
A Sequential Greedy Approach for Training Implicit Deep Models

Tanmay Gautam, Brendon G. Anderson, Somayeh Sojoudi, and Laurent El Ghaoui

Abstract— Recent works in deep learning have demonstrated
impressive performance using “implicit deep models,” wherein
conventional architectures composed of forward-propagating,
differentiable parametric layers are replaced by more ex-
pressive models composed of an implicitly defined fixed-point
equation together with a prediction equation. Methods for
training implicit deep models are currently restricted to end-
to-end optimization, which relies on solving a matrix-variable
fixed-point equation to compute the gradient and an expensive
projection step at every iteration. In this work, we extend the
idea of greedy layer-wise training, an approach found to yield
state-of-the-art performance in conventional deep learning, to
a sequential greedy training algorithm for implicit deep models
with a strictly upper block triangular structure. We show that
such implicit models can be regarded as generalized dense block
modules of Dense Convolutional Networks (DenseNets), and
thus inherit the underlying parameter efficiency property. For
models trained with the Euclidean loss, we develop an alter-
nating minimization subroutine for our sequential optimization
algorithm, which consists of alternating between efficiently-
solvable least squares problems and single hidden-layer training
problems. Furthermore, we theoretically prove that training a
non-strictly upper triangular ReLU implicit model is equivalent
to training a strictly upper block triangular one, allowing for
the application of our algorithm to even more general models.
Experiments on smooth and nonsmooth function interpolation,
and on MNIST and Fashion-MNIST classification tasks, show
that our algorithm consistently converges to models that out-
perform state-of-the-art end-to-end implicit learning.

I. INTRODUCTION

Over the past decades, the rise in computing power and
available data has propelled deep learning to the forefront of
machine learning research [1]. Deep learning has also found
many applications in control and decision problems, includ-
ing estimation for power systems, control of autonomous
vehicles, and reinforcement learning for systems with un-
certainty [2]–[4]. Current deep learning models are built
upon the notion of hierarchical architectures, where input
information is processed recursively through several forward-
propagating, differentiable parametric layers [1]. Canonical
examples of this type are standard feed-forward neural
networks (FFNs) and convolutional neural networks (CNNs)
commonly used to perform image classification [5], [6].

Recent work has proposed a new perspective wherein deep
learning models can be analyzed based on implicit prediction
rules [7]. This framework, termed “implicit deep learning,”
is based on a model consisting of a prediction equation and

The authors are with the University of California, Berkeley
and VinUniversity. Emails: {tgautam23, bganderson,
sojoudi}@berkeley.edu, and laurent.eg@vinuni.edu.vn.

This work was supported by grants from ONR and NSF.

a fixed-point equilibrium equation in a state vector x ∈ Rn:

ŷ(u) = Cx+Du, (prediction equation)
x = ϕ(Ax+Bu), (fixed-point equation)

where ϕ : Rn → Rn is a nonlinear activation map, A ∈
Rn×n, B ∈ Rn×p, C ∈ Rq×n, and D ∈ Rq×p are model
parameters, and where u ∈ Rp and ŷ ∈ Rq are respectively
the input and output. The fixed-point equation can be readily
interpreted as a discrete-time linear time-invariant (LTI)
system composed with the nonlinearity ϕ evaluated at the
system’s equilibrium. The prediction equation is equivalent
to the standard output equation seen in LTI systems.

The significance of implicit deep learning lies in its
representational power: [7] illustrates how it encapsulates
most of the current neural network architectures as special
cases, including feed-forward, convolutional, and residual
networks. This framework can be regarded as a more general
model that offers greater capacity to possibly model novel
prediction rules for deep learning that may not necessarily
be tied to any notion of “network” or “layers” [7].

Previously, the training of implicit models has relied on an
end-to-end optimization approach via (stochastic) projected
gradient methods, where the gradient is found by implicitly
differentiating through the fixed-point equation [7]. This end-
to-end approach for dense implicit models suffers from some
notable drawbacks. First, computing the gradient at each
training step is nontrivial, as it requires solving a separate
fixed-point equation in a matrix variable. The gradient step
must be followed by a computationally cumbersome projec-
tion of the matrix variable A to ensure well-posedness [7].
Furthermore, optimizing over all model parameters with a
global objective obscures the interpretability of the model, as
we cannot gain insight into the contribution of each subset of
the parameters. Finally, it is known from conventional deep
learning that end-to-end optimization landscapes are highly
chaotic when training large models [8].

A. Contributions

In this paper, we focus on the efficient training of implicit
models with a strictly upper block triangular structure. We
first motivate imposing this structure by relating strictly
upper block triangular implicit models to generalized dense
block modules that constitute Dense Convolutional Networks
(DenseNets) and in turn highlight some of the strengths of
implicit models with the aforementioned structure via the
advantages of DenseNets. Subsequently, we propose a novel
sequential, greedy, blockwise training algorithm for implicit
deep models with the assumed structure. Unlike end-to-end
training, the approach is interpretable and does not rely on

mailto:tgautam23@berkeley.edu
mailto:bganderson@berkeley.edu
mailto:sojoudi@berkeley.edu
mailto:laurent.eg@vinuni.edu.vn

projection steps or implicit differentiation. We posit that this
decomposition into blockwise training alleviates the chaotic
optimization landscapes that arise when performing end-to-
end training on large implicit models. We experimentally
show that our sequential approach outperforms end-to-end
training, which aligns with prior findings in the conventional
deep learning literature claiming that end-to-end optimization
is susceptible to poor local solutions. Finally, we theoretically
prove that, for ReLU implicit models, the training for more
general, non-strictly upper triangular models (with self-loops
between feature blocks) is equivalent to the special case of
strictly upper block triangular training, a result novel to the
literature.

B. Related Works

a) Implicit Deep Learning: Implicit deep learning is
largely inspired by the concurrent works [7], [9]. In [7],
implicit models are shown to generalize most of the popular
deep learning architectures, sufficient conditions are proven
for the uniqueness of their predictions, and methods to
assess their robustness are proposed. The paper [9] shows
that implicit models are equivalent to infinite-depth feed-
forward networks, and that they provide memory-efficient
state-of-the-art performance for modeling sequential data.
In [10], an alternative instantiation of an implicit layer is
introduced by means of an ordinary differential equation
(ODE). In this framework, termed “neural ODE,” the output
of the implicit layer is the solution to the underyling ODE.
This is shown to be an expressive model class but requires
solving an ordinary differential equation at test-time. Recent
works have extended various aspects of the implicit deep
learning framework, e.g., to model graph-structured data
[11], to multiscale modeling for image classification [12],
and to estimate their Lipschitz constants for the purposes
of robustness analysis [13]. While implicit models have
been studied in a variety of contexts, their current training
procedures rely upon end-to-end optimization approaches.

b) Conventional Deep Learning: Deep CNNs have
recently garnered a great deal of acclaim due to their success
in the ImageNet competition [5], [14]–[16]. The emergence
of deep architectures has moved the spotlight on a new
set of challenges, including the vanishing gradient prob-
lem and parameter redundancy. In particular, architectures
such as Residual Networks (ResNets) [14] and Highway
networks [15] tackle the vanishing gradient problem by
directly passing signals from one layer to the next using
identity connections. This has been shown to improve both
information and gradient flow in said deep networks. More-
over, techniques such as Stochastic Depth used in ResNets,
where layers are randomly dropped during training, have
also demonstrated that deep architectures are often plagued
by parameter redundancy when having many layers [17]. In
[16], the authors introduce the Dense Convolutional Network
(DenseNet) for image classification, which extends the notion
of skip connections used in ResNets and Highway networks
such that all layers are connected directly with their subse-
quent layers. This network is composed of multiple dense

block modules wherein all convolutional layers are linked
in a forward-propagating manner. As a maximal amount
of information is shared between layers in a dense block,
DenseNets are known to have improved gradient propagation
and parameter efficiency [16]. While [7] shows how CNNs
and ResNets can be viewed as special cases of implicit
models, we show that strictly upper triangular models can
be viewed as a generalization of a dense block seen in
DenseNets. This enables us to discuss the benefits of implicit
models in terms of the benefits of DenseNets.

c) Layer-Wise Optimization: The sequential, blockwise
training approach proposed in this work can be seen as
a generalization of layer-wise optimization for traditional
neural networks. The paper [18] introduces greedy layer-wise
training for deep neural networks, wherein the parameters
are optimized per-layer in a sequential manner to pre-train an
initialization of the network, which is then used in end-to-end
optimization. This approach is motivated by the hypothesis
that end-to-end gradient-based optimization is susceptible to
becoming stuck in poor local solutions, whereas an individual
layer’s sub-optimization has a more benign landscape, which
is justified by the authors experimentally. The work [19]
extends the greedy layer-wise approach to convolutional neu-
ral networks, and finds that the learned model outperforms
the state-of-the-art end-to-end training methods on the large-
scale CIFAR-10 and ImageNet datasets.

C. Notations

Throughout this work, we define an implicit model using
parameters A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, and
D ∈ Rq×p with nonlinear activation map ϕ : Rn → Rn. The
element-wise absolute value of A is denoted by |A|. The
Perron-Frobenius eigenvalue of |A|, i.e., the real eigenvalue
larger than the modulus of all other eigenvalues, is denoted
by λPF(|A|). The input matrix with m input vectors u ∈ Rp

is represented by U ∈ Rp×m, and similarly the target
matrix with m output vectors y ∈ Rq is represented by
Y ∈ Rq×m. The notation ⌊α⌋ represents the floor operator
on scalar α. For a vector x ∈ Rn and natural number p, ∥x∥p
denotes the ℓp-norm of x, whereas for a matrix M ∈ Rm×n,
∥M∥F denotes the Frobenius norm and ∥M∥p represents
the ℓp-induced operator norm; ∥M∥p = supx∈Rn\{0}

∥Mx∥p

∥x∥p
.

The rectified linear unit is ReLU(·) = max{0, ·}, where,
for the matrix M, the maximum is taken element-wise. If
M ∈ Rn×n is square, then we write diag(M) to mean the
n-vector (M11,M22, . . . ,Mnn). Finally, U(a, b) denotes the
uniform probability distribution with support [a, b].

II. BACKGROUND

A. Well-posedness of Implicit Models

The state x, characterized by the fixed-point equation, can
be thought to represent the latent features extracted from the
input [7]. In general, however, the fixed-point equation may
not necessarily be well-posed in x—the activation map ϕ
and matrix A must adhere to certain conditions to ensure the
existence of a unique solution x to the fixed-point equation.
Unique solutions to the fixed-point equation are desirable as

this transfers to unique input-to-prediction mappings of the
implicit model. The recent work [7] has introduced rigorous
and numerically tractable conditions under which the fixed-
point equation has a unique solution, which we recall in
this section. In subsequent sections, we will show how such
conditions can be incorporated into the training problem as
constraints to guarantee the well-posedness of the learned
model. We begin with a few definitions.

Definition 1. A matrix A ∈ Rn×n is said to be well-posed
with respect to ϕ if, for all b ∈ Rn, the equation

x = ϕ(Ax+ b) (1)

has a unique solution x ∈ Rn.

We write A ∈ WP(ϕ) to mean that A is well-posed with
respect to ϕ.

Definition 2. A map ϕ : Rn → Rn is called component-wise
non-expansive (CONE) if |ϕi(x)− ϕi(y)| ≤ |xi − yi| for all
x, y ∈ Rn and all i ∈ {1, 2, . . . , n}.

Note that ReLU, leaky ReLU, sigmoid, and tanh acti-
vation maps are all CONE maps. CONE maps allow for
a simple sufficient condition to ensure that the fixed-point
equation is well-posed:

Theorem 1 (Well-Posedness of CONE Maps [7]). Assume
that ϕ is a CONE map. If λPF(|A|) < 1, then A ∈ WP(ϕ)
and the fixed-point iteration x(0) = 0, x(t+1) = ϕ(Ax(t)+
b), t ∈ {0, 1, 2, . . . }, converges to the unique solution of (1).

We remark that the set APF := {A ∈ Rn×n : λPF(|A|) <
1} is not convex, but the inequality λPF(|A|) < ∥A∥∞
implies that A∞ := {A ∈ Rn×n : ∥A∥∞ < 1} is a convex
subset of APF, which is useful for efficiently treating the
constraint A ∈ WP(ϕ) in the training problem. This work
focuses on models where ϕ satisfies the CONE property.

B. Training Problem

We now turn our attention to formalizing the training
problem for the implicit model. Suppose that we are given
an input matrix U =

[
u1 · · · um

]
∈ Rp×m and a target

matrix Y =
[
y1 · · · ym

]
∈ Rq×m. The prediction and

fixed-point equation of the implicit model can then be written
in matrix form as

Ŷ(U) = CX+DU, (2)
X = ϕ(AX+BU), (3)

where Ŷ(U) =
[
ŷ(u1) · · · ŷ(um)

]
∈ Rq×m. The train-

ing problem is then formulated as

min
A,B,C,D,X

L(Y,CX+DU) + P(A,B,C,D)

s. t. X = ϕ(AX+BU), A ∈ WP(ϕ),
(4)

where the loss function L is convex in its second argument,
and P is an optional convex penalty function. As shown in
Theorem 1, when ϕ is a CONE map, it suffices to replace
the constraint A ∈ WP(ϕ) by the nonconvex constraint
λPF(|A|) < 1. For efficient treatment, the nonconvex con-
straint can be relaxed to the convex constraint ∥A∥∞ < 1.

III. STRICTLY BLOCK TRIANGULAR IMPLICIT MODELS

We begin by partitioning an implicit model of order n into
L > 1 uniform parts as n = n1+ · · ·+nL, where ni = ⌊n

L⌋
for i ∈ {1, 2, . . . , L− 1} and nL = n−∑L−1

i=1 ni. We may
write the model matrices in terms of blocks associated with
each part of the partition:

A =

AL,L AL,L−1 · · · AL,1

AL−1,L AL−1,L−1 · · · AL−1,1

...
...

. . .
...

A1,L A1,L−1 · · · A1,1

 , B =

BL

BL−1

...
B1

 ,

C = [CL CL−1 · · · C1] , X =

XL

XL−1

...
X1

 ,

where Ai,j ∈ Rni×nj , Bi ∈ Rni×p, Ci ∈ Rq×ni , and Xi ∈
Rni×m for all i, j ∈ {1, 2, . . . , L}. Next, we impose the
following assumptions on our model.

Assumption 1. The activation map ϕ is a CONE map.

As mentioned earlier, most common activation maps used
in deep learning, e.g., ReLU, are CONE maps, and therefore
Assumption 1 is not restrictive. Moreover, this assumption
allows the use of convex constraints to enforce the desirable
well-posedness guarantee upon the model.

Assumption 2. The prediction equation has no feed-through
from the input; D = 0.

Since feed-forward neural networks with non-polynomial
activation maps, e.g., ReLU maps, are universal function ap-
proximators [20], and implicit models recover feed-forward
neural networks with D = 0 and appropriate choices of
A,B,C, it holds that the implicit model remains a universal
function approximator under Assumption 2.

Assumption 3. The matrix A is strictly upper block trian-
gular, i.e., Ai,j = 0 for all pairs (i, j) with i ≤ j.

Assumption 3 is not restrictive in practice, since an
implicit model with such a matrix A is able to represent
standard network architectures used today, e.g., feed-forward,
convolutional, and residual networks [7]. In fact, feed-
forward networks correspond to setting Ai,j = 0 for all pairs
(i, j) such that j ̸= i+1, and therefore it is easily shown that
our strictly upper block triangular model matrix allows for
precisely (L− 2)n1nL + 1

2 (L− 2)(L− 3)n2
1 more nonzero

parameters than standard feed-forward models of the same
model order n. Furthermore, Assumption 3 is justified from
a computational standpoint, since the condition A ∈ WP(ϕ)
is trivially satisfied as ϕ is a CONE map, allowing us to
remove this constraint from the training problem.

A. Relation to DenseNets

While [7] has already established how implicit models can
encapsulate a significant subset of conventional architectures,
we now highlight the relationship between implicit models
with strictly upper block triangular structure and dense block
modules that constitute DenseNets as conceived in [16].

Figure 1 illustrates a computational graph detailing how
input information is propagated through an implicit model
under Assumptions 1–3. Note that this computational graph
is characterized by a forward-propagating structure with an
exhaustive set of L(L + 1)/2 generalized, weighted skip
connections linking each pair of feature blocks including
the input. Differences to dense blocks, as proposed in [16],
include that implicit models with said structure allow for
arbitrary linear transformations (not only convolutions) be-
tween feature blocks as well as weighted skip connections
throughout the model, including from the input to every
feature block. This shows that strictly upper block triangular
implicit models are a generalization of dense blocks.

As a result of this characterization, implicit models with
an upper block triangular structure directly inherit many of
the benefits observed in DenseNets. Due to the exhaustive
set of connections between each feature block, the consid-
ered implicit models have maximal information flow. As a
consequence, such models are also bound to have a greater
parameter efficiency. Finally, since we connect each feature
block directly to the output, the training procedure for such
models will benefit from improved gradient propagation.

IV. SEQUENTIAL BLOCKWISE TRAINING

Our approach is a greedy, sequential blockwise training
method for strictly upper block triangular implicit models.
The training problem under Assumptions 1-3 reduces to

min
{Ai,j}1≤j<i≤L,

{Bi,Ci,Xi}L
i=1

L(Y,
∑L

j=1 CjXj)

s. t. X1 = ϕ(B1U),

Xi = ϕ(
∑i−1

j=1 Ai,jXj +BiU),

i ∈ {2, . . . , L}.

(5)

With the partition of n into L blocks, we may iteratively
increment the model order of the implicit model by ni and
train each added block individually, while holding previously
optimized fixed-point parameters constant and re-optimizing
the auxiliary parameters. We formalize this approach in Al-
gorithm 1. Due to the strictly upper block triangular structure
assumed upon A, the first subproblem (6) only optimizes
over subblocks of the B, C, and X matrices. The ith

subproblem optimizes over {Ai,j}i−1
j=1, Bi, Xi and auxiliary

blocks {Cj}ij=1. Here feature blocks {Xj}i−1
j=1 are fixed and

obtained as optimizers of the previous subproblems. The
sequence of optimizations in Algorithm 1 occurs only once,
so that the obtained subblocks can be concatenated to form
the model matrices A, B and C. Figure 2 depicts a visual
representation of the optimization sequence.
Remark 1. Our proposed approach can be applied to both
regression and classification tasks. For regression, the convex
loss can be chosen to be the mean-squared error (MSE) loss

L(Y, Ŷ) =
1

2
∥Y − Ŷ∥2F , (8)

while multi-class classification can be accommodated using a
combination of the softmax and negative cross-entropy loss:

L(Y, Ŷ) = log(1⊤ × exp(Ŷ))1− Tr(Y⊤Ŷ). (9)

Algorithm 1 Sequential Greedy Training for Implicit Models
Input: Input U ∈ Rp×m, target Y ∈ Rq×m .
Parameters: Model order n > 1, partition size L > 1.
Design choices: Loss L, activation map ϕ.
Return: A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n.

begin training
1. Partition n = n1 + · · · + nL with ni = ⌊n

L⌋ for i ∈
{1, 2, . . . , L− 1} and nL = n−∑L−1

i=1 ni.
2. Solve optimization

min
B1,C1,X1

L(Y,C1X1) s. t. X1 = ϕ(B1U). (6)

for i ∈ {2, 3, . . . , L} do
3. Solve optimization

min
{Ai,j}i−1

j=1,Bi,

{Cj}i
j=1,Xi

L(Y,
∑i

j=1 CjXj)

s. t. Xi = ϕ(
∑i−1

j=1 Ai,jXj +BiU).

(7)

end for
end training

Remark 2. Each subproblem can be solved using gradient-
based local search heuristics implemented with automatic
differentiation software. Note that the ith subproblem can be
decomposed into a regression upon the target using both a
feedforward component and direct linear (skip) contributions
from the previous feature blocks. As such, this sequential
approach avoids the need for implicit differentiation.

Remark 3. Even though our approach sets up a uniform
partition of the model order n, this partition can be chosen
arbitrarily. The reason the algorithm is initialized with a
uniform partition is that the training complexity is equally
distributed amongst all subproblems.

Remark 4. Inherent to our approach is the restriction of A as
a strictly upper block triangular matrix. This assumption alle-
viates the requirement to project A onto the well-posedness
ball at each iteration of the gradient-based optimization
method. In particular, when considering the convex constraint
∥A∥∞ < 1 sufficient for well-posedness, our method saves
running a bisection method with complexity O(n3) at each
projected gradient update.

Remark 5. Our approach puts less strain on the memory
requirements during the training procedure as compared to
the end-to-end optimization. For the former, the ith subprob-
lem only requires optimizing a subset of ni(

∑i−1
j=1 nj +m+

p)+q
∑i

j=1 nj parameters, whereas the latter optimizes over
n(n+m+p+q) parameters simultaneously. In the case where
we have a large order model and n ≫ ni, each optimization
of the blockwise method needs to update significantly fewer
parameters at a time than in the end-to-end method.

Remark 6. The greedy blockwise approach also lends itself
to an increased interpretability of the implicit model param-

C1

C2

U B1 X1 A2,1 X2 A3,2 · · · AL,L−1 XL CL Y

A4,2 · · ·
...

AL,2

A3,1 · · ·
...

AL,1

B2
...

BL

Fig. 1. Computational graph for an implicit model with a strictly upper block triangular A matrix.

XL

XL−1

...
X2

X1

 = ϕ

0 AL,L−1 · · · AL,2 AL,1

0 0 · · · AL−1,2 AL−1,1

...
...

. . .
...

...
0 0 · · · 0 A2,1

0 0 · · · 0 0

XL

XL−1

...
X2

X1

+

BL

BL−1

...
B2

B1

U

Y =
[
CL CL−1 · · · C2 C1

]

XL

XL−1

...
X2

X1

Fig. 2. Illustration of the proposed sequential blockwise training scheme. Blocks in (light) green are optimized initially, whereas the blocks in (dark) blue
are optimized towards the end of the algorithm. The auxiliary C blocks are re-optimized at every iteration.

eters. Within an end-to-end training approach of a dense
implicit model, we lack insight into how the parameters are
working together to minimize the loss. Our approach directly
supervises the training for each subblock of parameters. In
the first optimization, blocks B1, C1, and X1 attempt to
directly regress upon the target. For the ith optimization,
the additional fixed-point parameters {Ai,j}i−1

j=1, Bi, and
Xi attempt to improve the regression by offering greater
modeling capacity while auxiliary parameters {Cj}ij=1 re-
weight the contribution of each feature block {Xj}ij=1.

A. Alternating Minimization for Implicit Models

While local search presents a valid means to solve the
subproblems of Algorithm 1, we also propose an efficient
alternating minimization heuristic for models trained under
the squared Euclidean loss.

Assumption 4. The training problem uses the squared Eu-
clidean loss (8).

When considering the training problem of implicit models
with Euclidean loss, we can formulate the ith subproblem in
Algorithm 1 as follows:

min
{Ai,j}i−1

j=1,Bi,

{Cj}i
j=1,Xi

∥Y −∑i
j=1 CjXj∥2F

s. t. Xi = ϕ(
∑i−1

j=1 Ai,jXj +BiU).

(10)

Rather than using a local search method to solve (10),
we can leverage an alternating minimization heuristic. This
subroutine is formalized in Algorithm 2. It decomposes each
subproblem into alternating between solving a least squares
problem and a single hidden-layer neural network training
problem, each with global optimality guarantees. Each least
squares problem (11) can be solved to global optimality with
a computational complexity of O

(
(
∑i

j=1 nj)
3
)

, while there
exist guarantees for solving the shallow training problem to
(near) global optimality via local search heuristics [21], [22].

B. Extension to Non-Strict Upper Triangular ReLU Models

In this section, we relax Assumption 3 to allow for A
to be upper triangular, i.e., we now assume that Ai,j = 0
for all pairs (i, j) with i < j and Ai,i is upper triangular
for all i. This new model structure allows for self-loops at
all of the feature blocks Xi (i.e., self-loops at the circular
nodes in Figure 1). In this case, the ith subproblem (7) in the
blockwise sequential approach becomes

min
{Ai,j}i

j=1,Bi,

{Cj}i
j=1,Xi

L(Y,
∑i

j=1 CjXj)

s. t. Xi = ϕ(
∑i

j=1 Ai,jXj +BiU),

−1 < diag(Ai,i) < 1,
(Ai,i)kl = 0 for all k > l,

(13)

for i ∈ {1, 2, . . . , L}, where the constraints −1 <
diag(Ai,i) < 1 are linear constraints ensuring that the

Algorithm 2 Alternating Minimization Subroutine

Input: Features {Xj}i−1
j=1 from first i− 1 subproblems.

Parameters: Number of alternating iterations T .
Return: {Ai,j}i−1

j=1, Bi, Xi, and {Cj}ij=1.

begin subroutine
1. Initialize Xi.
for t ∈ {1, 2, . . . , T} do

2. Solve least squares optimization

min
{Cj}i

j=1

∥Y −
i∑

j=1

CjXj∥2F . (11)

3. Solve single hidden-layer ReLU training problem

min
Ãi,Xi

∥Ỹ −CiXi∥2F

s. t. Xi = ϕ(ÃiŨi),
(12)

with Ỹ = Y −∑i−1
j=1 CjXj ,

Ãi =
[
Ai,i−1 · · · Ai,1 Bi

]
,

and
Ũi =

[
X⊤

i−1 · · · X⊤
1 U⊤]⊤ .

end for
end subroutine

triangular matrix A is well-posed with respect to ϕ, as
guaranteed by Theorem 1. The difficulty in the new problem
(13) is the fact that the constraint on the variable Xi is now
an implicit equality constraint. In general, this requires the
use of implicit differentiation at each step of a gradient-based
optimization algorithm, making each of the subproblems
nontrivial to solve, and eliminating the immediate applicabil-
ity of the alternating subroutine of Algorithm 2. Despite this
challenge, we prove in Theorem 2 that for ReLU models,
the feasible set of (13) is equivalently expressed in terms
of an explicit equality constraint, making the ith subproblem
equivalent to a re-weighted subproblem under our original
strictly upper block triangular assumption. For the sake of
exposition, we assume that nj = 1. The generalization to an
arbitrary nj can be found in our online technical report [23].

Theorem 2. Assume that ϕ = ReLU and nj = 1 for all
j ∈ {1, 2, . . . , L}, and let Xi ∈ R1×m. Then, there exist
{Ai,j}ij=1,Bi, {Cj}ij=1 that together with Xi are feasible
for (13) if and only if there exist γ1, . . . , γi−1, λ1, . . . , λp ∈
R such that Xi = ReLU

(∑i−1
j=1 γjXj +

∑p
k=1 λkUk

)
,

where Uk is the kth row of U.

Proof. Notice that, since nj = 1 for all j, every block of A
is a scalar, so we write Ai,j = aij . Similarly, denote the kth
element of the row vector Bi by bik.

Suppose that {aij}ij=1, Bi, and {Cj}ij=1, together with

Xi, are feasible for (13). Then −1 < aii < 1 and

Xi = ReLU

(i∑
j=1

aijXj +

p∑
k=1

bikUk

)
.

Let l ∈ {1, 2, . . . ,m}. If Xil ̸= 0, then we have that

0 < Xil = ReLU

(i∑
j=1

aijXjl +

p∑
k=1

bikUkl

)

=

i∑
j=1

aijXjl +

p∑
k=1

bikUkl.

Hence, Xil =
∑i−1

j=1
aij

1−aii
Xjl +

∑p
k=1

1
1−aii

bikUkl =

ReLU
(∑i−1

j=1
aij

1−aii
Xjl +

∑p
k=1

1
1−aii

bikUkl

)
. On

the other hand, if Xil = 0, then
∑i

j=1 aijXjl +∑p
k=1 bikUkl =

∑i−1
j=1 aijXjl +

∑p
k=1 bikUkl ≤ 0, so∑i−1

j=1
aij

1−aii
Xjl +

∑p
k=1

bik
1−aii

Ukl ≤ 0, which implies that

again Xil = ReLU
(∑i−1

j=1
aij

1−aii
Xjl +

∑p
k=1

bik
1−aii

Ukl

)
.

Thus, it holds that

Xi = ReLU

(i−1∑
j=1

aij
1− aii

Xj +

p∑
k=1

bik
1− aii

Uk

)
,

which proves the forward direction with γj =
aij

1−aii
and

λk = bik
1−aii

.
Now, suppose there exist γ1, . . . , γi−1, λ1, . . . , λp ∈ R

such that Xi = ReLU
(∑i−1

j=1 γjXj +
∑p

k=1 λkUk

)
. Then,

let ϵ > 0 and define {Ai,j}ij=1 ⊆ R,Bi ∈ R1×p by
Ai,i = aii := 1 − ϵ, Ai,j = (1 − aii)γj for all j ∈
{1, 2, . . . , i − 1}, and (Bi)k = (1 − aii)λk for all k ∈
{1, 2, . . . , p}. Let {Cj}ij=1 ⊆ Rq×1 be arbitrary. Then,
by construction −1 < diag(Ai,i) = aii = 1 − ϵ < 1
and (Ai,i)kl = 0 for all k > l. Reversing the steps of
the forward direction proof also shows that our parameter
choice yields Xi = ReLU

(∑i
j=1 Ai,jXj +BiU

)
. Thus,

{Ai,j}ij=1,Bi, {Cj}ij=1, together with Xi, are feasible for
(13).

Theorem 2 shows that the implicit constraint in the non-
strict training problem (13) may be equivalently replaced by
an explicit constraint, avoiding the need to use implicit differ-
entiation in solving the optimization for non-strict models.

V. EXPERIMENTS

A. Nonlinear Function Interpolation via Regression

We consider the tasks of interpolating real, univariate,
nonlinear, smooth and nonsmooth functions via regression.
As illustrative examples, we consider the smooth function

f1(u) = 5 cos(πu)exp(− 1
2 |u|) (14)

introduced in [7], and the nonsmooth function f2(u) formed
by the product of a sawtooth waveform and a decaying
exponential. The true functions f1(u) and f2(u) are pre-
sented in Figures 3 and 4, respectively. Training datasets
were constructed by drawing 500 samples {(ui, yi)}500i=1 in

an i.i.d. manner where ui ∼ U(−5, 5) and yi ∼ U(fj(ui)−
1, fj(ui)+1) for j ∈ {1, 2}. To mitigate stochasticity within
the interpolation performance of the considered models, the
training datasets were sampled 10 times and the average
model performance is considered for comparison. The test
datasets were formed by evaluating the true functions at
1000 uniformly spaced inputs u ∈ [−5, 5]. As a comparison
benchmark, a feed-forward network (FFN) with architecture
(1-25-25-25-25-1) consisting of 4 hidden layers with 25
hidden units each was trained using the ADAM optimizer
with step size 0.01 until convergence [24]. We measure the
capacity of a model by summing up all of its parameters.
For the considered FF architecture (with univariate inputs),
the capacity is 25+3×252 = 1900 parameters. We compare
the average performance of this FFN with an implicit model
of order n = 30. For end-to-end training, such a dense
model has a capacity of n(n + p + q) = 960 parameters.
The blockwise approach has approximately half the capacity
due to the strictly block upper triangular assumption made
on A. In this experiment, the blockwise training approach
used a partition of L = 10. Local search heuristics for
solving the blockwise subproblems used the same optimizer
configurations as was used for the FFN training, i.e., ADAM
optimizer with a step size of 0.01. Visual illustrations of the
average interpolation performance of the blockwise trained
implicit models on the smooth and nonsmooth functions
are shown in Figures 3 and 4. Tables I and II show the
average test root-mean-square error (RMSE) as well as
average training times (as run on a 2.6 GHz 6-Core CPU)
of the different models on the two considered tasks. The
blockwise trained implicit model significantly outperforms
both the FFN and the end-to-end trained implicit model. The
improved performance over the FFN comes even though the
implicit model has a significantly lower capacity than the
FFN. This empirically corroborates the parameter efficiency
advantage inherent to implicit models. The fact that the
blockwise approach also notably outperforms the end-to-end
optimization suggests that our proposed training method is
better able to exploit the parameter efficiency property. We
also note a marked improvement in training time for the
blockwise approach over the end-to-end optimization. This
is due to the elimination of the well-posedness projections
and fixed-point iterations.

TABLE I
AVERAGE TEST RMSE AND TRAINING TIMES FOR THE CONSIDERED

IMPLICIT AND FF MODELS ON THE SMOOTH INTERPOLATION TASK.

Model Training Time (s) Test RMSE

Implicit (Blockwise, Local Search) 4 0.29
Implicit (End-to-End) 51 1.72
FFN 14 0.42

B. Classification Tasks

We next evaluate our algorithm on classification tasks by
considering the MNIST and the Fashion-MNIST datasets

−4 −2 0 2 4
u

−4

−2

0

2

4

6

f
(u

)

Smooth Function Interpolation

f1(u)

Implicit Model Prediction (Blockwise, Local Search)

Noisy Training Data

Fig. 3. Performance of implicit model trained via the blockwise algorithm
on the smooth function interpolation task.

−4 −2 0 2 4
u

−6

−4

−2

0

2

4

f
(u

)

Nonsmooth Function Interpolation

f2(u)

Implicit Model Prediction (Blockwise, Local Search)

Noisy Training Data

Fig. 4. Performance of implicit model trained via the blockwise algorithm
on the nonsmooth function interpolation task.

[25]. The former considers handwritten digit classification,
whereas the latter focuses on fashion product classification.

For both datasets, the 28 × 28 pixel input images were
reshaped into 784-dimensional input vectors. Moreover, we
chose m = 6 × 104 training samples and 104 test samples.
As a comparison benchmark, a FFN with architecture (784-
64-32-16-10) was trained using the ADAM optimizer with
step size 0.001 for 200 epochs. The capacity of the FF
architecture is 784×64+64×32+32×16+16×10 = 52896
parameters. Our implicit model was initialized with an order
n = 32 and for the case of our blockwise greedy algorithm
we used L = 16 partitions (trained using local search). Each
optimization for the implicit model was carried out for 200
epochs to keep consistency with the FFN baseline. For the
end-to-end optimization the capacity of the dense model is
32×32+32×784+32×10 = 26432. Similarly, with a strictly
upper triangular structure, the capacity of the model used
with blockwise training is approximately 26000 parameters.
Table III shows the test accuracy (%) and training times for

TABLE II
AVERAGE TEST RMSE AND TRAINING TIMES FOR THE CONSIDERED

IMPLICIT AND FF MODELS ON THE NONSMOOTH INTERPOLATION TASK.

Model Training Time (s) Test RMSE

Implicit (Blockwise, Local Search) 5 0.52
Implicit (End-to-End) 44 1.78
FFN 15 0.59

the considered models on both datasets.

TABLE III
TEST ACCURACY AND TRAINING TIMES FOR THE CONSIDERED IMPLICIT

AND FF MODELS ON THE CLASSIFICATION TASKS.

(a) MNIST Classification.

Model Training Time (s) Accuracy (%)

Implicit (Blockwise, Local Search) 819 95.58
Implicit (End-to-End) 1198 65.65
FFN 380 95.27

(b) Fashion-MNIST Classification.

Model Training Time (s) Accuracy (%)

Implicit (Blockwise, Local Search) 791 86.9
Implicit (End-to-End) 1368 58.06
FFN 379 86

The sequential blockwise trained implicit models outper-
form the models trained with end-to-end optimization as
well as the FFN on both datasets. Across both datasets, the
sequential approach yields a significant computational speed
up in the training time over the end-to-end optimization.
Furthermore, as the implicit models were designed with sig-
nificantly less parameters than the FFN, the results highlight
the former’s parameter efficiency which we were again able
to exploit better using the sequential training approach.

VI. CONCLUSION

In this work, we introduce a sequential, greedy algorithm
for training triangular implicit deep models in a blockwise
fashion. We show how the corresponding subproblems can
be decomposed into a subroutine that alternates between
a least squares optimization and an easily solved single
hidden-layer neural network training problem. We theoret-
ically prove that, for the more general non-strictly triangular
ReLU implicit models, the challenging implicit constraints
can be equivalently replaced by more tractable explicit
constraints, allowing for our algorithm to be applied to
such models. Experiments on function interpolation, as well
as MNIST and Fashion-MNIST classification tasks, show
that our algorithm learns models with superior performance,
parameter efficiency and training time as compared to end-
to-end optimization of dense implicit models. This makes the
proposed sequential algorithm a promising new approach for
training implicit deep models.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[2] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-
term residential load forecasting based on LSTM recurrent neural
network,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841–
851, 2017.

[3] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, 2012.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

[7] L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai, “Implicit
deep learning,” SIAM Journal on Mathematics of Data Science, vol. 3,
no. 3, pp. 930–958, 2021.

[8] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing
the loss landscape of neural nets,” Advances in neural information
processing systems, vol. 31, 2018.

[9] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[10] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neu-
ral ordinary differential equations,” Advances in neural information
processing systems, vol. 31, 2018.

[11] F. Gu, H. Chang, W. Zhu, S. Sojoudi, and L. El Ghaoui, “Implicit
graph neural networks,” Advances in Neural Information Processing
Systems, vol. 33, pp. 11 984–11 995, 2020.

[12] S. Bai, V. Koltun, and J. Z. Kolter, “Multiscale deep equilibrium
models,” Advances in Neural Information Processing Systems, vol. 33,
pp. 5238–5250, 2020.

[13] C. Pabbaraju, E. Winston, and J. Z. Kolter, “Estimating Lipschitz
constants of monotone deep equilibrium models,” in International
Conference on Learning Representations, 2020.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[15] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep
networks,” in Advances in Neural Information Processing Systems,
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds.,
vol. 28. Curran Associates, Inc., 2015.

[16] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convo-
lutional networks,” 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2261–2269, 2017.

[17] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in Computer Vision – ECCV 2016,
B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer
International Publishing, 2016, pp. 646–661.

[18] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy
layer-wise training of deep networks,” in Proceedings of the 19th
International Conference on Neural Information Processing Systems,
ser. NIPS’06. Cambridge, MA, USA: MIT Press, 2006, p. 153–160.

[19] E. Belilovsky, M. Eickenberg, and E. Oyallon, “Greedy layerwise
learning can scale to ImageNet,” 2019.

[20] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer
feedforward networks with a nonpolynomial activation function can
approximate any function,” Neural networks, vol. 6, no. 6, pp. 861–
867, 1993.

[21] Y. Tian, “An analytical formula of population gradient for two-layered
ReLU network and its applications in convergence and critical point
analysis,” 2017.

[22] T. Ergen and M. Pilanci, “Convex optimization for shallow neural net-
works,” in 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2019, pp. 79–83.

[23] T. Gautam, B. G. Anderson, S. Sojoudi, and L. El Ghaoui, “A
sequential greedy approach for training implicit deep models,”
Technical report, 2022. [Online]. Available: https://people.eecs.
berkeley.edu/∼tgautam23/publications/ImplicitSequential Preprint.pdf

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2015.

[25] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms,” ArXiv, vol.
abs/1708.07747, 2017.

https://people.eecs.berkeley.edu/~tgautam23/publications/ImplicitSequential_Preprint.pdf
https://people.eecs.berkeley.edu/~tgautam23/publications/ImplicitSequential_Preprint.pdf

	Introduction
	Contributions
	Related Works
	Notations

	Background
	Well-posedness of Implicit Models
	Training Problem

	Strictly Block Triangular Implicit Models
	Relation to DenseNets

	Sequential Blockwise Training
	Alternating Minimization for Implicit Models
	Extension to Non-Strict Upper Triangular ReLU Models

	Experiments
	Nonlinear Function Interpolation via Regression
	Classification Tasks

	Conclusion
	References

