implies that (X1, X2) is convexly separable, and thus

P ≥ P
(
there exists k ∈ {1, 2, . . . , d} such that x

(i)
k < y

(j)
k for all pairs (i, j)

and that min{y(1)k , . . . , y
(N)
k } < max{y(1)k , . . . , y

(N)
k }

)
= 1− P

(
for all k ∈ {1, 2, . . . , d}, it holds that x(i)k ≥ y

(j)
k for some pair (i, j)

or that min{y(1)k , . . . , y
(N)
k } = max{y(1)k , . . . , y

(N)
k }

)
= 1−

d∏
k=1

P
(
x
(i)
k ≥ y

(j)
k for some pair (i, j) or min{y(1)k , . . . , y

(N)
k } = max{y(1)k , . . . , y

(N)
k }

)
,

where the final equality follows from the independence of the coordinates of the samples.



CHAPTER 5. FEATURE-CONVEX NEURAL NETWORKS 137

Since min{y(1)k , . . . , y
(N)
k } < max{y(1)k , . . . , y

(N)
k } almost surely, we find that

P ≥ 1−
d∏

k=1

(
P(x(i)k ≥ y

(j)
k for some pair (i, j))

+ P(min{y(1)k , . . . , y
(N)
k } = max{y(1)k , . . . , y

(N)
k })

)
= 1−

d∏
k=1

P(x(i)k ≥ y
(j)
k for some pair (i, j))

= 1−
d∏

k=1

(
1− P(x(i)k < y

(j)
k for all pairs (i, j))

)
= 1−

d∏
k=1

(
1− P

(
max

i∈{1,2,...,M}
x
(i)
k < min

j∈{1,2,...,N}
y
(j)
k

))

= 1−
d∏

k=1

(
1− P

(
(x

(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈

⋃
σ∈S

Eσ

))
,

(5.3)

where we define S to be the set of permutations on {1, . . . ,M + N} whose restriction to
{1, . . . ,M} is also a permutation;

S =
{
σ ∈ SM+N : σ|{1,...,M} ∈ SM

}
,

and where, for a permutation σ ∈ SM+N , Eσ is the event where an (M + N)-vector has
indices ordered according to σ;

Eσ = {z ∈ RM+N : zσ(1) < · · · < zσ(M+N)}.

We note that the final equality in (5.3) relies on the fact that P(x(i)k = x
(i′)
k ) = P(y(j)k =

y
(j′)
k ) = 0 for all i′ ̸= i and all j′ ̸= j, which is specific to our uniform distribution at hand.
Now, since Eσ, Eσ′ are disjoint for distinct permutations σ, σ′ ∈ SM+N , the bound (5.3)

gives that

P ≥ 1−
d∏

k=1

(
1−

∑
σ∈S

P((x(1)k , . . . , x
(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ)

)
. (5.4)

Since x
(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k are independent and identically distributed samples, they

define an exchangeable sequence of random variables, implying that

P((x(1)k , . . . , x
(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ) = P(x(1)k < · · · < x

(M)
k < y

(1)
k < · · · < y

(N)
k )

for all permutations σ ∈ SM+N . Since, under the uniform distribution at hand,

(x
(1)
k , . . . , x

(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ
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for some σ ∈ SM+N almost surely, it holds that

1 = P

(x
(1)
k , . . . , x

(M)
k , y

(N)
k , . . . , y

(N)
k ) ∈

⋃
σ∈SM+N

Eσ


=

∑
σ∈SM+N

P((x(1)k , . . . , x
(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ)

= |SM+N |P(x(1)k < · · ·x(M)
k < y

(1)
k < · · · < y

(N)
k ).

This implies that

P((x(1)k , . . . , x
(M)
k , y

(1)
k , . . . , y

(N)
k ) ∈ Eσ) =

1

|SM+N |
=

1

(M +N)!

for all permutations σ ∈ SM+N . Hence, our bound (5.4) becomes

P ≥ 1−
d∏

k=1

(
1− |S|

(M +N)!

)
= 1−

(
1− |S|

(M +N)!

)d

.

Finally, we immediately see that that map Γ: SM × SN → SM+N defined by

Γ(σ, σ′)(i) =

{
σ(i) if i ∈ {1, . . . ,M},
σ′(i−M) +M if i ∈ {M + 1, . . . ,M +N},

is injective and has image S, implying that |S| = |SM × SN | = |SM ||SN | =M !N !. Thus,

P ≥ 1−
(
1− M !N !

(M +N)!

)d

,

which proves (5.2).
The unit probability of F̂Id containing a classifier that classifies all x(i) into class 1 and

all y(j) into class 2 for large d follows immediately from Theorem 14.

Although the uniformly distributed data in Theorem 15 is unrealistic in practice, the
result demonstrates that the class F̂Id of input-convex ReLU neural networks has sufficient
complexity to fit even the most unstructured data in high dimensions. Despite this ability,
researchers have found that current input-convex neural networks tend to not overfit in
practice, yielding small generalization gaps relative to conventional neural networks [126].
Achieving the modern deep learning paradigm of overfitting to the training dataset with
input-convex networks is an exciting open challenge [105].
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5.4 Numerical Simulations

This section compares our feature-convex classifiers against a variety of state-of-the-art base-
lines in the asymmetric setting. Before discussing the results, we briefly describe the datasets,
baselines, and architectures used. For a more in-depth description and hyperparameter de-
tails, see Appendix 5.D.

Datasets

We use four datasets. First, we consider distinguishing between 28 × 28 greyscale MNIST
digits 3 and 8 [84], which are generally more visually similar and challenging to distinguish
than other digit pairs. Next, we consider identifying malware from the “Allaple.A” class in
the Malimg dataset of 512 × 512 bytewise encodings of malware [106]. Next, we consider
distinguishing between shirts and T-shirts in the Fashion-MNIST dataset of 28×28 greyscale
images [154], which tend to be the hardest classes to distinguish [74]. Finally, we consider the
32× 32 RGB CIFAR-10 cat and dog images since they are relatively difficult to distinguish
[61, 90, 113]. The latter two datasets can be considered as our more challenging settings.
All pixel values are normalized into the interval [0, 1].

Baseline Methods

We consider several state-of-the-art randomized and deterministic baselines. For all datasets,
we evaluate the randomized smoothing certificates of Yang et al. [156] for the Gaussian,
Laplacian, and uniform distributions trained with noise augmentation (denoted RS Gaussian,
RS Laplacian, and RS Uniform, respectively), as well as the deterministic bound propagation
framework α, β-CROWN [141], which is scatter plotted since certification is only reported as
a binary answer at a given radius. We also evaluate, when applicable, deterministic certified
methods for each norm ball. These include the splitting-noise ℓ1-certificates from Levine
and Feizi [86] (denoted Splitting), the orthogonality-based ℓ2-certificates from Trockman and
Kolter [134] (denoted Cayley), and the ℓ∞-distance-based ℓ∞-certificates from Zhang et al.
[163] (denoted ℓ∞-Net). The last two deterministic methods are not evaluated on the large-
scale Malimg dataset due to their prohibitive runtime. Furthermore, the ℓ∞-Net was unable
to significantly outperform a random classifier on the CIFAR-10 cats-dogs dataset, and is
therefore only included in the MNIST 3-8 and Fashion-MNIST shirts simulations. Notice
that the three randomized smoothing baselines have fundamentally different predictions and
certificates than the deterministic methods (including ours), namely, the predictions are
random and the certificates hold only with high probability.

Feature-Convex Architecture

Our simple experiments (MNIST 3-8 and Malimg) require no feature map to achieve high
accuracy (φ = Id). The Fashion-MNIST shirts dataset also benefited minimally from the
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feature map inclusion. For the CIFAR-10 cats-dogs task, we let our feature map be the con-
catenation φ(x) = (x−µ, |x−µ|), as motivated by Appendix 5.B, where µ is the channel-wise
dataset mean (e.g., size 3 for an RGB image) broadcasted to the appropriate dimensions. Our
MNIST 3-8 and Malimg architecture then consists of a simple two-hidden-layer input-convex
multilayer perceptron with (n1, n2) = (200, 50) hidden features, ReLU nonlinearities, and
passthrough weights. For the Fashion-MNIST shirts (CIFAR-10 cats-dogs, resp.) dataset,
we use a convex ConvNet architecture consisting of 3 (5, resp.) convolutional, BatchNorm,
and ReLU layers. All models are trained using SGD on the standard binary cross entropy loss
with Jacobian regularization, and clean accuracies are balanced as described in Section 5.1
and Appendix 5.D to ensure a fair comparison of different robustness certificates.

Results and Discussion

Experimental results for ℓ1-norm certification are reported in Figure 5.2, where our feature-
convex classifier radii, denoted by Convex*, are similar or better than all other baselines
across all datasets. Also reported is each method’s clean test accuracy without any at-
tacks, denoted by “clean.” We defer the corresponding plots for ℓ2- and ℓ∞-norm balls to
Appendix 5.D, where our certified radii are not dominant but still comparable to methods
tailored specifically for a particular norm. We accomplish this while maintaining completely
deterministic, closed-form certificates with orders-of-magnitude faster computation time than
competitive baselines.

Table 5.1: Average runtimes (seconds) per input for computing the ℓ1-, ℓ2-, and ℓ∞-robust
radii. ∗ = our method. † = per-property verification time. ‡ = certified radius computed via
binary search.

MNIST 3-8 Malimg Fashion-MNIST shirts CIFAR-10 cats-dogs

Convex∗ 0.00159 0.00295 0.00180 0.00180
RS Gaussian 2.16 111.9 2.41 5.78
RS Laplacian 2.23 114.8 2.51 5.81
RS Uniform 2.18 112.4 2.44 5.80
Splitting 0.597 994.5 0.185 0.774
α, β-CROWN† 6.088 6.138 6.425 9.133
Cayley 0.000505 — 0.0451 0.0441
ℓ∞-Net‡ 0.138 — 0.115 —

For the MNIST 3-8 and Malimg datasets (Figure 5.2a and Figure 5.2b), all methods
achieve high clean test accuracy. Our ℓ1-radii scale exceptionally well with the dimensional-
ity of the input, with two orders of magnitude improvement over smoothing baselines for the
Malimg dataset. The Malimg certificates in particular have an interesting concrete interpre-
tation. As each pixel corresponds to one byte in the original malware file, an ℓ1-certificate
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Figure 5.2: Class 1 certified radii curves for the ℓ1-norm. Note the log-scale on the Malimg
plot.

of radius r provides a robustness certificate for up to r bytes in the file. Namely, even if a
malware designer were to arbitrarily change r malware bytes, they would be unable to fool
our classifier into returning a false negative. We note that this is primarily illustrative and is
unlikely to have an immediate practical impact as small semantic changes (e.g., reordering
unrelated instructions) can induce large ℓp-norm shifts.

While our method produces competitive robustness certificates for ℓ2- and ℓ∞-norms
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(Appendix 5.D), it offers the largest improvement for ℓ1-certificates in the high-dimensional
image spaces considered. This is likely due to the characteristics of the subgradient dual
norm factor in the denominator of Theorem 12. The dual of the ℓ1-norm is the ℓ∞-norm,
which selects the largest magnitude element in the gradient of the output logit with respect
to the input pixels. As the input image scales, it is natural for the classifier to become less
dependent on any one specific pixel, shrinking the denominator in Theorem 12. Conversely,
when certifying for the ℓ∞-norm, one must evaluate the ℓ1-norm of the gradient, which
scales proportionally to the input size. Nevertheless, we find in Appendix 5.D that our ℓ2-
and ℓ∞-radii are generally comparable those of the baselines while maintaining speed and
determinism.

Our feature-convex neural network certificates are almost immediate, requiring just one
forward pass and one backward pass through the network. This certification procedure re-
quires a few milliseconds per sample on our hardware and scales well with network size. This
is substantially faster than the runtime for randomized smoothing, which scales from several
seconds per CIFAR-10 image to minutes for an ImageNet image [35]. The only method
that rivaled our ℓ1-norm certificates was α, β-CROWN; however, such bound propagation
frameworks suffer from exponential computational complexity in network size, and even
for small CIFAR-10 ConvNets typically take on the order of minutes to certify nontrivial
radii. For computational tractability, we therefore used a smaller network in our simulations
(Appendix 5.D). Certification time for all methods is reported in Table 5.1.

Unlike the randomized smoothing baselines, our method is completely deterministic in
both prediction and certification. Randomized prediction poses a particular problem for ran-
domized smoothing certificates: even for a perturbation of a “certified” magnitude, repeated
evaluations at the perturbed point will eventually yield misclassification for any nontrivial
classifier. While the splitting-based certificates of Levine and Feizi [86] are deterministic,
they only certify quantized (not continuous) ℓ1-perturbations, which scale poorly to ℓ2- and
ℓ∞-certificates (Appendix 5.D). Furthermore, the certification runtime grows linearly in the
smoothing noise σ; evaluating the certified radii at σ used for the Malimg experiment takes
several minutes per sample.

Ablation tests examining the impact of Jacobian regularization, the feature map φ, and
data augmentation are included in Appendix 5.D. We also illustrate the certification perfor-
mance of our method across all combinations of MNIST classes in Appendix 5.D.

5.5 Conclusions

This chapter introduces the problem of asymmetric certified robustness, which we show
naturally applies to a number of practical adversarial settings. We define feature-convex
classifiers in this context and theoretically characterize their representation power from geo-
metric, approximation theoretic, and statistical lenses. Closed-form sensitive-class certified
robust radii for the feature-convex architecture are provided for arbitrary ℓp-norms. We find
that our ℓ1-robustness certificates in particular match or outperform those of the current
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state-of-the-art methods, with our ℓ2- and ℓ∞-radii also competitive to methods tailored for
a particular norm. Unlike smoothing and bound propagation baselines, we accomplish this
with a completely deterministic and near-immediate computation scheme. We also show the-
oretically that significant performance improvements should be realizable for natural image
datasets such as CIFAR-10 cats-versus-dogs. Possible directions for future research include
bridging the gap between the theoretical power of feature-convex models and their practical
implementation, as well as exploring more sophisticated choices of the feature map φ.



144

Appendices

5.A Classification Framework Generalization

While outside the scope of this work, we note that there are two natural ways to extend our
approach to a multiclass setting with one sensitive class. Let Y = {1, 2, . . . , c}, with class
1 being the sensitive class for which we aim to generate certificates.

One approach involves a two-step architecture, where a feature-convex classifier first
distinguishes between the sensitive class 1 and all other classes {2, 3, . . . , c} and an arbitrary
second classifier distinguishes between the classes {2, 3, . . . , c}. The first classifier could then
be used to generate class 1 certificates, as described in Section 5.3.

Alternatively, we could define g to map directly to c output logits, with the first logit
convex in the input and the other logits concave in the input. Concavity can be easily
achieved by negating the output of a convex network. Let the ith output logit then be
denoted as gi and consider an input x where the classifier predicts class 1 (i.e., g1(φ(x)) ≥
gi(φ(x)) for all i ∈ {2, 3, . . . , c}); since the difference of a convex and a concave function is
convex, we can generate a certificate for the nonnegativity of each convex decision function
g1 ◦ φ − gi ◦ φ around x. Minimizing these certificates over all i ∈ {2, 3, . . . , c} yields a
robustness certificate for the sensitive class.

Note that g mapping to 2 or more logits, all convex in the input, would not yield any
tractable certificates. This is because the classifier decision function would now be the dif-
ference of two convex functions and have neither convex nor concave structure. We therefore
choose to instantiate our binary classification networks with a single convex output logit for
clarity.

Malimg Multiclass Extension

As a proof-of-concept, we provide a concrete realization of the first scheme above on the
Malimg dataset. Namely, consider the setting where we want to distinguish between “clean”
binaries and 24 classes of malware. A malware designer seeks to maliciously perturb the
bytes in their binary to fool a classifier into falsely predicting that the malware is “clean.”
We therefore consider a cascading architecture where first a feature-convex classifier answers
the “clean or malware” question, and then a subsequent classifier (not necessarily feature-
convex) predicts the particular class of malware in the case that the feature-convex classifier



CHAPTER 5. FEATURE-CONVEX NEURAL NETWORKS 145

assigns a “malware” prediction. Note that, in the initial step, we can either certify the
“clean” binaries or the collection of all 24 malware classes, simply by negating the feature-
convex classifier output logit. We logically choose to certify the malware classes as done
in our simulations of Section 5.4; these certificates provide guarantees against a piece of
malware going undetected.

We use the same feature-convex architecture and training details as described in Ap-
pendix 5.D. For the cascaded malware classifier, we use a ResNet-18 architecture trained
with Adam for 150 epochs with a learning rate of 10−3. The confusion plot for the multiclass
classifier is provided in Figure 5.3, with an overall accuracy of 96.5%. With the exception of
few challenging classes to distinguish, the classifier achieves reasonable performance despite
the unbalanced class sizes.

Clean 2 4 6 8 10 12 14 16 18 20 22 24

Predicted label

Clean

2

4

6

8

10

12

14

16

18

20

22

24

T
ru

e
la

b
el

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: The row-normalized confusion plot for the Malimg multiclass classifier. The
overall accuracy of the composite classifier is 96.5%. The various malware classes (1-24)
are circumscribed with a black rectangle. These are certified against the class of “clean”
binaries. See Section 5.4 for more details on the mock clean binaries.

Figure 5.4 visualizes the distribution of certified radii for the four most common malware
classes in the dataset, excluding the “Yuner.A” class which featured duplicated images. Note
that certification performance varies between classes, with high correlation across different
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norms for a particular malware class. Classes which tend to have larger certificates can be
interpreted as clustering further away from the clean binaries, requiring larger perturbations
to fool the classifier.
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Figure 5.4: Certified radii distributions for four malware classes in the Malimg dataset.

5.B Feature Map Motivation

This section examines the importance of the feature map φ with a low-dimensional example.
Consider the binary classification setting where one class X2 ⊆ Rd is clustered around
the origin and the other class X1 ⊆ Rd surrounds it in a ring. Here, the pair (X1, X2) is
convexly separable (see Definition 12) as an ℓ2-norm ball decision region coveringX2 is convex
(Figure 5.5a). Note that the reverse pair (X2, X1) is not convexly separable, as there does
not exist a convex set containing X1 but excluding X2. A standard input-convex classifier
with φ = Id would therefore be unable to discriminate between the classes in this direction
(Proposition 18), i.e., we would be able to learn a classifier that generates certificates for
points in X1, but not X2.

The above problem is addressed by choosing the feature map to be the simple concate-
nation φ(x) = (x, |x|) mapping from Rd to Rq = R2d, with associated Lipschitz constants
Lip1(φ) ≤ 2, Lip2(φ) ≤

√
2, and Lip∞(φ) ≤ 1. In this augmented feature space, X1 and X2
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Figure 5.5: Experiments demonstrating the role of the feature map φ = (x, |x|) in R2, with
the output logit shaded. Certified radii from our method are shown as black rings. (a)
Certifying the outer class (dark red points). This is possible using an input-convex classifier
as a convex sublevel set contains the inner class (dark blue points). (b) Certifying the inner
class (dark red points). This would not be possible with φ = Id as there is no convex set
containing the outer class (dark blue points) but excluding the inner. The feature map φ
enables this by permitting convex separability in the higher dimensional space. Note that
although the shaded output logit is not convex in the input, we still generate certificates.

are convexly separable in both directions, as they are each contained in a convex set (specif-
ically, a half-space) whose complement contains the other class. We are now able to learn a
classifier that takes X2 as the sensitive class for which certificates are required (Figure 5.5b).
This parallels the motivation of the support vector machine “kernel trick,” where inputs are
augmented to a higher-dimensional space wherein the data is linearly separable (instead of
convexly separable as in our case).

5.C Supporting Lemmas

We now introduce a preliminary lemma for the results in Section 5.3.

Lemma 9. For any nonempty closed convex set X ⊆ Rd, there exists a convex function
g : Rd → R such that X = g−1((−∞, 0]) = {x ∈ Rd : g(x) ≤ 0}.

Proof. Let X ⊆ Rd be a nonempty closed convex set. We take the distance function g = dX
defined by dX(x) = infy∈X ∥y − x∥2. Since X is closed and y 7→ ∥y − x∥2 is coercive
for all x ∈ Rd, it holds that y 7→ ∥y − x∥2 attains its infimum over X [22, Proposition
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A.8]. Let x(1), x(2) ∈ Rd and let θ ∈ [0, 1]. Then there exist y(1), y(2) ∈ X such that
g(x(1)) = ∥y(1) − x(1)∥2 and g(x(2)) = ∥y(2) − x(2)∥2. Since X is convex, it holds that
θy(1) + (1− θ)y(2) ∈ X, and therefore

g(θx(1) + (1− θ)x(2)) = inf
y∈X
∥y − (θx(1) + (1− θ)x(2))∥2

≤ ∥θy(1) + (1− θ)y(2) − (θx(1) + (1− θ)x(2))∥2
≤ θ∥y(1) − x(1)∥2 + (1− θ)∥y(2) − x(2)∥2
= θg(x(1)) + (1− θ)g(x(2)).

Hence, g = dX is convex. Since X = {x ∈ Rd : infy∈X ∥y − x∥2 = 0} = {x ∈ Rd : dX(x) =
0} = {x ∈ Rd : dX(x) ≤ 0} = {x ∈ Rd : g(x) ≤ 0} by nonnegativity of dX , the lemma
holds.

In order to apply the universal approximation results in Chen, Shi, and Zhang [34], we in-
troduce their parameterization of input-convex ReLU neural networks. Note that it imposes
the additional constraint that the first weight matrix A(1) is element-wise nonnegative.

Definition 13. Define F̃Id to be the class of functions f̃ : Rd → {1, 2} given by f̃(x) =
T (g̃(x)) with g̃ : Rd → R given by

x(1) = ReLU
(
A(1)x+ b(1)

)
,

x(l) = ReLU
(
A(l)x(l−1) + b(l) + C(l)x

)
, l ∈ {2, 3, . . . , L− 1},

g̃(x) = A(L)x(L−1) + b(L) + C(L)x,

for some L ∈ N, L > 1, and some consistently sized matrices A(1), C(1), . . . , A(L), C(L), all of
which have nonnegative elements, and some consistently sized vectors b(1), . . . , b(L).

The following preliminary lemma relates the class F̂Id from Definition 11 to the class F̃Id

above.

Lemma 10. It holds that F̃Id ⊆ F̂Id.

Proof. Let f̃ ∈ F̃Id. Then certainly A(l) ≥ 0 for all l ∈ {2, 3, . . . , L}, so indeed f̃ ∈ F̂Id.
Hence, F̃Id ⊆ F̂Id.

Theorem 1 in Chen, Shi, and Zhang [34] shows that a Lipschitz convex function can be
approximated within an arbitrary tolerance. We now provide a technical lemma adapting
Theorem 1 in Chen, Shi, and Zhang [34] to show that convex functions can be underapprox-
imated within an arbitrary tolerance on a compact convex subset.

Lemma 11. For any convex function g : Rd → R, any compact convex subset X of Rd, and
any ϵ > 0, there exists f̂ ∈ F̂Id such that ĝ(x) < g(x) for all x ∈ X and

sup
x∈X

(g(x)− ĝ(x)) < ϵ.
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Proof. Let g : Rd → R be a convex function, let X be a compact convex subset of Rd, and
let ϵ > 0. Since g − ϵ/2 is a real-valued convex function on Rd (and hence is proper), its
restriction to the closed and bounded set X is Lipschitz continuous [118, Theorem 10.4], and
therefore Lemma 10 together with Theorem 1 in Chen, Shi, and Zhang [34] gives that there
exists f̂ ∈ F̃Id ⊆ F̂Id such that supx∈X |(g(x)− ϵ/2)− ĝ(x)| < ϵ/2. Thus, for all x ∈ X,

g(x)− ĝ(x) =
(
g(x)− ϵ

2

)
− ĝ(x) + ϵ

2

>
(
g(x)− ϵ

2

)
− ĝ(x) + sup

y∈X

∣∣∣(g(y)− ϵ

2

)
− ĝ(y)

∣∣∣
≥
(
g(x)− ϵ

2

)
− ĝ(x) +

∣∣∣(g(x)− ϵ

2

)
− ĝ(x)

∣∣∣
≥ 0.

Furthermore,

sup
x∈X

(g(x)− ĝ(x)) = sup
x∈X
|g(x)− ĝ(x)|

= sup
x∈X

∣∣∣(g(x)− ϵ

2

)
− ĝ(x) + ϵ

2

∣∣∣
≤ sup

x∈X

∣∣∣(g(x)− ϵ

2

)
− ĝ(x)

∣∣∣+ ϵ

2

< ϵ,

which proves the lemma.

We leverage Lemma 11 to construct a uniformly converging sequence of underapproxi-
mating functions.

Lemma 12. For all f ∈ FId and all compact convex subsets X of Rd, there exists a sequence
{f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that ĝn(x) < ĝn+1(x) < g(x) for all x ∈ X and all n ∈ N and
ĝn converges uniformly to g on X as n→∞.

Proof. Let f ∈ FId and let X be a compact convex subset of Rd. Let {ϵn > 0 : n ∈ N} be a
sequence such that ϵn+1 < ϵn for all n ∈ N and ϵn → 0 as n → ∞. Such a sequence clearly
exists, e.g., by taking ϵn = 1/n for all n ∈ N. Now, for all n ∈ N, the function g − ϵn+1 is
convex, and therefore by Lemma 11 there exists f̂n ∈ F̂Id such that ĝn(x) < g(x)− ϵn+1 for
all x ∈ X and supx∈X ((g(x)− ϵn+1)− ĝn(x)) < ϵn − ϵn+1. Fixing such f̂n, ĝn for all n ∈ N,
we see that supx∈X ((g(x)− ϵn+2)− ĝn+1(x)) < ϵn+1 − ϵn+2, which implies that

ĝn+1(x) > g(x)− ϵn+1 > ĝn(x)

for all x ∈ X, which proves the first inequality. The second inequality comes from the fact
that ĝn+1(x) < g(x)− ϵn+2 < g(x) for all x ∈ X. Finally, since g(x)− ĝn(x) > ϵn+1 > 0 for
all x ∈ X and all n ∈ N, we see that

sup
x∈X
|g(x)− ĝn(x)| = sup

x∈X
(g(x)− ĝn(x)) < ϵn → 0 as n→∞,
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which proves that limn→∞ supx∈X |g(x)− ĝn(x)| = 0, so indeed ĝn converges uniformly to g
on X as n→∞.

5.D Additional Experimental Details

CIFAR-10 Cats-versus-Dogs Convex Separability

In order to establish that the cat and dog images in CIFAR-10 are convexly separable, we
experimentally attempt to reconstruct an image from one class using a convex combination
of all images in the other class (without augmentation such as random crops, flips, etc.).
Namely, if x is drawn from one class and y(1), . . . , y(N) represent the entirety of the other
class, we form the following optimization problem:

minimize
α∈RN

∥∥∥x− N∑
j=1

αjy
(j)
∥∥∥
2

subject to α ≥ 0,

N∑
j=1

αj = 1.

The reverse experiment for the other class follows similarly. We solve the optimization using
MOSEK [10], and report the various norms of x−∑N

j=1 αjy
(j) in Figure 5.6. Reconstruction

accuracy is generally very poor, with no reconstruction achieving better than an ℓ1-error of
52. A typical reconstructed image is shown in Figure 5.7.

Yousefzadeh [159] and Balestriero, Pesenti, and LeCun [19] showed a related empirical
result for CIFAR-10, namely, that no test set image can be reconstructed as a convex com-
bination of training set images. However, we remark that their findings do not necessarily
imply that a training set image cannot be reconstructed via other training set images; our
new finding that the CIFAR-10 cats-versus-dogs training set is convexly separable is required
in order to assert Fact 1.

Experimental Setup

We include a detailed exposition of our experimental setup in this section, beginning with
general details on our choice of epochs and batch size. We then discuss baseline methods,
architecture choices for our method, class balancing, and data processing.

Epochs and batch size. Exempting the randomized smoothing baselines, for the MNIST
3-8 and Fashion-MNIST shirts simulations, we use 60 epochs for all methods. This is in-
creased to 150 epochs for the Malimg dataset and CIFAR-10 cats-dogs simulations. The
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Figure 5.6: Reconstructing CIFAR-10 cat and dog images as convex combinations. The
label “Dogs → cat” indicates that a cat image was attempted to be reconstructed as a
convex combination of all 5000 dog images.

batch size is 64 for all datasets besides the 512× 512 Malimg dataset, where it is lowered to
32.

To ensure a fair comparison, the randomized smoothing baseline epochs are scaled larger
than the aforementioned methods according to the noise value specified in the sweeps below.
The final epochs and smoothing noise values used are reported in Table 5.2. Note that as
classifiers are typically more robust to the noise from splitting smoothing, larger values of
σ are used for only this smoothing method in the MNIST 3-8 and Malimg datasets. For
Malimg, we find experimentally that even noise values of up to σ = 100 are tractable for the
splitting method, outside the sweep range considered below. As verification at that σ already
takes several minutes per sample and runtime scales linearly with σ, we do not explore larger
values of σ.

Hardware. All simulations were conducted on a single Ubuntu 20.04 instance with an
Nvidia RTX A6000 GPU. Complete reproduction of the experiments takes approximately
0.08 GPU-years.
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Figure 5.7: Reconstructing a CIFAR-10 cat image (left) from a convex combination of dog
images (right). The reconstruction error norms are 294.57, 6.65, and 0.38 for the ℓ1-, ℓ2-,
and ℓ∞-norms, respectively. These are typical, as indicated by Figure 5.6.

Table 5.2: Randomized smoothing final noise and epoch hyperparameters.

Dataset Laplacian, Uniform, and Gaussian Splitting

MNIST 3-8 (σ, n) = (0.75, 60) (σ, n) = (0.75 · 4, 60 · 4)
Malimg (σ, n) = (3.5 · 4, 150 · 4) (σ, n) = (100, 150 · 4)
Fashion-MNIST shirts (σ, n) = (0.75, 60) (σ, n) = (0.75, 60)
CIFAR-10 cats-dogs (σ, n) = (0.75 · 2, 600 · 2) (σ, n) = (0.75 · 2, 600 · 2)

Datasets

We introduce the various datasets considered in this chapter. MNIST 3-8 and Malimg are
relatively simple classification problems where near-perfect classification accuracy is attain-
able; the Malimg dataset falls in this category despite containing relatively large images. Our
more challenging settings consist of a Fashion-MNIST shirts dataset as well as CIFAR-10
cats-versus-dogs dataset.

For consistency with Zhang et al. [163], we augment the MNIST and Fashion-MNIST
training data with 1-pixel padding and random cropping. The CIFAR-10 dataset is aug-
mented with 3-pixel edge padding, horizontal flips, and random cropping. The Malimg
dataset is augmented with 20-pixel padding and random 512× 512 cropping.

For CIFAR-10, MNIST, and Fashion-MNIST, we use the preselected test sets. For Mal-
img we hold out a random 20% test dataset, although this may not be entirely used during
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testing. The training set is further subdivided by an 80%-20% validation split. For all
simulations, we normalize pixel values into the interval [0, 1], and we use the first 1000 test
samples to evaluate our methods.

MNIST 3-8. For our MNIST binary classification problem, we choose the problem of
distinguishing between 3 and 8 [84]. These were selected as 3 and 8 are generally more
visually similar and challenging to distinguish than other digit pairs. Images are 28 × 28
pixels and greyscale.

Malimg. Our malware classification experiments use greyscale, bytewise encodings of raw
malware binaries Nataraj et al. [106]. Each image pixel corresponds to one byte of data,
in the range of 0–255, and successive bytes are added horizontally from left to right on the
image until wrapping at some predetermined width. We use the extracted malware images
from the seminal dataset Nataraj et al. [106], normalizing pixel values into [0, 1], as well as
padding and cropping images to be 512×512. Note that licensing concerns generally prevent
the distribution of “clean” executable binaries. As this chapter is focused on providing a
general approach to robust classification, in the spirit of reproducibility we instead report
classification results between different kinds of malware. Namely, we distinguish between
malware from the most numerous “Allaple.A” class (2949 samples) and an identically-sized
random subset of all other 24 malware classes. To simulate a scenario where we must provide
robustness against evasive malware, we provide certificates for the latter collection of classes.

Fashion-MNIST shirts. The hardest classes to distinguish in the Fashion-MNIST dataset
are T-shirts vs shirts, which we take as our two classes [74, 154]. Images are 28× 28 pixels
and greyscale.

CIFAR-10 cats-dogs. We take as our two CIFAR-10 classes the cat and dog classes since
they are relatively difficult to distinguish [61, 90, 113]. Other classes (e.g., ships) are typically
easier to classify since large background features (e.g., blue water) are strongly correlated
with the target label. Samples are 32× 32 RGB images.

Baseline Methods

We provide additional details on each of the baseline methods below.

Randomized smoothing. Since the certification runtime of randomized smoothing is
large, especially for the 512×512 pixel Malimg images, we evaluate the randomized smoothing
classifiers over 104 samples and project the certified radius to 105 samples by scaling the
number fed into the Clopper-Pearson confidence interval, as described in Cohen, Rosenfeld,
and Kolter [35]. This allows for a representative and improved certified accuracy curve while
dramatically reducing the method’s runtime. We take an initial guess for the certification
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class with n0 = 100 samples and set the incorrect prediction tolerance parameter α = 0.001.
For CIFAR-10 we use a depth-40 Wide ResNet base classifier, mirroring the choices from
Cohen, Rosenfeld, and Kolter [35] and Yang et al. [156]; for all other datasets we use a
ResNet-18. All networks are trained using SGD with an initial learning rate of 0.1, Nesterov
momentum of 0.9, weight decay of 10−4, and cosine annealing scheduling as described in Yang
et al. [156]. Final smoothing noise values are selected as in Table 5.2, and are determined
from the noise level comparison sweeps below.

Splitting noise. As this method is a deterministic derivative of randomized smoothing,
it avoids the many aforementioned hyperparameter choices. We use the same architectures
described above for the other randomized smoothing simulations.

Cayley convolutions. To maintain consistency, we use a two-hidden-layer multilayer per-
ceptron with (n1, n2) = (200, 50) hidden features, CayleyLinear layers, and GroupSort acti-
vations for the MNIST simulation. For the more challenging Fashion-MNIST and CIFAR-10
simulations, we use the ResNet-9 architecture implementation from Trockman and Kolter
[134]. Following the authors’ suggestions, we train these networks using Adam with a learn-
ing rate of 0.001.

ℓ∞-distance nets. As the architecture of the ℓ∞-distance net [163] is substantially dif-
ferent from traditional architectures, we use the authors’ 5-layer MNIST/Fashion-MNIST
architecture and 6-layer CIFAR-10 architecture with 5120 neurons per hidden layer. Unfor-
tunately, the classification accuracy on the CIFAR-10 cats-dogs simulation remained near
50% throughout training. This was not the case when we tested easier classes, such as
planes-versus-cars, where large features (e.g., blue sky) can be used to discriminate. We
therefore only include this model in the MNIST and Fashion-MNIST simulations, and use
the training procedure directly from the aforementioned paper’s codebase.

α, β-CROWN. As α, β-CROWN certification time scales exponentially with the network
size, we keep the certified networks small in order to improve the certification performance
of the baseline. For all datasets, we train and certify a one-hidden-layer network with
200 hidden units and ReLU activations. All networks are adversarially trained for a ℓ∞-
perturbation radius starting at 0.001 and linearly scaling to the desired ϵ over the first 20
epochs, as described in Kayed, Anter, and Mohamed [74], which trained the models used in
Wang et al. [141]. The desired final ϵ is set to 0.3 for MNIST, 0.1 for Fashion-MNIST and
Malimg, and 2/255 for CIFAR-10. The adversarial training uses a standard PGD attack
with 50 steps and step size 2ϵ/50. Other optimizer training details are identical to Wang
et al. [141]. The branch-and-bound timeout is set to 30 seconds to maintain comparability
to other methods, and robustness is evaluated over a dataset-dependent range of discrete
radii for each adversarial norm.
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Feature-Convex Architecture and Training

In this section, we provide more details of the feature-convex architectures used in our
numerical simulations of Section 5.4. For the more challenging datasets (Fashion-MNIST
shirts and CIFAR-10 cats-dogs), we use various instantiations of a convex ConvNet (described
below) where successive layers have a constant number of channels and image size. This
allows for the addition of identity residual connections to each convolution and lets us remove
the passthrough connections altogether. Convexity is enforced by projecting relevant weights
onto the nonnegative orthant after each epoch and similarly constraining BatchNorm γ
parameters to be positive. We initialize positive weight matrices to be drawn uniformly
from the interval [0, ϵ], where ϵ = 0.003 for linear weights and ϵ = 0.005 for convolutional
weights. Jacobian regularization is also used to improve our certified radii [67].

The convex ConvNet architecture consists of a sequence of convolutional layers, Batch-
Norms, and ReLU nonlinearities. The first convolutional layer is unconstrained, as the
composition of a convex function with an affine function is still convex [3]. All subsequent
convolutions and the final linear readout layer are uniformly initialized from some small
positive weight interval ([0, 0.003] for linear weights, [0, 0.005] for convolutional weights) and
projected to have nonnegative weights after each gradient step. We found this heuristic
initialization choice helps to stabilize network training, as standard Kaiming initialization
assumptions are violated when weights are constrained to be nonnegative instead of normally
distributed with mean zero. More principled weight initialization strategies for this archi-
tecture would form an exciting area of future research. Before any further processing, inputs
into the network are fed into an initial BatchNorm—this enables flexibility with different
feature augmentation maps.

Since the first convolutional layer is permitted negative weights, we generally attain better
performance by enlarging the first convolution kernel size (see Table 5.3). For subsequent
convolutions, we set the stride to 1, the input and output channel counts to the output
channel count from the first convolution, and the padding to half the kernel size, rounded
down. This ensures that the output of each of these deeper convolutions has equivalent
dimension to its input, allowing for an identity residual connection across each convolution.
If Ci(z) is a convolutional operation on a hidden feature z, this corresponds to evaluating
Ci(z)+z instead of just Ci(z). The final part of the classifier applies MaxPool and BatchNorm
layers before a linear readout layer with output dimension 1. See Figure 5.8 for a diagram
depicting an exemplar convex ConvNet instantiation.

For training, we use a standard binary cross entropy loss, optionally augmented with
a Jacobian regularizer on the Frobenius norm of the network Jacobian scaled by λ > 0
[67]. As our certified radii in Theorem 12 vary inversely to the norm of the Jacobian, this
regularization helps boost our certificates at a minimal loss in clean accuracy. We choose
λ = 0.0075 for CIFAR-10, λ = 0.075 for Malimg and λ = 0.01 for MNIST and Fashion-
MNIST. Further ablation tests studying the impact of regularization are reported below.
All feature-convex networks are trained using SGD with a learning rate of 0.001, momentum
0.9, and exponential learning rate decay with γ = 0.99.
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Figure 5.8: An example convex ConvNet of depth 4 with a C1 stride of 2, pool size of 4,
and 32 × 32 RGB images. There are 6 input channels from the output of the feature map
φ : x 7→ (x− µ, |x− µ|).

Table 5.3: Convex ConvNet architecture parameters. C1 denotes the first convolution, with
C2,... denoting all subsequent convolutions. The “Features” column denotes the number of
output features of C1, which is held fixed across C2,.... The “Pool” column refers to the
size of the final MaxPool window before the linear readout layer. The MNIST and Malimg
architectures are simple multilayer perceptrons and are therefore not listed here.

Dataset Features Depth C1 size C1 stride C1 dilation C2,... size Pool

Fashion-MNIST 4 3 5 1 1 3 1
CIFAR-10 16 5 11 1 1 3 1

Class Accuracy Balancing

As discussed in Section 5.1, a balanced class 1 and class 2 test accuracy is essential for a
fair comparison of different methods. For methods where the output logits can be directly
balanced, this is easily accomplished by computing the ROC curve and choosing the threshold
that minimizes |TPR− (1− FPR)|. This includes both our feature-convex classifiers with
one output logit and the Cayley orthogonalization and ℓ∞-Net architectures with two output
logits.
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Randomized smoothing classifiers are more challenging as the relationship between the
base classifier threshold and the smoothed classifier prediction is indirect. We address this
using a binary search balancing procedure. Namely, on each iteration, the classifier’s predic-
tion routine is executed over the test dataset and the “error” between the class 1 accuracy
and the class 2 accuracy is computed. The sign of the error then provides the binary signal
for whether the threshold should be shifted higher or lower in the standard binary search
implementation. This procedure is continued until the error drops below 1%.

ℓ2- and ℓ∞-Certified Radii

This section reports the counterpart to Figure 5.2 for the ℓ2- and ℓ∞-norms. Across all
simulations, we attain substantial ℓ2- and ℓ∞-radii without relying on computationally ex-
pensive sampling schemes or nondeterminism. Methods that certify to another norm ∥ · ∥p
are converted to ℓq-radii at a factor of 1 if p > q or d1/p−1/q otherwise.

Certified ℓ2-radii are reported in Figure 5.9. Our ℓ2-radii are moderate, generally slightly
smaller than those produced by Gaussian randomized smoothing.

Certified ℓ∞-radii are reported in Figure 5.10. For the MNIST 3-8 simulation, the ℓ∞-
distance nets produce exceptional certified radii. Likewise, the ℓ∞-distance net certificates
are dominant for the Fashion-MNIST dataset, despite achieving slightly inferior clean accu-
racy. We note however that the applicability of ℓ∞-distance nets for sophisticated vision tasks
is uncertain as the method is unable to achieve better-than-random performance for CIFAR-
10 cats-dogs. Our method is comparable to randomized-smoothing and α, β-CROWN in all
ℓ∞ simulations.

Ablation Tests

We conduct a series of ablation tests on the CIFAR-10 cats-dogs dataset, examining the
impact of regularization, feature maps, and data augmentation.

Regularization

Figure 5.11 examines the impact of Jacobian regularization over a range of regularization
scaling factors λ, with λ = 0 corresponding to no regularization. As is typical, we see a
tradeoff between clean accuracy and certified radii. Further increases in λ yield minimal
additional benefit.

Feature Map

In this section, we investigate the importance of the feature map φ. Figure 5.12 compares
our standard feature-convex classifier with φ(x) = (x − µ, |x − µ|) against an equivalent
architecture with φ = Id. Note that the initial layer in the convex ConvNet is a BatchNorm,
so even with φ = Id, features still get normalized before being passed into the convolutional
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Figure 5.9: Class 1 certified radii curves for the ℓ2-norm.

architecture. We perform this experiment across both the standard cats-dogs experiment
(cats are certified) in the main text and the reverse dogs-cats experiment (dogs are certified).

As expected, the clean accuracies for both datasets are lower for φ = Id, while the
certified radii are generally larger due to the Lipschitz scaling factor in Theorem 12. In-
terestingly, while the standard φ produces comparable performance in both experiments,
the identity feature map classifier is more effective in the dogs-cats experiment, achieving
around 7% greater clean accuracy. This reflects the observation that convex separability is
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Figure 5.10: Class 1 certified radii curves for the ℓ∞-norm.

an asymmetric condition and suggests that feature maps can mitigate this concern.

Unaugmented Accuracies

Table 5.4 summarizes the experimental counterpart to the representation power character-
ization in Section 5.3. Namely, Fact 1 proves that there exists an input-convex classifier
(φ = Id) that achieves perfect training accuracy on the CIFAR-10 cats-dogs dataset with no
dataset augmentations (random crops, flips, etc.). Our practical experiments are far from
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Figure 5.11: Impact of the Jacobian regularization parameter λ on CIFAR-10 cats-dogs
classification.

achieving this theoretical guarantee, with just 73.4% accuracy for cats-dogs and 77.2% for
dogs-cats. Improving the practical performance of input-convex classifiers to match their
theoretical capacity is an exciting area of future research.

Table 5.4: CIFAR-10 accuracies with no feature augmentation (φ = Id) and no input aug-
mentation.

Class 1-class 2 data Training accuracy Test accuracy (balanced)

Cats-dogs 73.4% 57.3%
Dogs-cats 77.2% 63.9%

MNIST Classes Sweep

For our comparison experiments, we select a specific challenging MNIST class pair (3 versus
8). For completeness, this section includes certification results for our method over all
combinations of class pairs in MNIST. As this involves training models over 90 combinations,
we lower the number of epochs from 60 to 10, maintaining all other architectural details
described in the experimental setup above.
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Our certified radii naturally scale with the complexity of the classification problem. As
expected, 3 and 8 are among the most challenging digits to distinguish, along with 2-8, 5-8,
4-9, and 7-9. Particularly easy combinations to classify typically include 0 or 1.

The certification performance is remarkably symmetric across the diagonal despite the
asymmetry in our convex architectures. In other words, when classifying between digits i and
j, if a convex classifier exists which generates strong certificates for i, then we can generally
train an asymmetric classifier that generates strong certificates for j. A few exceptions to
this can be seen in Figure 5.13; the most notable are the 1-9 versus 9-1 pairs and the 4-
8 versus 8-4 pairs. A deeper understanding of how class characteristics affect asymmetric
certification is an exciting avenue of future research.

Randomized Smoothing Noise Level Sweeps

In this section, we reproduce the performance randomized smoothing classifiers under differ-
ent noise distributions for a range of noise parameters σ. Namely, we sweep over multiples
of base values of σ reported in the subcaptions of Figure 5.14, Figure 5.15, and Figure 5.16.
The base values of σ were set to σ = 0.75 for the MNIST 3-8, Fashion-MNIST, and CIFAR-
10 cats-dogs simulations. For the higher-resolution Malimg simulation, we increase the base
noise to σ = 3.5, matching the highest noise level examined in Levine and Feizi [86]. The
epochs used for training were similarly scaled by n, starting from the base values provided
in the experimental setup above, with the exception of the CIFAR-10 base epochs being
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Figure 5.13: Plotting the median certified radii for the MNIST feature-convex architecture
over a range of class combinations. The horizontal axis is the class being certified. The
MNIST 3-8 experiment considered throughout therefore corresponds to the cell (3, 8) in
each plot.

increased to 600 epochs.
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Figure 5.14: Randomized smoothing certified radii sweeps for the ℓ1-norm. Line shade
indicates value of the integer noise multiplier n, with n ranging from 1 (darkest line) to 4
(lightest line).
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(c) Fashion-MNIST shirts, σ = 0.75.
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Figure 5.15: Randomized smoothing certified radii sweeps for the ℓ2-norm. Line shade
indicates value of the integer noise multiplier n, with n ranging from 1 (darkest line) to
4 (lightest line). For higher-dimensional inputs (Malimg and CIFAR-10) methods which
certify to a different norm and convert are uncompetitive.
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Figure 5.16: Randomized smoothing certified radii sweeps for the ℓ∞-norm. Line shade
indicates value of the integer noise multiplier n, with n ranging from 1 (darkest line) to 4
(lightest line).
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Chapter 6

Locally Biased Randomized
Smoothing

Randomized smoothing remains one of the state-of-the-art methods for robustification of a
machine learning model with theoretical guarantees. In this chapter, we show that using
uniform and unbiased smoothing measures, as is standard in the randomized smoothing
literature, relies on the underlying assumption that smooth decision boundaries yield good
robustness, which manifests into a robustness-accuracy tradeoff. We generalize the smooth-
ing framework to remove this assumption and learn a locally optimal robustification of the
decision boundary based on training data, a method we term locally biased randomized
smoothing. We prove nontrivial closed-form certified robust radii for the resulting model,
avoiding Monte Carlo certifications as used by other smoothing methods. Numerical simu-
lations on synthetic, MNIST, and CIFAR-10 data show a notable increase in the certified
radii and accuracy over conventional smoothing.

This chapter is based on the following previously published work:

[8] Brendon G. Anderson and Somayeh Sojoudi, “Certified robustness via locally biased
randomized smoothing,” Learning for Dynamics and Control (L4DC), 2022.

Related papers:

[16] Yatong Bai, Brendon G. Anderson, Aerin Kim, and Somayeh Sojoudi, “Improving the
accuracy-robustness trade-off of classifiers via adaptive smoothing,” SIAM Journal on Math-
ematics of Data Science, 2024.

[17] Yatong Bai, Brendon G. Anderson, and Somayeh Sojoudi, “Mixing classifiers to alleviate
the accuracy-robustness trade-off,” Learning for Dynamics and Control (L4DC), 2024.

[112] Samuel Pfrommer, Brendon G. Anderson, and Somayeh Sojoudi, “Projected random-
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ized smoothing for certified adversarial robustness,” Transactions on Machine Learning Re-
search, 2023.

[7] Brendon G. Anderson, Samuel Pfrommer, and Somayeh Sojoudi, “Towards optimal ran-
domized smoothing: A semi-infinite linear programming approach,” ICML Workshop on
Formal Verification of Machine Learning (WFVML), 2022.

6.1 Introduction

Randomized smoothing, popularized by Lecuyer et al. [85], Li et al. [88], and Cohen, Rosen-
feld, and Kolter [35], is commonly accepted as one of the state-of-the-art methods for ro-
bustifying large-scale models with rigorous robustness guarantees. Instead of relying on the
model’s baseline prediction, randomized smoothing assigns the most probable prediction
when considering random perturbations of the input. Intuitively, this ensemble approach
averages out any outlier inputs that may have drastically changed the prediction, such as
adversarially attacked inputs. By using specific probability distributions, e.g., normal or
Laplacian, researchers have proven the non-existence of adversarial inputs within balls cor-
responding to some norm or metric, e.g., ℓ2- or ℓ1-norm, or Wasserstein metrics [35, 131,
87].

Despite the popularity of randomized smoothing, the method still presents a handful of
limitations and open questions, many of which have only recently been considered or remain
under investigation. For example, Salman et al. [121] blends randomized smoothing with
adversarial training to significantly improve the resulting model’s certified robustness. The
paper Yang et al. [156] determines the geometry of optimal smoothing distributions for ℓ1-, ℓ2-
, and ℓ∞-norm bounded attacks. Contrarily, Zhang et al. [164] considers optimizing the base
classifier to maximize the robust radius for a fixed distribution. The work Dvijotham et al.
[44] develops a measure-theoretic approach for robustness certification of models smoothed
using arbitrary distributions. Many negative results have also been shown, e.g., Mohapatra
et al. [100] shows that smoothed classifiers suffer from a “shrinking phenomenon”: decision
regions shrink and eventually vanish as the variance of the smoothing distribution increases.
Many works have also identified a robustness-accuracy tradeoff in relation to the smoothness
of models [135, 79, 158, 60], a limitation we discuss in Section 6.2 and address in our
proposed approach. Finally, some recent works have considered more general formulations
of randomized smoothing in an attempt to increase certified radii—we discuss these works
in-depth in Section 6.2.

Randomized smoothing is usually considered in a static classification setting, and this is
the setting we study. Nonetheless, such works are actively being incorporated into dynamic
settings with more general outputs, e.g., smoothing of neural network policies in reinforce-
ment learning [81, 150]. Consequently, the results of this chapter may be of interest in more
general dynamic learning problems than the static classification setting that we present.
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Contributions

We show that standard randomized smoothing methods possess the informal assumption
that making models smoother is a good surrogate for making them more robust. This
manifests into a robustness-accuracy tradeoff, and we show that to eradicate the assumption
it is necessary to generalize to biased and input-dependent distributions. Accordingly, we
propose locally biased randomized smoothing, which uses training data to directly learn model
robustification without relying on the assumption that smoothness yields robustness. For
the binary classification setting, we obtain a closed-form smoothed model with closed-form
certified radii for arbitrary norms, overcoming the Monte Carlo estimations used by most
current methods. Our numerical simulations demonstrate an increased accuracy both on
clean and adversarially attacked data, as well as increased certified radii.

Outline

In Section 6.2, we review the mathematical foundations of randomized smoothing, the lim-
itations of the method, and discuss recent works that attempt to generalize past some of
these limitations. In Section 6.3, we develop our smoothing scheme, entitled locally biased
randomized smoothing, for binary linear base classifiers, and derive a certified robust ra-
dius. We generalize the method and certified radius to nonlinear classifiers in Section 6.4.
Numerical simulations are presented in Section 6.5 and conclusions are drawn in Section 6.6.

6.2 Randomized Smoothing: Review, Limitations,

and Generalizations

Preliminaries

In this chapter, we denote by P(Rd) the set of probability measures on Rd equipped with the
Borel σ-algebra. If µ ∈ P(Rd) and g : Rd → Rn has µ-integrable components gi : Rd → R,
i ∈ {1, 2, . . . , n}, we define the expectation

Ex∼µg(x) :=

∫
Rd

g(x)dµ(x) =

(∫
Rd

g1(x)dµ(x), . . . ,

∫
Rd

gn(x)dµ(x)

)
.

We assume µ-integrability whenever we write Ex∼µg(x) or
∫
Rd g(x)dµ(x). The normal distri-

bution on Rd with mean x and covariance Σ is denoted byN (x,Σ). The distribution function
of N (0, 1) on R is denoted by Φ, which we recall has a well-defined inverse. The dual norm
of a norm ∥ · ∥ : Rd → [0,∞) is denoted by ∥ · ∥∗, and is given by ∥y∥∗ = sup{x⊤y : ∥x∥ ≤ 1}
for all y ∈ Rd. Throughout, we allow ∥ · ∥ to denote an arbitrary norm, the domain of
which will be clear from context. We let ρ : Rd × Rd → [0,∞) denote the metric defined by
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ρ(x, y) = ∥x − y∥2. For ease of exposition, we assume that all argmax and argmin yield
singleton sets.1

Consider a classifier f : Rd → {1, 2, . . . , n} defined by f(x) ∈ argmaxi∈{1,2,...,n} gi(x),

where g : Rd → Rn. In this chapter, we consider robustifying f using the randomized smooth-
ing framework.

Review of Randomized Smoothing

Instead of assigning the class f(x) to an input x ∈ Rd, randomized smoothing assign the
expected class under f of random perturbations of x. This amounts to choosing a smoothing
measure µ ∈ P(Rd) and replacing f with the smoothed classifier fµ : Rd → {1, 2, . . . , n}
defined by fµ(x) ∈ argmaxi∈{1,2,...,n} g

µ
i (x), with g

µ : Rd → Rn given by gµ(x) = Eϵ∼µg(x+ϵ).
Some works consider directly manipulating the hard classifier f without regard to the

soft classifier g [35, 131]. In contrast, we smooth the soft classifier g before the argmax is
taken, as is done in many other works [121, 162, 87, 82]. Smoothing g, which generalizes
smoothing f [121], takes into account the confidence of the base classifier, whereas hard
smoothing does not [82]. Consequently, we concern ourselves only with soft smoothing.

Intuitively, randomized smoothing flattens jagged regions of the decision boundary, where
adversarial inputs are conjectured to exist [48]. This intuition can be formalized in the frame-
work of convolution. If µ has density ϕ : Rd → [0,∞) (with respect to Lebesgue measure)
that is symmetric (i.e., ϕ(−x) = ϕ(x)), then randomized smoothing is the convolution

gµ(x) =

∫
Rd

ϕ(ϵ)g(x− ϵ)dϵ =: ϕ ∗ g(x).

In general, the convolution gµ = ϕ∗g is smoother than the functions ϕ and g being convolved
[55]. From the control and signal processing perspective, this convolutional representation
shows that randomized smoothing acts as a low-pass filter on g. Upon attenuating the high-
frequency behavior in g via smoothing, the radius of robustness around clean inputs has
been found to increase, with certified robust radii given for special cases of the smoothing
measure µ.

The most popular form of randomized smoothing, introduced in Cohen, Rosenfeld, and
Kolter [35], takes the smoothing measure µ to be that of the normal distribution N (0, σ2I).
We refer to this scheme as normal smoothing. In this case, gµ becomes the Weierstrass
transform of g, which is well known to attenuate high-frequency components in g. Since
evaluating gµ(x) in this case requires computing an integral that has no closed-form formula
in general, implementing normal smoothing typically requires Monte Carlo estimation. The
authors of Cohen, Rosenfeld, and Kolter [35] proved a certified robust ℓ2-radius for normal
smoothing, which must also be estimated via Monte Carlo methods. We recall the result
below in terms of soft classifier smoothing—see Zhai et al. [162] for this generalization.

1This assumption is violated in some cases, e.g., when considering inputs on decision boundaries. In
practice, however, we are not concerned with these pathological cases, as they correspond to sets of zero
Lebesgue measure.



CHAPTER 6. LOCALLY BIASED RANDOMIZED SMOOTHING 170

Theorem 16 ([35, 162]). Assume that g : Rd → [0, 1]n. Let σ2 > 0, and let µ be the
probability measure of the normal distribution N (0, σ2I). Consider a point x ∈ Rd and let
y = fµ(x) ∈ argmaxi∈{1,2,...,n} g

µ
i (x) and y

′ ∈ argmaxi∈{1,2,...,n}\{y} g
µ
i (x). Then f

µ(x+δ) = y

for all δ ∈ Rd such that

∥δ∥2 ≤ rσ(x) :=
σ

2

(
Φ−1(gµy (x))− Φ−1(gµy′(x))

)
.

Limitations of Randomized Smoothing

We remark two important restrictions on the measure µ that are common to most randomized
smoothing methods in the literature: 1) µ is uniform with respect to the input x, and 2) µ
is centered at 0 ∈ Rd. In this section, we formalize these restrictions and show why they
should be relaxed.

We begin with Proposition 19 below, which, as a direct consequence of the uniform
smoothing measure, shows that gµ is necessarily “more constant” than g. This forces clas-
sification to remain constant over larger regions of the input space, but when these regions
become too large, the accuracy of the predictions degrades [79, 158]. The proposition has
an obvious generalization to the case of local Lipschitzness.

Definition 14. Let L ∈ R, and let ∥ · ∥ and ∥ · ∥′ be norms on Rd and Rn, respectively. A
function h : Rd → Rn is called L-Lipschitz in norms (∥ · ∥, ∥ · ∥′) if for all x, x′ ∈ Rd it holds
that ∥h(x)− h(x′)∥′ ≤ L∥x− x′∥.

Proposition 19. If g is L-Lipschitz in norms (∥ · ∥, ∥ · ∥′), then gµ is L-Lipschitz in norms
(∥ · ∥, ∥ · ∥′).

Proof. Suppose that g is L-Lipschitz in norms (∥ · ∥, ∥ · ∥′) and let x, x′ ∈ Rd. Then ∥gµ(x)−
gµ(x′)∥′ ≤

∫
Rd ∥g(x+ ϵ)− g(x′ + ϵ)∥′dµ(ϵ) ≤

∫
Rd L∥x− x′∥dµ(ϵ) = L∥x− x′∥.

We next show that smoothing measures centered at the origin 0 ∈ Rd cannot change
a linear decision boundary, even if they are allowed to depend on the input x (which we
denote by µx). This is true even when doing so would increase robustness with respect
to the data distribution at hand. Thus, unbiased smoothing distributions cannot robustify
linear classifiers.

Definition 15. A measure µ ∈ P(Rd) is called unbiased if Eϵ∼µϵ = 0. The measure µ is
called biased if it is not unbiased.

Proposition 20. Suppose that g is affine, namely g(x) = Ax+b for some A ∈ Rn×d and b ∈
Rn. Consider gµ with input-dependent smoothing measure µx, so that gµ(x) = Eϵ∼µxg(x+ ϵ).
If µx is unbiased for all x ∈ Rd, then fµ = f .

Proof. Suppose that µx is unbiased for all x ∈ Rd. Then gµ(x) = Eϵ∼µx (A(x+ ϵ) + b) =
Ax+ b+ AEϵ∼µxϵ = g(x). Hence, gµ = g, and consequently fµ = f .
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When the smoothing measure is unbiased and uniform with respect to the input, we refer
to the scheme as standard smoothing. Together, the two limitations in Proposition 19 and
Proposition 20 point to a fundamental informal assumption that underlies standard smooth-
ing: making classifiers smoother, as characterized by their Lipschitz constant or the linearity
of their decision boundaries, is a good surrogate for increasing robustness. Although standard
smoothing has been shown to work well in many settings, the assumption that smoothness
yields robustness is fundamentally flawed, since minimizing the Lipschitz constant degrades
accuracy [79, 158]. If the assumption were to hold, then a constant classifier, obtained, e.g.,
by letting σ2 → ∞ in Theorem 16, would be the most robust classifier, which is nonsen-
sical when we take accuracy into account. The work Madry et al. [95] corroborates this
conclusion, arguing that simultaneous accuracy and robustness often requires a complicated
decision boundary. Thus, our goal should be to directly increase robustness with respect to
the data distribution, without resorting to surrogate notions such as smoothness. To do so,
Proposition 19 and Proposition 20 show that we must generalize the smoothing framework
to allow for input-dependent and biased smoothing measures.

Generalizing Randomized Smoothing and Related Works

Henceforth, we consider µ = {µx ∈ P(Rd) : x ∈ Rd} with all µx possibly biased, and define

gµ(x) = Eϵ∼µxg(x+ ϵ). (6.1)

We refer to this scheme as generalized smoothing.
A handful of recent works have considered generalized smoothing (although mostly in

a blind attempt to increase robust radii, not due to recognition of the flawed informal as-
sumption previously discussed). For example, Wang et al. [139] uses normal distributions
N (0, σ2

i I) to maximize ℓ2-robust regions around every training point xi. If a test input x is
not contained in any such certified region, they optimize a new variance σ2(x) to allocate
a certified region around x, which is then used for future classification. Not only is this re-
stricted to ℓ2-adversaries and computationally heavy due to two-stage training, but also the
resulting classifier depends on the order of incoming inputs, introducing new performance
and robustness concerns. The works Alfarra et al. [1] and Eiras et al. [46] take a similar
memory-based approach, with the latter allowing for specific anisotropic certified regions,
and hence also yield order-dependent classifiers that change at test time.

Chen et al. [30] uses µx being the measure associated with N (0, σ2(x)I), where the
variance maximizes the certified ℓ2-radius of normal smoothing; σ2(x) ∈ argmaxσ2>0 rσ(x).
The authors of Súkeńık, Kuvshinov, and Günnemann [128] show that, in addition to suffering
from the curse of dimensionality, the robustness certificate issued by this work is actually
invalid in practice. To see this, consider a fixed input x ∈ Rd and its chosen smoothing
measure µx ∈ P(Rd). This work certifies that, for δ ∈ Rd within a specified robust radius,
x + δ is classified the same as x under the smoothed classifier using µx. However, the
classifier uses the measure µx+δ ̸= µx when classifying x+ δ (since the measure is optimized
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per-input), and therefore, the robustness certificate does not apply to the actual classifier
used at test time. To overcome this, Súkeńık, Kuvshinov, and Günnemann [128] proposes
a specific parameterization of σ2(x) for generalized smoothing with N (0, σ2(x)) that leads
to valid robust ℓ2-radii, but they find that the certified radii do not notably increase over
normal smoothing in practice.

These works showcase the importance and timeliness of generalized smoothing, and high-
light its difficulties in deriving robust radii. In the sequel, we use generalized smoothing to
learn a closed-form manipulation of the decision boundary from data, granting robust radii
for arbitrary norms that are mathematically rigorous and practically valid.

6.3 Robustifying Binary Linear Classifiers

Since standard smoothing is unable to robustify linear classifiers, we start from the basics:
we assume a binary linear setting, with g : Rd → R, g(x) = a⊤x+ b, and f(x) = sign(g(x)).

Optimal Robustification Under the Direction Oracle

Consider a point x ∈ Rd. We start by assuming that we know that the true class of x is
1. Formally, we assume that there exists an oracle function y : Rd → {−1, 1} that gives the
true class of x, and for this point x it holds that y(x) = 1. With this in mind, we remark
that

gµ(x) = Eϵ∼µx(a
⊤(x+ ϵ) + b) = g(x) + a⊤Eϵ∼µxϵ. (6.2)

Since x has true class 1, robustification at x is equivalent to gµ(x) > g(x), so that the
neighborhood around x classified into class 1 increases in size. Hence, our goal amounts to
maximizing a⊤Eϵ∼µxϵ. Without constraints on µx, this optimization would be unbounded.
Therefore, we consider measures with bounded expectation Eϵ∼µxϵ, and we find that an op-
timal µx is one attaining2 a⊤Eϵ∼µxϵ = sup

{
a⊤Eϵ∼νxϵ : ∥Eϵ∼νxϵ∥ ≤ α, νx ∈ P(Rd)

}
= α∥a∥∗.

If, on the other hand, the true class of x is −1, then an optimal µx is one attaining
a⊤Eϵ∼µxϵ = −α∥a∥∗. Therefore, for general x ∈ Rd, we find that the optimal smoothed
classifier is given by

gµ(x) = g(x) + αy(x)∥a∥∗, (6.3)

where y(x) ∈ {−1, 1} is the oracle class assigned to x. We call y the direction oracle, since
its value at x determines which direction to push the decision boundary (either in the a or
−a direction).

Approximating the Direction Oracle

Suppose that we have a subset of training data {(x1, y1), . . . , (xN , yN)} ⊆ Rd × {−1, 1}.
We have the true classes y(xi) = yi for these data points, and therefore the optimal ro-

2This optimization is always attained by an appropriately chosen Dirac measure.
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bustified classification is given by gµ(xi) = g(xi) + αyi∥a∥∗. However, for a general point
x, we do not have access to y(x) (if we did, we would not need to learn anything). Thus,
for x /∈ {x1, x2, . . . , xN}, we propose to approximate y(x) based on the given data. This
approximation of the direction oracle will be denoted by ŷ : Rd → {−1, 1}, and will be used
in place of y in our smoothed classifier (6.3).

It is insightful to note that gµ does not use the oracle value y(x) to directly classify x.
Rather, it is used to encode which direction to push the decision boundary for robustifica-
tion. Thus, a “good” approximation of the direction oracle is one that encodes a “good”
manipulation of the decision boundary to achieve robustification, not necessarily those that
accurately predict the true label. With this insight in mind, we propose the approximate
direction oracle to be the 1-nearest neighbor ŷ(x) = yi⋆(x), where i

⋆ : Rd → {1, 2, . . . , N} is
defined3 by i⋆(x) ∈ argmini∈{1,2,...,N} ρ(x, xi). This choice is natural since robustness is a
local property and most classifiers are continuous. Note that ŷ(xi) recovers yi for the data
xi. In Theorem 17 and Theorem 18, we will see that this approximate direction oracle yields
closed-form certified robust radii. Using other approximate direction oracles could present
an interesting direction for future research (for example, k-nearest neighbors or learning a
neural network to output labels that optimize the induced robustness).

Locally Biased Randomized Smoothing

With our smoothing scheme now finalized, the classifier becomes

gµ(x) = g(x) + αyi⋆(x)∥a∥∗. (6.4)

We remark the two underlying features that distinguish our scheme from standard smoothing:
the direction oracle encodes an informed manipulation of the decision boundary that is
determined locally based on data, and this manipulation optimized for robustness using
biased smoothing measures. For this reason, we term our framework locally biased randomized
smoothing.

In contrast to standard smoothing, gµ may be nonlinear when the data informs us that
nonlinearity is required to increase robustness. We will continue to refer to fµ (and gµ) as the
smoothed classifier, despite the fact that it may be less smooth than the base classifier. Un-
like normal smoothing, our classifier requires no Monte Carlo estimation, since the smoothing
distribution has a closed-form expectation. As α→∞, the classifier fµ converges pointwise
to the 1-nearest neighbor classifier. On the other hand, normal smoothing converges point-
wise to a constant function as σ2 →∞. Thus, we may view both methods as interpolating
between the base classifier, typically optimized for clean accuracy, and a limiting classifier.
With this perspective, a good limiting classifier is one that is optimized for robust accuracy,
and we posit that our data-informed 1-nearest neighbor better serves this purpose than the
constant function. Indeed, it has been shown that 1-nearest neighbor classifiers are accurate

3This is well-defined under our assumption that the argmin yields a singleton set.
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and certifiably robust when the data follows mild separation properties [143], which justifies
our use of the 1-nearest neighbor approximate direction oracle.

The choice of norm ∥ · ∥ and bias level α are left to the user. As will soon be seen in
Theorem 17 and Theorem 18, the certified radii are in terms of ∥ · ∥, so the norm should be
chosen according to the threat model at hand. For example, it is common to use ∥ · ∥∞ : δ 7→
maxi∈{1,2,...,d} |δi| in image classification settings. The effects of the bias level α are explored
experimentally in Section 6.5.

We now provide closed-form certified radii for linear base classifiers.

Theorem 17. Consider x ∈ Rd and fix i = i⋆(x). Then fµ(x + δ) = fµ(x) for all δ ∈ Rd

such that

∥δ∥ < rµlinear(x) := min

{ |gµ(x)|
∥a∥∗

,min

{
ρ(x, xj)

2 − ρ(x, xi)2
2∥xi − xj∥∗

: yj ̸= yi, j ∈ {1, 2, . . . , N}
}}

.

Proof. Let δ ∈ Rd be such that ∥δ∥ < rµlinear(x). Since ∥δ∥ ≤ ρ(x,xj)
2−ρ(x,xi)

2

2∥xi−xj∥∗ for all j ∈
{1, 2, . . . , N} such that yj ̸= yi, it holds that

ρ(x+ δ, xj)
2 − ρ(x+ δ, xi)

2 = (x+ δ − xj)⊤(x+ δ − xj)− (x+ δ − xi)⊤(x+ δ − xi)
= 2(xi − xj)⊤(x+ δ) + ∥xj∥22 − ∥xi∥22
= 2x⊤i x− 2x⊤j x+ ∥xj∥22 − ∥xi∥22 + 2(xi − xj)⊤δ
= (x− xj)⊤(x− xj)− (x− xi)⊤(x− xi) + 2(xi − xj)⊤δ
= ρ(x, xj)

2 − ρ(x, xi)2 + 2(xi − xj)⊤δ
≥ ρ(x, xj)

2 − ρ(x, xi)2 − 2|(xi − xj)⊤δ|
≥ ρ(x, xj)

2 − ρ(x, xi)2 − 2∥xi − xj∥∗∥δ∥
≥ 0

for all such j. Hence, ρ(x+ δ, xi) ≤ ρ(x+ δ, xj) for all j such that yj ̸= yi. Therefore, it must
be that i⋆(x+ δ) ∈ {j ∈ {1, 2, . . . , N} : yj = yi}, and hence yi⋆(x+δ) = yi. Therefore,

gµ(x+ δ) = g(x+ δ) + αyi⋆(x+δ)∥a∥∗
= a⊤(x+ δ) + b+ αyi∥a∥∗
= g(x) + αyi∥a∥∗ + a⊤δ

= gµ(x) + a⊤δ.

This gives that
|gµ(x+ δ)− gµ(x)| = |a⊤δ| ≤ ∥a∥∗∥δ∥ < |gµ(x)|,

where the last inequality follows from the fact that ∥δ∥ < |gµ(x)|
∥a∥∗ . Therefore,

−|gµ(x)| < gµ(x+ δ)− gµ(x) < |gµ(x)|, (6.5)
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so
gµ(x)− |gµ(x)| < gµ(x+ δ) < gµ(x) + |gµ(x)|.

If gµ(x) ≥ 0, then the left-hand inequality gives that 0 = gµ(x)−|gµ(x)| < gµ(x+δ), whereas
if gµ(x) < 0, then the right-hand inequality gives that gµ(x+δ) < gµ(x)+|gµ(x)| = 0. In both
cases, sign(gµ(x+ δ)) = sign(gµ(x)), which proves that fµ(x+ δ) = fµ(x), as desired.

Note that rµlinear(x) ≥ 0 for all x ∈ Rd. Furthermore, the term |gµ(x)|
∥a∥∗ is the distance (in

norm ∥ · ∥) from x to the hyperplane {x′ ∈ Rd : g(x′) + αyi⋆(x)∥a∥∗ = 0} [98], which is the
decision boundary of f offset by αyi⋆(x)∥a∥∗. Thus, when yi⋆(x) = f(x), meaning that the

base classifier and the approximate direction oracle agree at x, we have |gµ(x)|
∥a∥∗ = |g(x)|

∥a∥∗ + α.

Therefore, this term of the certified radius is strictly larger than the robust radius r(x) :=
|g(x)|
∥a∥∗ under f . The term

ρ(x,xj)
2−ρ(x,xi)

2

2∥xi−xj∥∗ with yj ̸= yi quantifies how close x is to a data point

of class different from that assigned by the approximate direction oracle. If x is sufficiently
far from such data points and yi⋆(x) = f(x), then rµlinear(x) = r(x) + α, and as a result the
robust radius increases by α. This need not happen in general. If x is relatively close to a
data point of class yj ̸= yi or if yi⋆(x) ̸= f(x), then rµlinear(x) may be less than r(x). This
is expected, since in these cases the nearby data informs us that x may not belong to class
f(x) predicted by the base classifier. These are the sacrificial points that may move closer
to the resulting decision boundary in the name of robustifying where the data says to. Such
points must exist since it is not possible to robustify everywhere simultaneously.

6.4 Extension to Nonlinear Classifiers

We now extend the approach to binary nonlinear classifiers. Assume that g : Rd → R is
continuously differentiable and possibly nonlinear. For x, ϵ ∈ Rd, the mean value theorem
gives that g(x + ϵ) = g(x) + ∇g(x′)⊤ϵ for some x′ on the line segment between x and
x + ϵ. By continuity of ∇g, we have that limx′→x∇g(x′) = ∇g(x). Therefore, informally,
g(x + ϵ) ≈ g(x) + ∇g(x)⊤ϵ for all ϵ with small norm. Consequently, instead of using the
expectation of g(x+ϵ) to define the smoothed classifier, we propose to use the expectation of
g(x)+∇g(x)⊤ϵ. In doing so, we define gµ by gµ(x) = g(x)+∇g(x)⊤Eϵ∼µxϵ. Unlike the linear
case, gµ(x) may not equal Eϵ∼µxg(x+ϵ). This modification enables us to prove certified radii
while maintaining notable increases in robust accuracy in practice. When the base classifier
is linear, gµ reduces to the prior formulation (6.2).

Performing the same analysis as in the linear case, the smoothed classifier becomes

gµ(x) = g(x) + αyi⋆(x)∥∇g(x)∥∗. (6.6)

We emphasize that (6.6) shows that the convergence of fµ to the 1-nearest neighbor classifier
as α → ∞ is nonlinear and nontrivial. In particular, (6.6) is a data-informed nonlinear
manipulation of the decision boundary. The smoothed classifier (6.6) cannot be justified
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directly without relying on our methodology; gµ is not simply a naive linear interpolation
between g and the 1-nearest neighbor.

Interestingly, when ∥ · ∥ = ∥ · ∥∞, the value gµ(x) approximates the soft classification
(under g) of the adversarial attack xFGSM := x+α sign(∇ℓ(x)) generated by the well-known
fast gradient sign method (FGSM) with loss ℓ(·) = yi⋆(·)g(·) to be maximized [62]. High
values of this loss are actually beneficial with respect to the given data, and therefore an
alternative interpretation of our method is as a preemptive “anti-attack” everywhere in the
input space.

Theorem 18 below generalizes the certified radii of Theorem 17 to nonlinear base clas-
sifiers. The result uses a global Lipschitz constant of the gradient, which is easily modified
to use local constants if desired (e.g., the local Lipschitz constant over a ∥ · ∥-norm ball at
x of radius rµdata(x)). In general, local constants give stronger bounds but are difficult to
compute. See related works on estimating and upper-bounding Lipschitz constants, e.g.,
Weng et al. [147] and Fazlyab et al. [51].

Assumption 8. The gradient ∇g : Rd → Rd is L-Lipschitz in norms (∥ · ∥, ∥ · ∥∗) for some
L > 0.

Theorem 18. Suppose that Assumption 8 holds. Consider x ∈ Rd and fix i = i⋆(x). Then
fµ(x+ δ) = fµ(x) for all δ ∈ Rd such that ∥δ∥ < rµ(x) := min {rµbase(x), rµdata(x)}, where

rµbase(x) =

√
(αL+ ∥∇g(x)∥∗)2 + 4L|gµ(x)| − (αL+ ∥∇g(x)∥∗)

2L
,

rµdata(x) = min

{
ρ(x, xj)

2 − ρ(x, xi)2
2∥xi − xj∥∗

: yj ̸= yi, j ∈ {1, 2, . . . , N}
}
.

Proof. Let δ ∈ Rd be such that ∥δ∥ < rµ(x). Since ∥δ∥ ≤ ρ(x,xi)
2−ρ(x,xj)

2

2∥xi−xj∥∗ for all j ∈
{1, 2, . . . , N} such that yj ̸= yi, it holds that

ρ(x+ δ, xj)
2 − ρ(x+ δ, xi)

2 = (x+ δ − xj)⊤(x+ δ − xj)− (x+ δ − xi)⊤(x+ δ − xi)
= 2(xi − xj)⊤(x+ δ) + ∥xj∥22 − ∥xi∥22
= 2x⊤i x− 2x⊤j x+ ∥xj∥22 − ∥xi∥22 + 2(xi − xj)⊤δ
= (x− xj)⊤(x− xj)− (x− xi)⊤(x− xi) + 2(xi − xj)⊤δ
= ρ(x, xj)

2 − ρ(x, xi)2 + 2(xi − xj)⊤δ
≥ ρ(x, xj)

2 − ρ(x, xi)2 − 2|(xi − xj)⊤δ|
≥ ρ(x, xj)

2 − ρ(x, xi)2 − 2∥xi − xj∥∗∥δ∥
≥ 0

for all such j. Hence, ρ(x+ δ, xi) ≤ ρ(x+ δ, xj) for all j such that yj ̸= yi. Therefore, it must
be that i⋆(x+ δ) ∈ {j ∈ {1, 2, . . . , N} : yj = yi}, and hence yi⋆(x+δ) = yi. Therefore,

gµ(x+ δ) = g(x+ δ) + αyi⋆(x+δ)∥∇g(x+ δ)∥∗
= g(x) +∇g(x′)⊤δ + αyi∥∇g(x+ δ)∥∗
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for some x′ on the line segment between x and x+ δ. This gives that

|gµ(x+ δ)− gµ(x)| = |gµ(x+ δ)− g(x)− αyi∥∇g(x)∥∗|
=
∣∣∇g(x′)⊤δ + αyi∥∇g(x+ δ)∥∗ − αyi∥∇g(x)∥∗

∣∣
=
∣∣∣∇g(x)⊤δ + (∇g(x′)−∇g(x))⊤ δ + αyi (∥∇g(x+ δ)∥∗ − ∥∇g(x)∥∗)

∣∣∣
≤
∣∣∇g(x)⊤δ∣∣+ ∣∣∣(∇g(x′)−∇g(x))⊤ δ∣∣∣
+ α |∥∇g(x+ δ)∥∗ − ∥∇g(x)∥∗|

≤ ∥∇g(x)∥∗∥δ∥+ ∥∇g(x′)−∇g(x)∥∗∥δ∥
+ α |∥∇g(x+ δ)∥∗ − ∥∇g(x)∥∗|

≤ ∥∇g(x)∥∗∥δ∥+ L∥x′ − x∥∥δ∥
+ α |∥∇g(x+ δ)∥∗ − ∥∇g(x)∥∗|

≤ ∥∇g(x)∥∗∥δ∥+ L∥δ∥2
+ α |∥∇g(x+ δ)∥∗ − ∥∇g(x)∥∗| .

To bound the last term, note that −∥∇g(x + δ) −∇g(x)∥∗ ≤ ∥∇g(x + δ)∥∗ − ∥∇g(x)∥∗ ≤
∥∇g(x + δ) − ∇g(x)∥∗, so |∥∇g(x+ δ)∥∗ − ∥∇g(x)∥∗| ≤ ∥∇g(x + δ) − ∇g(x)∥∗ ≤ L∥δ∥.
Thus,

|gµ(x+ δ)− gµ(x)| ≤ (αL+ ∥∇g(x)∥∗) ∥δ∥+ L∥δ∥2.
Since ∥δ∥ < rµbase(x), this gives that

|gµ(x+ δ)− gµ(x)| ≤ |gµ(x)|.

The remainder of the proof is identical to that of Theorem 17 from (6.5) onwards.

As in the linear case, the certified radius depends on two terms (rµbase(x) and r
µ
data(x)) that,

informally, characterize the local geometry of the base classifier and quantify the distance
to the nearest data point of a differing class, respectively. Again, rµ(x) ≥ 0. When g is
linear, then ∇g is constant and is therefore 0-Lipschitz. In this case, Theorem 18 holds
for all L > 0, and therefore limL↓0 r

µ
base(x) = |gµ(x)|

∥∇g(x)∥∗ implies that rµ(x) = rµlinear(x), i.e.,
the certified radius recovers that of Theorem 17, despite the proof for the nonlinear case
involving more bounding steps.

6.5 Numerical Simulations

Illustrative Example

Consider the spiral dataset with test data shown in Figure 6.1 and a support vector machine
(SVM) learned on isolated training data. Using the SVM as the base classifier, we apply
locally biased randomized smoothing (with an unused subset of training data) with α ∈
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[0, 10], denoted α-LBRS. The certified radius from Theorem 17 is computed at every test
point using both ∥ · ∥ = ∥ · ∥2 and ∥ · ∥ = ∥ · ∥∞. The averages of these radii are denoted by
ℓ2-avg(r

µ(x)) and ℓ∞-avg(rµ(x)), respectively. We also compute the average true certified
radii, ℓ2- and ℓ∞-avgtrue(r

µ(x)), which are found by setting the certified radius to zero for
test points that are classified incorrectly by fµ. From the decision region plots in Figure 6.1,
we see for α > 0 that α-LBRS learns to increase the nonlinearity of the base classifier in
order to enhance robustness. In contrast, standard smoothing leaves the base SVM classifier
unchanged, failing to increase robustness. The average certified radii, the average true
certified radii, and the clean accuracy all simultaneously increase upon applying α-LBRS
(see Figure 6.2). We see that α-LBRS converges pointswise to the 1-nearest neighbor (1-
NN) as α → ∞, which we recall is a nontrivial consequence of our method. We will see in
the next section that this is beneficial even on larger non-synthetic examples.

Figure 6.1: Test data, SVM decision boundary (bold line), and fµ decision regions (shaded).

Figure 6.2: Average certified radius and clean accuracy for α-LBRS versus α.

Evaluating Clean and Robust Accuracy

The MNIST dataset [84] is considered in a binary setting, where images with digit eight
are labeled 1 and the rest are labeled −1. The training and testing data are randomly
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selected so that the number of data points in class −1 equals the number in class 1. Of
the training data, N = 10 points are reserved for locally biased randomized smoothing.
We train a convolutional neural network (CNN) containing three convolutional layers with
ReLU activations and one fully connected layer. Using the CNN as the base classifier, we
apply normal smoothing [35] with σ ∈ [0, 0.5], denoted σ-NS, and locally biased randomized
smoothing with α ∈ [0, 1000], denoted α-LBRS. We also consider the 1-nearest neighbor
(1-NN) using the N reserved training data points.

The accuracy of each model is computed on the test set as well as on an adversarially
attacked version of the test set using a 10-step ℓ2-PGD attack [95] with attack radius ϵ ∈
{0.5, 1}. The results are shown in Figure 6.3. Although σ-NS achieves good robustification
for small σ, the accuracy rapidly degrades to that of a constant function (0.5 for this binary
problem) as σ increases. On the other hand, α-LBRS converges (nonlinearly and nontrivially)
to the accuracy of the 1-NN as α →∞. The 1-NN is seen to be robust against the attacks
(which may in part be due to the fact that the attacks are designed for the base CNN
classifier—a benefit to the defender from using smoothing at test time), and therefore α-
LBRS inherits this robustness for large enough α.

Figure 6.3: Clean and robust accuracy versus smoothing parameter σ or α.

Next, we fix the parameters σ = 0.05 and α = 10 near the “corners” in Figure 6.3 (recall
that the abscissa was normalized) that yield both good clean accuracy and good robust
accuracy for ϵ ∈ {0.5, 1}. We attack these models with the wider range of ℓ2-radii ϵ ∈ [0, 3]
and find that α-LBRS maintains its resistance to larger attacks for longer than σ-NS does—
the accuracy of σ-NS degrades at a faster rate—see Figure 6.4. We also demonstrate the
generality of our method by considering the same experiment using ∥ · ∥ = ∥ · ∥∞ along
with ℓ∞-PGD attacks. Normal smoothing is not catered towards ℓ∞-attacks, which explains
the performance increase of α-LBRS over σ-NS relative to the CNN for this attack when
compared to the ℓ2-attack.

We repeat the simulations on CIFAR-10 [80] and arrive at the same conclusions, albeit
with generally lower accuracies and higher sensitivities to attacks. See Appendix 6.A for the
quantitative results.
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Figure 6.4: Robust accuracy versus attack radius.

6.6 Conclusions

In this chapter, conventional randomized smoothing is shown to rely on the idea that smooth
decision boundaries are robust, an assumption that manifests into a robustness-accuracy
tradeoff. To combat this limitation, locally biased randomized smoothing is introduced
to learn locally optimal robustification of a classifier’s decision boundary from data. The
method directly induces robustness without relying on the surrogate notion of smoothness.
Certified robust radii are proved for the binary setting, and simulations show an increased
certified, clean, and robust accuracy over conventional smoothing. Possible future direc-
tions include a multiclass extension, studying alternate approximate direction oracles, and
reducing the memory requirement of storing data at test time.
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Appendices

6.A Additional Numerical Simulations

We re-run the simulations of Section 6.5 to evaluate the clean and robust accuracy of our
locally biased randomized smoothing method on the CIFAR-10 dataset [80]. The results are
shown in Figure 6.5 and Figure 6.6 below. All of the conclusions remain the same as in
Section 6.5.

Figure 6.5: Clean and robust accuracy versus smoothing parameter σ or α.

Figure 6.6: Robust accuracy versus attack radius.
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