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Abstract

Dissipativity Theory for Evolutionary Games on Infinite Strategy Sets

by

Brendon G. Anderson

Master of Arts in Mathematics

University of California, Berkeley

Professor Alan Hammond, Chair

We consider evolutionary dynamics for population games in which players have a contin-
uum of strategies at their disposal. Models in this setting amount to infinite-dimensional
differential equations evolving on the manifold of probability measures. In this thesis, we
generalize dissipativity theory for evolutionary games from finite to infinite strategy sets that
are compact metric spaces, and derive sufficient conditions for the stability of Nash equilib-
ria under the infinite-dimensional dynamics. The resulting analysis is applicable to a broad
class of evolutionary games, and is modular in the sense that the pertinent conditions on the
dynamics and the game’s payoff structure can be verified independently. By specializing our
theory to the class of monotone games, we recover as special cases existing stability results
for the Brown-von Neumann-Nash and impartial pairwise comparison dynamics. We also
extend our theory to models with dynamic payoffs, further broadening the applicability of
our framework. We illustrate our theory using a variety of case studies, including a novel,
continuous variant of the war of attrition game.
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Chapter 1

Introduction

Population games are models in which a large number of agents interact strategically. Exam-
ples of such models appear ubiquitously in engineering and societal-scale problems, including
traffic congestion networks, decentralized control, and economic markets (Sandholm, 2010).
Within a population game, each agent employs a strategy available to them to maximize
their expected payoff. When the agents are permitted to continuously revise their strategy
according to some protocol, the game gives rise to an evolutionary dynamics model (Smith,
1982a; Sandholm, 2010). Such models have a rich history within the mathematical biology
literature, as reviewed in Hofbauer and Sigmund (1998).

Traditional game-theoretic models are concerned with notions of (Nash) equilibrium
states, in which no player is incentivized to choose a different strategy given knowledge
of the payoffs. However, such notions of equilibria are static and incomplete, in the sense
that they do not capture whether an evolutionary dynamics model dynamically converges
to them when players revise their strategies according to some protocol. Indeed, static equi-
libria, such as Nash equilibria, need not be dynamically stable (Sato et al., 2002; Hart and
Mas-Colell, 2003; Sandholm, 2010). This has led to an entire body of works concerned with
assessing the dynamic stability of evolutionary games. Although many works have proven
stability for specific examples of evolutionary dynamics, researchers maintain the overarching
goal of proving stability for the most general classes of models (Fox and Shamma, 2013).

The aim of this thesis is to prove dynamic stability for a very broad class of evolutionary
dynamics. The broadening of evolutionary stability theory has seen two notable directions:
1) generalizing the structural behavior of the dynamics and the game as much as possible
while maintaining stability, and 2) generalizing prior stability results for specific dynamical
structures to more abstract settings. We now discuss these two approaches in further depth.
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1.1 Related Works

Potentiality, Monotonicity, and Dissipativity

Potential games constitute a class of games in which the payoff is given by the gradient
of a “potential function” (Monderer and Shapley, 1996; Sandholm, 2001). It was shown in
Sandholm (2001) that potential games satisfying the so-called “positive correlation prop-
erty” admit the potential function as a global Lyapunov function, thereby yielding dynamic
stability guarantees. Hofbauer and Sandholm (2007, 2009) introduce monotone games, also
known as stable games,1 which generalize potential games with concave potential functions
to allow for payoffs that act as monotone operators (like gradients of concave functions).
Zero-sum games and games with an interior globally evolutionarily stable state are also
known to be special cases of monotone games (Hofbauer and Sandholm, 2007). Hofbauer
and Sandholm (2007) show that common evolutionary dynamics, such as those of Brown-von
Neumann-Nash and Smith, exhibit dynamic stability when coupled with monotone games.
Hofbauer and Sandholm (2009) extend this result to the case of general dynamics satisfying
an “integrability” condition on their revision protocols.

Generalizing even further past integrability and monotonicity, Fox and Shamma (2013)
apply notions of passivity from the systems and control literature to grant stability. The
authors propose to view an evolutionary game as a nonautonomous dynamical system in
feedback with inputs defined by the game’s payoffs. In doing so, they prove that “δ-passive”
evolutionary dynamics coupled with monotone games yield dynamic stability. The core
intuition is that, if the rate of change of internally stored energy of an evolutionary system
is less than the rate of energy supplied to it by the game’s payoffs, then the closed-loop
system’s total energy decreases. This approach was taken by Mabrok (2021) to analyze the
stability of replicator dynamics, and was further generalized by Arcak and Martins (2021)
to apply to more general “δ-dissipative” dynamics. The dissipativity theory of Arcak and
Martins (2021) constitutes some of the broadest stability results, recovering many of the
aforementioned prior results as special cases. Recent works have applied these broad theories
to particular applications, such as distributed Nash equilibrium seeking (Martinez-Piazuelo
et al., 2023) and the analysis of strategy-dependent pairwise comparison revision protocols
(Kara and Martins, 2023). We emphasize that all of the works mentioned here are restricted
to games defined over a finite number of strategies.

Games over Infinite Strategy Sets

Many practical games come equipped with an infinite number of strategies available to the
players, e.g., pricing and generation in power systems (Park et al., 2001), games of timing such
as the war of attrition (Bishop and Cannings, 1978), plant growth models in biology (Bomze

1We use the terminology “monotone” throughout this thesis, as it more accurately represents these
games’ defining property (5.6), to come later, whereas the terminology “stable” may lead to confusion when
discussing dynamic stability; a stable game need not give rise to stable dynamics.
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and Pötscher, 1989, Section 2.4), and, more recently, in multi-agent reinforcement learning
with continuous action spaces (Mazumdar et al., 2020). Consequently, much effort has gone
into abstracting dynamic stability results from the finite-strategy setting into the infinite
setting. However, in doing so, the distribution of strategies being employed, termed the
“population state,” becomes a probability measure rather than a finite-dimensional vector
in a Euclidean simplex (Myerson, 1991). This makes the analysis much more challenging, as
it requires studying differential equations evolving on the manifold of probability measures
within an infinite-dimensional Banach space.

Alongside this technical hurdle come two other key challenges. First, there are multiple
standard notions of convergence for probability measures on infinite sets, and evolutionary
dynamics may converge in one such notion but fail to converge in another. For example,
Eshel and Sansone (2003) show that the infamous replicator dynamics may exhibit dynamic
instability with respect to the so-called “maximum shift topology” even when they are stable
in the weak topology.2 The second key challenge is that dynamic stability may break when
moving from the finite-strategy regime to the infinite regime. For example, Oechssler and
Riedel (2002) show that even strict Nash equilibria and evolutionarily stable states may
be unstable under the replicator dynamics over infinite strategy sets, even though their
approximations with finitely many strategies are always dynamically stable. Similarly, we
show in Chapter 6 that finite-strategy approximations of the war of attrition are guaranteed
to be dynamically stable via the finite-dimensional dissipativity theory of Arcak and Martins
(2021), despite the fact that the underlying infinite-dimensional game is unstable. Thus,
stability guarantees for evolutionary dynamics over infinite strategy sets are not automatic
from their corresponding finite-dimensional counterparts. This motivates our work in directly
considering the infinite strategy set setting.

A handful of related works have directly analyzed the stability of infinite-dimensional
evolutionary dynamics. Some of the first such work was Bomze (1990, 1991), which con-
sidered replicator dynamics with respect to the strong topology. A line of follow-up works
on the replicator dynamics has emerged, many of which come to the consensus that conver-
gence in the sense of the weak topology is most appropriate for evolutionary dynamics, as
it better respects notions of distance between strategies (Oechssler and Riedel, 2001, 2002;
Cressman, 2005; Cressman and Hofbauer, 2005; Hingu et al., 2018, 2020). These works also
propose alternative notions of equilibria (beyond Nash) to ensure dynamic stability. Beyond
the replicator dynamics, stability (typically of Nash equilibria) with respect to the weak
topology has been assessed for the Brown-von Neumann-Nash, pairwise comparison, logit,
general imitative, and perturbed best response dynamics (Hofbauer et al., 2009; Cheung,
2014; Lahkar and Riedel, 2015; Cheung, 2016; Lahkar et al., 2022). However, despite the
applicability of these results to quite general strategy sets, all of these works are restricted
to specific evolutionary dynamics and are proven in a case-by-case fashion. In comparison,
the approach in this thesis is to keep in the spirit of broadening stability guarantees, and to
derive results for infinite-strategy games applicable to general classes of dissipative dynamics.

2Formal definitions of the weak and strong topologies are given in Chapter 2.
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1.2 Contributions

In this thesis, we unify the two above generalization approaches to achieve the following
primary contributions:

1. We introduce novel notions of dissipativity for evolutionary dynamics over infinite
strategy sets. This extension from the finite to infinite strategy sets requires new
technicalities, since our models are defined on Banach spaces, and the weak topology
in which we seek dynamic convergence is not equivalent to the topology induced by
the total variation norm on our population states, unlike the finite-dimensional Hilbert
space setting in which they are equivalent.

2. In our main result (Theorem 1), we prove a new stability theorem showing that δ-
dissipative evolutionary dynamics on infinite strategy sets weakly converge to Nash
equilibria under decreasing energy supply rates induced by the game’s payoffs and
some technical regularity conditions. Our complete identification of such technical
conditions is nontrivial, as, again, our infinite-dimensional setting breaks down the
topological equivalence between notions of convergence and notions of norm.

3. We specialize our framework to prove a new stability theorem for the class of monotone
games (our Theorem 2), and prove that this specialization recovers the main stability
results of Hofbauer et al. (2009, Theorem 3) and Cheung (2014, Theorem 4) as special
cases (our Corollary 1).

4. We further extend the generality of our stability theory to the case in which the game’s
payoffs exhibit dynamic behavior (Theorem 3).

5. We show that the classical war of attrition game on infinite strategy sets simultaneously
fails to converge to Nash equilibria while its finite-strategy approximations succeed in
convergence to Nash, and we use our theoretical framework to identify the technical
stability conditions being violated. We subsequently propose and verify the stability of
a new “continuous” variant of the war of attrition game, and we illustrate the generality
of our framework on an example of a monotone game with smoothed payoff dynamics.

1.3 Outline

This thesis is organized as follows. In Chapter 2, we introduce our notations and review
relevant mathematical definitions and results. Population games and evolutionary dynamics
are formally introduced in Chapter 3 and Chapter 4, along with associated definitions and
results for both static and dynamic stability. Our primary contributions are given in Chap-
ter 5 and Chapter 6. Namely, in Chapter 5, we present our dissipativity theory for infinite
strategy sets and our stability theorems. In Chapter 6, we provide case studies illustrating
our framework and results. We conclude in Chapter 7. The proofs of our primary results
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(the theorems) are given in the main text. To streamline presentation, all other proofs (the
propositions and corollaries) are deferred to Appendix A. Supplementary definitions, results,
and discussions are given in Appendix B.
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Chapter 2

Mathematical Preliminaries

2.1 Notations and Basic Definitions

The set of nonnegative real numbers is denoted by R+. We define sign: R→ R by sign(x) = 1
for x > 0, sign(x) = 0 for x = 0, and sign(x) = −1 for x < 0. The dual space of a normed
vector space X (i.e., the space of bounded linear functionals on X) is denoted by X∗. Let S
be a compact metric space. The Banach space of bounded continuous real-valued functions
on S endowed with the supremum norm is denoted by (Cb(S), ‖ · ‖∞). Since S is compact,
Cb(S) equals the set of all continuous real-valued functions on S, denoted by C(S). The Borel
σ-algebra on S is denoted by B(S), and the Banach space of finite signed Borel measures
on S endowed with the total variation norm is denoted by (M(S), ‖ · ‖TV). Recall that
‖µ‖TV := |µ|(S) = supf measurable:‖f‖∞≤1

∫
S
fdµ, where |µ| is the total variation measure of µ.

The support of a measure µ ∈M(S) is denoted by supp(µ).
We denote the set of probability measures on (S,B(S)) by P(S) = {µ ∈M+(S) : µ(X) =

1}, whereM+(S) ⊆M(S) is the set of positive Borel measures on S. The tangent space of
P(S) is given by TP(S) = {ν ∈M(S) : ν(S) = 0}, which is a linear subspace ofM(S). The
Dirac measure at s ∈ S is denoted by δs ∈ P(S). We define the bilinear form 〈·, ·〉 : C(S)×
M(S) → R by 〈f, µ〉 =

∫
S
fdµ, which is well-defined and satisfies

∣∣∫
S
fdµ

∣∣ ≤ ‖f‖∞‖µ‖TV

for all f ∈ C(S) and all µ ∈ M(S). Recall that M(S) is isometrically isomorphic to the
dual space of C(S) (Folland, 1999, Theorem 7.17), and therefore every element of M(S)
can be uniquely identified with a bounded linear functional on C(S). Thus, for all bounded
linear functionals I ∈ C(S)∗, there exists a unique µ ∈M(S) such that I(f) = 〈f, µ〉 for all
f ∈ C(S).

2.2 Topologies and Convergence of Measures

Two types of convergence in M(S) will be of use. Recall that a sequence {µn ∈ M(S) :
n ∈ N} converges weakly to µ ∈ M(S) if limn→∞

∫
S
fdµn =

∫
S
fdµ for all f ∈ C(S), and

converges strongly to µ ∈ M(S) if limn→∞ ‖µn − µ‖TV = 0. Recall that strong convergence
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implies weak convergence. Strong and weak convergence induce topologies onM(S), termed
the strong topology and weak topology, respectively.1 We will also need the following product
topology.

Definition 1. ConsiderM(S) endowed with the weak topology and C(S) endowed with its
usual topology induced by ‖ · ‖∞. We call the corresponding product topology on M(S)×
C(S) the weak-∞ topology.

We use the following fact throughout our analyses.

Lemma 1 (Parthasarathy, 1967, Theorem 6.4). It holds that P(S) is weakly compact.

2.3 Notions of Differentiability

We also need various notions of differentiability. Consider Banach spaces (X, ‖·‖X), (Y, ‖·‖Y ),
and (Z, ‖·‖Z), and open sets U ⊆ X and V ⊆ Y . The Fréchet derivative of a map f : U → Y
at x ∈ U , if it exists, is denoted by Df(x). Recall that Df(x) : X → Y is a bounded linear
operator. If f : U × V → Z is a map defined on U × V , its first partial Fréchet derivative at
(x, y) ∈ U ×V , if it exists, is given by ∂1f(x, y) := D(f(·, y))(x). The second partial Fréchet
derivative of such a map f is similarly given by ∂2f(x, y) := D(f(x, ·))(y). Recall that a map
x : [0,∞)→ X is said to be differentiable at t ∈ [0,∞) if there exists ẋ(t) ∈ X such that

lim
ε→0

∥∥∥∥x(t+ ε)− x(t)

ε
− ẋ(t)

∥∥∥∥
X

= 0,

and in this case ẋ(t) is called the derivative of x at t. We call a map µ : [0,∞) → M(S)
strongly differentiable at t if it is differentiable at t, to emphasize the underlying topology
on M(S) induced by ‖ · ‖TV. In Appendix B, these notions of differentiability are defined
more formally and are discussed further.

1The weak topology is sometimes called the “narrow topology.” Since S is compact, the weak topology
coincides with the weak-∗ topology on M(S) = C(S)∗ (i.e., the weakest topology on C(S)∗ making every
element f ∈ C(S) ⊆ C(S)∗∗ a continuous linear functional on C(S)∗). In functional analysis the term “weak
topology” on M(S) would refer to the weakest topology on M(S) making every element of the dual space
M(S)∗ = C(S)∗∗ continuous. We stick with our definitions to remain consistent with related works.
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Chapter 3

Population Games

We now describe the game-theoretic aspects of our problem. The compact set S represents
the (infinite) set of pure strategies of the game, and is hence called the strategy set.1 A
population state is a distribution µ ∈ P(S), which encodes how strategies in S are being
employed across the game’s population. Thus, P(S) is termed the population state space.
To every population state µ ∈ P(S) associates a mean payoff function Fµ ∈ C(S) such that
Fµ(s) quantifies the average payoff to strategy s when the population is at state µ. We refer
to the mapping F : P(S) → C(S) defined by F (µ) = Fµ as the population game, or simply
the game. One of the primary quantities of interest when analyzing population games over
infinite strategy sets is the average mean payoff EF (ν, µ) ∈ R to a population state ν ∈ P(S)
relative to a population state µ ∈ P(S), which is given by

EF (ν, µ) := 〈F (µ), ν〉 =

∫
S

Fµdν.

The average mean payoff gives rise to a simple definition for Nash equilibria of population
games.

Definition 2. A population state µ ∈ P(S) is a Nash equilibrium of the game F : P(S) →
C(S) if

EF (ν, µ) ≤ EF (µ, µ) (3.1)

for all ν ∈ P(S). If, additionally, the inequality (3.1) holds strictly for all ν ∈ P(S) \ {µ},
then µ is a strict Nash equilibrium of the game F . The set of all Nash equilibria of the game
F is denoted by NE(F ).

1The compactness of the strategy set S is standard in the literature on infinite-dimensional evolutionary
games. Although this compactness is a technical condition needed for our use of Lyapunov theory, it is
also an important qualitative requirement in our context of games, as it ensures that evolutionary dynamics
move the population state towards distributions of strategies that are actually available to the players. For
example, compactness avoids cases where there exists a “hidden Nash equilibrium” at a probability measure
with support at strategies on the boundary of S or “at infinity” that are inaccessible by the players.
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Intuitively, a population state µ ∈ P(S) is a Nash equilibrium if the average mean payoff
to the population cannot be increased by moving to any other state ν ∈ P(S) given the
current payoffs defined by Fµ. The notion of a Nash equilibrium is static in the sense that it
does not depend on any dynamical behavior endowed to the game. Other types of relevant
static equilibria are discussed in Appendix B. The following result gives equivalent charac-
terizations of Nash equilibria, which are used throughout our proofs. Such characterizations
are sometimes taken as alternative definitions in the literature, e.g., in Hofbauer et al. (2009);
Cheung (2014), albeit without proof of equivalence.

Proposition 1. Consider a game F : P(S) → C(S), and let µ ∈ P(S). The following are
equivalent:

1. µ is a Nash equilibrium of the game F .

2. EF (δs, µ) ≤ EF (µ, µ) for all s ∈ S.

3. Fµ(s) ≤ Fµ(s′) for all s ∈ S and all s′ ∈ supp(µ).

Proposition 1 shows that at a Nash equilibrium state µ ∈ P(S), every strategy s′ ∈ S that
is in use (meaning that s′ ∈ supp(µ)) must have maximal average payoff Fµ(s′) compared
to all other possible strategies s ∈ S. From the contrapositive viewpoint, this shows that a
strategy s′ ∈ S whose average payoff Fµ(s′) is strictly less than that of some other strategy
will not be employed at a Nash equilibrium state µ.

In general, there may be more than one Nash equilibrium of the game F . Even in this
case, the following result unveils advantageous topological characteristics of NE(F ).

Proposition 2. Consider a game F : P(S) → C(S). If θν : P(S) → R defined by θν(µ) =
EF (ν, µ)− EF (µ, µ) is weakly continuous for all ν ∈ P(S), then NE(F ) is weakly compact.

Together with Proposition 2, the following result shows that NE(F ) is weakly compact
whenever the game F is weakly continuous. This result is of particular technical importance
in our stability proofs of Chapter 5.

Proposition 3. Consider a game F : P(S) → C(S). If F is weakly continuous, then
θν : P(S)→ R defined by θν(µ) = EF (ν, µ)−EF (µ, µ) is weakly continuous for all ν ∈ P(S).

See Proposition 9, Corollary 4, and Proposition 11 in Appendix B for conditions under
which the (Nash) equilibria of a game are unique or constitute a convex set.
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Chapter 4

Evolutionary Dynamics

In this section, the population game F is endowed with dynamical behavior. Such dy-
namics are used to model the evolutionary aspects of a population playing out a game,
wherein players revise their strategies over time according to the game’s current payoff pro-
file. Our infinite-strategy analogue of the evolutionary dynamics models considered in Fox
and Shamma (2013) and Arcak and Martins (2021) is formalized as follows.

Definition 3. Consider a game F : P(S)→ C(S). Let µ0 ∈ P(S) and let v : P(S)×C(S)→
M(S). The differential equation

µ̇(t) = v(µ(t), ρ(t)),

ρ(t) = F (µ(t)),

µ(0) = µ0,

(4.1)

is called an evolutionary dynamics model (EDM). The measure µ0 is called the initial
state and the mapping v is called the dynamics map. A strongly differentiable mapping
µ : [0,∞)→ P(S) satisfying (4.1) is called a solution to the EDM.

We emphasize that, although the overall EDM (4.1) defines an autonomous system, the
nonautonomous dynamics term µ̇(t) = v(µ(t), ρ(t)) may be studied in isolation from the
feedback term ρ(t) = F (µ(t)). In particular, this viewpoint lends itself towards control
theoretic analyses, where the dynamics map v defines the system to be controlled, and the
game F defines the feedback controller. This approach was proposed in Fox and Shamma
(2013) and further studied in Arcak and Martins (2021) as a means to derive finite-strategy
stability results based on the idea that interconnections of energy-dissipating systems result
in a closed-loop system that is dynamically stable. This allows one to prove stability of the
overall evolutionary dynamics model by studying the dissipativity properties of the (nonau-
tonomous) system and input in a modular fashion. To the best of our knowledge, our work is
the first to generalize this modular dissipativity approach to evolutionary games with infinite
strategy sets—prior works on infinite strategy sets primarily prove stability in a closed-loop
black-box fashion on a case-by-case basis, e.g., Oechssler and Riedel (2001); Hingu et al.
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(2020) for replicator dynamics, Hofbauer et al. (2009) for Brown-von Neumann-Nash dy-
namics, and Cheung (2014) for pairwise comparison dynamics, as well as the references
therein and subsequent works.

Before moving on to our main results in Chapter 5, we give examples of some of the most
commonly studied evolutionary dynamics models, and also formalize the notions of dynamic
stability to be considered.

Example 1. Let λ ∈ P(S) be a fixed reference probability measure with full support. This
reference measure is commonly taken as that of a uniform distribution, but more general
probability measures may be used to model the case where strategies are chosen at nonuni-
form revision rates. The Brown-von Neumann-Nash (BNN) dynamics are given by the EDM
(4.1) with closed-loop dynamics defined by

v(µ, F (µ))(B) =

∫
B

σ+(s, µ)dλ(s)− µ(B)

∫
S

σ+(s, µ)dλ(s)

for all B ∈ B(S), where

σ+(s, µ) = max{0, EF (δs, µ)− EF (µ, µ)}

is the excess average mean payoff to population state δs ∈ P(S) relative to the population
state µ ∈ P(S). Here, the mean payoff function associated to µ ∈ P(S) takes the form

Fµ(s) =

∫
S

f(s, s′)dµ(s′),

with f : S × S → R being a bounded measurable function that gives the payoff f(s, s′) to
a player choosing strategy s when an opponent chooses strategy s′. In this case, it is easy
to see that the BNN dynamics may be written in the interconnected form (4.1) with the
dynamics map given by

v(µ, ρ)(B) =

∫
B

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)− µ(B)

∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s).

See Hofbauer et al. (2009) for a thorough study on the BNN dynamics over infinite strategy
sets.

Example 2. Let λ be a fixed reference measure as in Example 1. Furthermore, let γ : S ×
S × C(S) → R+ be a continuous and bounded map, termed the conditional switch rate,
such that γ(s, s′, ρ) encodes the rate at which players switch from strategy s ∈ S to strategy
s′ ∈ S whenever the strategies’ payoffs are described by the function ρ ∈ C(S). Assume that
the conditional switch rate satisfies sign-preservation, given by

sign(γ(s, s′, ρ)) = sign(max{0, ρ(s′)− ρ(s)})
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for all s, s′ ∈ S and all ρ ∈ C(S). Sign-preservation ensures that the conditional switch rate
from strategy s to strategy s′ is positive if and only if s′ has higher payoff than s according
to the function ρ. The pairwise comparison dynamics are given by the EDM (4.1) with

v(µ, ρ)(B) =

∫
S

∫
B

γ(s, s′, ρ)dλ(s′)dµ(s)−
∫
S

∫
B

γ(s′, s, ρ)dµ(s′)dλ(s)

for all B ∈ B(S). Notice that the nonautonomous portion of the dynamics, defined by this
dynamics map v, is entirely determined by the conditional switch rate γ.

When γ takes the form γ(s, s′, ρ) = max{0, ρ(s′) − ρ(s)}, the pairwise comparison dy-
namics reduce to the famous Smith dynamics, introduced in Smith (1984). If, for all s′ ∈ S,
there exists some continuous function φs′ : R → R+ such that the conditional switch rate
satisfies

γ(s, s′, ρ) = φs′(ρ(s′)− ρ(s))

for all s ∈ S and all ρ ∈ C(S), then the pairwise comparison dynamics are said to be
impartial. The Smith dynamics are seen to be impartial by taking φs′(·) = max{0, ·} for
all s′. See Cheung (2014) for a thorough study on the pairwise comparison dynamics over
infinite strategy sets.

We make use of the following existence and uniqueness assumption throughout the re-
mainder of the thesis.

Assumption 1. Consider a dynamics map v : P(S) × C(S) → M(S). For every initial
state µ0 ∈ P(S), there exists a unique solution to the EDM (4.1) with initial state µ0 and
dynamics map v.

Assumption 1 holds for the BNN dynamics of Example 1 (Hofbauer et al., 2009, Theo-
rem 1), and also holds for the pairwise comparison dynamics of Example 2 (Cheung, 2014,
Theorem 1) under some mild regularity conditions on F . It is also easy to see that, for these
dynamics, v(µ, ρ)(S) = 0 for all µ ∈ P(S) and all ρ ∈ C(S), and hence the codomain of
these dynamics maps can be taken to be TP(S). For more discussion on the characteristics
and existence of solutions to EDMs, see Appendix B.

4.1 Dynamic Notions of Stability

We now formally introduce the notions of dynamic equilibria and stability with which we
are concerned.

Definition 4. A population state µ ∈ P(S) is a rest point of the EDM (4.1) if v(µ, F (µ)) = 0.

The following condition, which is solely a property of the nonautonomous dynamics
defined by the dynamics map v, ensures that the rest points and Nash equilibria coincide
for the EDM under the feedback interconnection (4.1).
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Definition 5. A map v : P(S)× C(S)→M(S) is Nash stationary if, for all µ ∈ P(S) and
all ρ ∈ C(S), it holds that

v(µ, ρ) = 0

if and only if
〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S).

Proposition 4. Consider a game F : P(S)→ C(S) and let v : P(S)×C(S)→M(S). If v
is Nash stationary, then the set of rest points of the EDM (4.1) equals NE(F ).

Proposition 4 shows that if an evolutionary game’s population state converges to a rest
point under the EDM with a Nash stationary dynamics map, then the population state con-
verges to a Nash equilibrium. In other words, Nash stationarity ensures that all dynamically
stable rest points have game-theoretic importance. We now recall that the popular BNN
dynamics and pairwise comparison dynamics both satisfy Nash stationarity.1

Proposition 5 (Hofbauer et al., 2009; Cheung, 2014). If v : P(S) × C(S) → M(S) is
the dynamics map for either the BNN dynamics of Example 1 or the pairwise comparison
dynamics of Example 2, then v is Nash stationary.

Although a population state being at a rest point ensures that the population’s distri-
bution of strategies remains constant for all time, the definition of rest point does not itself
come equipped with an adequate notion of stability. For this, we turn to the classical defini-
tions of Lyapunov stability and attraction. Since ultimately we are interested in convergence
of a game’s dynamics to some Nash equilibrium, we deal with such definitions in the sense
of sets. We present the definitions for general Banach spaces with topologies on them that
may not be induced by the space’s norm. This level of abstraction will be needed for our
extension of dissipativity theory to the case of dynamic payoff models in Section 5.2.

Definition 6. Consider a Banach space X and a topology τ on X. Let Y ⊆ X and let
v : Y → X. A τ -compact set P ⊆ Y is τ -Lyapunov stable under v if, for all relatively τ -open
sets Q ⊆ Y containing P , there exists a relatively τ -open set R ⊆ Y containing P such that
every solution x : [0,∞)→ Y to the differential equation ẋ(t) = v(x(t)) with x(0) = x0 ∈ Y
satisfies x(t) ∈ Q for all t ∈ [0,∞) whenever x(0) ∈ R.

Definition 7. Consider a Banach space X and a topology τ on X. Let Y ⊆ X and let
v : Y → X. A τ -compact set P ⊆ Y is τ -attracting under v from x0 ∈ Y if, for all relatively
τ -open sets Q ⊆ Y containing P and for all solutions x : [0,∞) → Y to the differential
equation ẋ(t) = v(x(t)) with x(0) = x0, there exists T ∈ [0,∞) such that

x(t) ∈ Q for all t ∈ [T,∞).

1Technically, our definition of Nash stationarity, which is a property of the dynamics map v viewed
as a nonautonomous system, is slightly different than the definitions used in Hofbauer et al. (2009) and
Cheung (2014), which are properties of the closed-loop interconnection (4.1). For self-containedness, we
prove Proposition 5 in Appendix A using our definition.
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The τ -compact set P is globally τ -attracting under v if it is τ -attracting under v from x0 for
all x0 ∈ Y .

In our main results, Theorem 1 and Theorem 2, we are concerned with stability with
respect to the weak topology on P(S). Therein, τ coincides with the weak topology, which
in our setting is strictly weaker than the topology induced by ‖ · ‖TV. For this case, we
specialize the above stability definitions to the setting of evolutionary dynamics of the form
(4.1).

Definition 8. Consider a game F : P(S) → C(S) and let v : P(S) × C(S) → M(S). A
weakly compact set P ⊆ P(S) is weakly Lyapunov stable under the EDM (4.1) if P is τ -
Lyapunov stable under µ 7→ v(µ, F (µ)) according to Definition 6 with X = M(S), Y =
P(S), and τ being the weak topology.

Definition 9. Consider a game F : P(S) → C(S) and let v : P(S) × C(S) → M(S). A
weakly compact set P ⊆ P(S) is weakly attracting under the EDM (4.1) from initial state
µ0 ∈ P(S) if P is τ -attracting under µ 7→ v(µ, F (µ)) from µ0 according to Definition 7 with
X =M(S), Y = P(S), and τ being the weak topology. The weakly compact set P is globally
weakly attracting under the EDM (4.1) if it is weakly attracting under the EDM (4.1) with
initial state µ0 for all µ0 ∈ P(S).

Definition 8 and Definition 9 are equivalent to the dynamic stability notions used in
Cheung (2014), which are defined in terms of the Prokhorov metric on P(S) that metrizes
the weak topology.
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Chapter 5

Dissipativity Theory

In this section, we present our main theoretical contributions. We begin by defining notions
of dissipativity in our setting of infinite strategy sets, which we then use to prove our main
results characterizing the dynamic stability of Nash equilibria. To the best of our knowledge,
the following definition is new to the literature on evolutionary games over infinite strategy
sets.

Definition 10. A map v : P(S)×C(S)→M(S) is δ-dissipative with supply rate w : M(S)×
C(S) → R if there exist σ : P(S) × C(S) → R+ and Σ: P(S) × C(S) → R+ that extends
to a map Σ: U × C(S)→ R with strongly open U ⊆M(S) containing P(S), such that the
following conditions hold:

1. Σ is weak-∞-continuous.

2. Σ is Fréchet differentiable.

3. For all µ ∈ P(S), all ρ ∈ C(S), and all η ∈ C(S), it holds that

∂1Σ(µ, ρ)v(µ, ρ) + ∂2Σ(µ, ρ)η ≤ −σ(µ, ρ) + w(v(µ, ρ), η). (5.1)

4. For all µ ∈ P(S) and all ρ ∈ C(S), it holds that

Σ(µ, ρ) = 0 if and only if v(µ, ρ) = 0. (5.2)

If, additionally, (µ, ρ) 7→ ∂1Σ(µ, ρ) and (µ, ρ) 7→ ∂2Σ(µ, ρ) are weak-∞-continuous, every
partial Fréchet derivative ∂1Σ(µ, ρ) is weakly continuous, and

σ(µ, ρ) = 0 if and only if v(µ, ρ) = 0 (5.3)

for all µ ∈ P(S) and all ρ ∈ C(S), then v is strictly δ-dissipative with supply rate w.
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The “δ” in the definition of δ-dissipative is short for “differentially;” it does not refer
to a quantity δ. Also note that δ-dissipativity is solely a property of the nonautonomous
dynamics defined by the dynamics map v. As mentioned in Example 2, the dynamics map v
for the pairwise comparison dynamics is entirely determined by some conditional switch rate
function γ : S × S × C(S)→ R+, and therefore δ-dissipativity may be viewed as a property
of the conditional switch rate function in such a setting.

We also remark that (5.1), (5.2), and (5.3) are the key criteria for δ-dissipativity; the
continuity and differentiability conditions in Definition 10 are regularity conditions that are
indispensable technical criteria for our stability proofs that follow. In addition, we need the
following regularity conditions on the game F and the dynamics map v, which, as we will see
in the case study of Section 6.1, are of utmost importance in ensuring that dynamic stability
actually holds.

Assumption 2. Consider a game F : P(S)→ C(S). The following hold:

1. F is weakly continuous.

2. F extends to a weakly continuous Fréchet differentiable map F : U ′ → C(S) defined
on a strongly open set U ′ ⊆M(S) containing P(S).

Assumption 3. Consider a game F : P(S) → C(S) that satisfies Assumption 2. It holds
that DF and every Fréchet derivative DF (µ) are weakly continuous.

Assumption 4. The dynamics map v : P(S)×C(S)→ TP(S) is ‖ · ‖TV-bounded on weak-
∞ compact subsets of P(S)×C(S), and is continuous with respect to the weak-∞ topology
on its domain and the weak topology on its codomain.

We now present our main result, which shows that, when the nonautonomous portion
of the dynamics is Nash stationary and δ-dissipative, and when the feedback portion of the
dynamics induces decreasing energy supply rates, the interconnected closed-loop evolutionary
dynamics model has dynamically stable Nash equilibria.

Theorem 1 (Main Result). Consider a game F : P(S) → C(S), let v : P(S) × C(S) →
TP(S), and assume that Assumption 1 and Assumption 2 both hold. If v is Nash stationary
and δ-dissipative with supply rate w : M(S)× C(S)→ R and it holds that

w
(
ν,DF (µ)ν

)
≤ 0 for all µ ∈ P(S) and all ν ∈ TP(S), (5.4)

then NE(F ) is weakly Lyapunov stable under the EDM (4.1). If, additionally, Assumption 3
and Assumption 4 both hold and v is strictly δ-dissipative, then NE(F ) is globally weakly
attracting under the EDM (4.1).

Proof. Since v is δ-dissipative with supply rate w : M(S)×C(S)→ R, there exist σ : P(S)×
C(S) → R+ and Σ: P(S) × C(S) → R+ with Σ having an appropriate extension Σ: U ×
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C(S) → R as in Definition 10. Define V : P(S) → R+ by V (µ) = Σ(µ, F (µ)). By Propo-
sition 2 and Proposition 3, NE(F ) is weakly compact. Thus, by Lemma 7, it suffices to
show that V is a global Lyapunov function for NE(F ) under µ 7→ v(µ, F (µ)) (according to
Definition 25). Let V : U ∩ U ′ → R be defined by V (µ) = Σ(µ, F (µ)). Note that U ∩ U ′ is
strongly open and contains P(S), and that V is weakly continuous and Fréchet differentiable
since Σ is weak-∞-continuous and F is weakly continuous, and both Σ and F are Fréchet
differentiable. Also note that V (µ) = V (µ) for all µ ∈ P(S). Also, if µ ∈ NE(F ), then
v(µ, F (µ)) = 0 by Proposition 4, and therefore V (µ) = V (µ) = Σ(µ, F (µ)) = 0 by (5.2).
Furthermore, if µ ∈ P(S)\NE(F ), then again by Proposition 4 we have that v(µ, F (µ)) 6= 0,
so V (µ) = V (µ) = Σ(µ, F (µ)) > 0 by (5.2). Therefore, the first two conditions from Def-
inition 25 on V to be a global Lyapunov function for NE(F ) under µ 7→ v(µ, F (µ)) are
satisfied.

Next, since Σ and F are Fréchet differentiable,

DV (µ) = ∂1Σ(µ, F (µ)) + ∂2Σ(µ, F (µ)) ◦DF (µ)

for all µ ∈ U ∩ U ′, and therefore, since F (µ) = F (µ) for all µ ∈ P(S), it holds for all
µ ∈ P(S) that

DV (µ)v(µ, F (µ)) = ∂1Σ(µ, F (µ))v(µ, F (µ)) + ∂2Σ(µ, F (µ))DF (µ)v(µ, F (µ))

≤ −σ(µ, F (µ)) + w(v(µ, F (µ)), DF (µ)v(µ, F (µ)))

≤ −σ(µ, F (µ))

≤ 0,

(5.5)

where the first inequality follows from (5.1), and the second inequality follows from (5.4)
together with the fact that v(µ, F (µ)) ∈ TP(S). Hence, V is indeed a global Lyapunov
function for NE(F ) under µ 7→ v(µ, F (µ)), so NE(F ) is weakly Lyapunov stable under the
EDM (4.1).

Now suppose that the δ-dissipativity of v is strict and that the additional hypotheses
of Assumption 3 and Assumption 4 both hold. By Lemma 8, it suffices to show that V is
a strict global Lyapunov function for NE(F ) under µ 7→ v(µ, F (µ)) (according to Defini-
tion 25). This amounts to proving that µ 7→ DV (µ)v(µ, F (µ)) is weakly continuous and
that DV (µ)v(µ, F (µ)) < 0 for all µ ∈ P(S) \NE(F ). Indeed, the continuity condition holds
by Lemma 4, which we state and prove in Appendix A.

Next, if µ ∈ P(S)\NE(F ), then Proposition 4 gives that v(µ, F (µ)) 6= 0 so σ(µ, F (µ)) > 0
by (5.3), implying that DV (µ)v(µ, F (µ)) < 0 for all such µ by (5.5). Hence, V is indeed
a strict global Lyapunov function for NE(F ) under µ 7→ v(µ, F (µ)), so NE(F ) is globally
weakly attracting under the EDM (4.1).

It is easy to see that Theorem 1 generalizes the first main result in Arcak and Martins
(2021), i.e., our Theorem 1 recovers Theorem 1 in Arcak and Martins (2021) when S is
finite. We will see in Section 5.1 that Theorem 1 also recovers other recent stability results
for special types of games.
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5.1 Specialization to Monotone Games

In this section, we consider the special class of “monotone games,” which are sometimes also
referred to as “stable games,” “contractive games,” and “negative semidefinite games” in the
literature. For a thorough analysis of monotone games over finite strategy sets, see Hofbauer
and Sandholm (2009); Fox and Shamma (2013); Park et al. (2019), and for works considering
monotone games with an infinite number of strategies, see Hofbauer et al. (2009); Cheung
(2014); Lahkar and Riedel (2015); Lahkar et al. (2022). The latter works are all restricted
to special types of dynamics, e.g., BNN, pairwise comparison, logit, and perturbed best
response dynamics. In contrast, our stability result (Theorem 2) for monotone games derived
in this section holds more broadly for the class of δ-passive dynamics (see Definition 13 to
come), which constitutes a property that may be verified modularly for various instances of
particular dynamics.

Definition 11. A game F : P(S)→ C(S) is monotone if

〈F (µ)− F (ν), µ− ν〉 ≤ 0 (5.6)

for all µ, ν ∈ P(S). If, additionally, the inequality (5.6) holds strictly for all µ, ν ∈ P(S)
such that µ 6= ν, then F is strictly monotone.

Many games in practice are monotone, e.g., random matching in two-player symmetric
zero-sum games (Cheung, 2014, Example 4), contests (Hofbauer et al., 2009, Example 5),
and the war of attrition (Hofbauer and Sandholm, 2009, Example 2.4). Characterizations
of the equilibria of monotone games are given in Appendix B, e.g., the convexity of NE(F ).
The following notion is closely related to that of monotonicity, as we will see in Lemma 2,
and will serve as the link between monotonicity and the inequality (5.4).

Definition 12. A game F : P(S) → C(S) that extends to a continuously Fréchet differen-
tiable map F : U ′ → C(S) defined on a strongly open set U ′ ⊆ M(S) containing P(S) is
said to satisfy self-defeating externalities if〈

DF (µ)ν, ν
〉
≤ 0 for all µ ∈ P(S) and all ν ∈ TP(S).

Lemma 2 (Cheung, 2014, Lemma 3). Consider a game F : P(S) → C(S) that extends
to a continuously Fréchet differentiable map F : U ′ → C(S) defined on a strongly open set
U ′ ⊆ M(S) containing P(S). It holds that F is monotone if and only if F satisfies self-
defeating externalities.

We now show that our general dissipativity theory can be applied to monotone games to
recover recent stability results in the literature. We start with the following specialization
of δ-dissipativity, which generalizes the notion of δ-passivity introduced in Fox and Shamma
(2013) for the finite-strategy setting.
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Definition 13. A map v : P(S)×C(S)→M(S) is δ-passive if it is δ-dissipative with supply
rate w : (µ, η) 7→ 〈η, µ〉 =

∫
S
ηdµ. The map v is strictly δ-passive if it is strictly δ-dissipative

with such supply rate w.

As is the case with δ-dissipativity, we see that δ-passivity is solely a property of the
nonautonomous portion of the evolutionary dynamics defined by the dynamics map v. We
remark that δ-passivity is common in practice, as the following result shows.

Proposition 6. If v : P(S) × C(S) → M(S) is the dynamics map for either the BNN
dynamics of Example 1 or the impartial pairwise comparison dynamics of Example 2, then
v is strictly δ-passive.

The proof of Proposition 6 relies on generalizing and combining the proof techniques
of Fox and Shamma (2013, Theorem 4.5), Hofbauer et al. (2009, Theorem 3), and Cheung
(2014, Theorem 4). We write the proof in full detail in Appendix A.

Finally, we give our reduction of Theorem 1 to the case of monotone games.

Theorem 2. Consider a game F : P(S) → C(S), let v : P(S) × C(S) → TP(S), and
assume that Assumption 1 holds. Furthermore, assume that Assumption 2 holds and that the
extension F is continuously Fréchet differentiable. If v is Nash stationary, v is δ-passive, and
F is monotone, then NE(F ) is weakly Lyapunov stable under the EDM (4.1). If, additionally,
Assumption 3 and Assumption 4 both hold and v is strictly δ-passive, then NE(F ) is globally
weakly attracting under the EDM (4.1).

Proof. Suppose that v is Nash stationary, v is δ-passive, and F is monotone. Let w : M(S)×
C(S)→ R be defined by w(µ, η) = 〈η, µ〉. Then it holds that v is δ-dissipative with supply
rate w. Furthermore, by Lemma 2, F satisfies self-defeating externalities, and therefore

w(ν,DF (µ)ν) =
〈
DF (µ)ν, ν

〉
≤ 0 for all µ ∈ P(S) and all ν ∈ TP(S).

Hence, by Theorem 1, it holds that NE(F ) is weakly Lyapunov stable under the EDM (4.1).
The fact that NE(F ) is globally weakly attracting under the EDM (4.1) given the additional
hypotheses of Assumption 3 and Assumption 4 is immediate from Theorem 1.

Notice the modularity of Theorem 2: to prove stability of the interconnected EDM (4.1),
we may analyze the Nash stationarity and δ-passivity of the nonautonomous portion of
the dynamics defined by the dynamics map v independently from the monotonicity of the
system’s feedback defined by the game F . This allows for the direct proof of stability for
the entire class of monotone games F given some dynamics map v that is known to be Nash
stationary and δ-passive. For example, Theorem 2 together with Proposition 6 recovers
the key stability results for BNN dynamics and impartial pairwise comparison dynamics
over infinite strategy sets, proven in Hofbauer et al. (2009, Theorem 3) and Cheung (2014,
Theorem 4), respectively. This recovery is formally stated below.
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Corollary 1. Consider a game F : P(S) → C(S), let v : P(S) × C(S) → TP(S), and as-
sume that Assumption 1 holds. Furthermore, assume that Assumption 2 holds and that the
extension F is continuously Fréchet differentiable. If F is monotone and v is the dynam-
ics map for either the BNN dynamics of Example 1 or the impartial pairwise comparison
dynamics of Example 2, then NE(F ) is weakly Lyapunov stable under the EDM (4.1). If,
additionally, Assumption 3 holds, then NE(F ) is globally weakly attracting under the EDM
(4.1).

5.2 Extension to Dynamic Payoff Models

In this section, we consider the case where, instead of static payoff feedback given by ρ(t) =
F (µ(t)), as in the EDM (4.1), the payoff itself has dynamics. In doing so, we will consider
the derivatives ρ̇(t) of a payoff ρ : [0,∞)→ C(S) (see Section 2.3). Since C(S) is a Banach
space, it holds that ρ̇(t) ∈ C(S) whenever it exists.

Definition 14. Let µ0 ∈ P(S), ρ0 ∈ C(S), v : P(S)×C(S)→M(S), and u : P(S)×C(S)→
C(S). The differential equation

µ̇(t) = v(µ(t), ρ(t)),

ρ̇(t) = u(µ(t), ρ(t)),

µ(0) = µ0,

ρ(0) = ρ0,

(5.7)

is called a dynamic payoff evolutionary dynamics model (DPEDM). The measure µ0 is called
the initial state, the function ρ0 is called the initial payoff, the mapping v is called the
dynamics map, and the mapping u is called the payoff map. A pair (µ, ρ) with strongly
differentiable µ : [0,∞) → P(S) and differentiable ρ : [0,∞) → C(S) satisfying (5.7) is
called a solution to the DPEDM.

Similar to the case for general EDMs, we will assume that unique solutions to the DPEDM
(5.7) exist.

Assumption 5. Consider a dynamics map v : P(S) × C(S) → M(S) and a payoff map
u : P(S) × C(S) → C(S). For every initial state µ0 ∈ P(S) and initial payoff ρ0 ∈ C(S),
there exists a unique solution (µ, ρ) to the DPEDM (5.7).

For games F : P(S)→ C(S) that extend to a Fréchet differentiable map F : U ′ → C(S)
defined on a strongly open set U ′ ⊆M(S) containing P(S), the EDM (4.1) is a special case
of the DPEDM (5.7) with u : (µ, ρ) 7→ DF (µ)v(µ, ρ). Since the payoff map in a DPEDM
is no longer defined by a static game, the inequality (5.4) and notions of monotonicity are
no longer applicable when characterizing the “energy supplied” to the population by the
payoff. Instead, we turn to notions of “antidissipativity.” The following definition extends
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such notions from those introduced in Fox and Shamma (2013) for finite strategy sets to the
setting of infinite S.

Definition 15. A map u : P(S) × C(S) → C(S) is δ-antidissipative with supply rate
w̃ : M(S)×C(S)→ R if there exist γ : P(S)×C(S)→ R+ and Γ: P(S)×C(S)→ R+ that
extends to a map Γ: Ũ × C(S) → R with strongly open Ũ ⊆ M(S) containing P(S), such
that the following conditions hold:

1. Γ is weak-∞-continuous.

2. Γ is Fréchet differentiable.

3. For all strongly differentiable µ : [0,∞) → P(S), all ρ0 ∈ C(S), all solutions
ρ : [0,∞) → C(S) to the differential equation ρ̇(t) = u(µ(t), ρ(t)) with ρ(0) = ρ0,
and all t ∈ [0,∞), it holds that

∂1Γ(µ(t), ρ(t))µ̇(t)+∂2Γ(µ(t), ρ(t))u(µ(t), ρ(t)) ≤ −γ(µ(t), ρ(t))−w̃(µ̇(t), u(µ(t), ρ(t))).
(5.8)

4. For all µ ∈ P(S) and all ρ ∈ C(S), it holds that

Γ(µ, ρ) = 0 if and only if u(µ, ρ) = 0. (5.9)

If, additionally, (µ, ρ) 7→ ∂1Γ(µ, ρ) and (µ, ρ) 7→ ∂2Γ(µ, ρ) are weak-∞-continuous, every
partial Fréchet derivative ∂1Γ(µ, ρ) is weakly continuous, and

γ(µ, ρ) = 0 if and only if u(µ, ρ) = 0 (5.10)

for all µ ∈ P(S) and all ρ ∈ C(S), then u is strictly δ-antidissipative with supply rate w̃.

Notice that δ-antidissipativity is a property solely of a payoff map u, and not of any
particular dynamics map v. One may intuitively think of δ-antidissipativity with supply
rate w̃ as δ-dissipativity with supply rate −w̃, albeit the notions are defined for maps with
different codomains. We may also define a similar notion that is analogous to δ-passivity.

Definition 16. A map u : P(S) × C(S) → C(S) is δ-antipassive if it is δ-antidissipative
with supply rate w̃ : (µ, η) 7→ 〈η, µ〉 =

∫
S
ηdµ. The map u is strictly δ-antipassive if it is

strictly δ-antidissipative with such supply rate w̃.

Fox and Shamma (2013, Theorem 4.3) show that every monotone game over a finite
strategy set induces δ-antipassive payoff dynamics,1 so δ-antipassivity may be viewed as
a generalization of monotonicity to the dynamic payoff setting. Before moving on to our
generalization of Theorem 1 to the setting of DPEDMs, we remark that Definition 14 does
not immediately come equipped with any notion of a game, and hence has no inherent
game-theoretic notion of equilibria. The following definition serves to link dynamic payoffs
to games, namely, by ensuring that payoffs represent a valid static game at steady state.

1Technically, they show δ-antipassivity in the sense of input-output mappings, which slightly differs from
the notion of δ-antipassivity of payoff maps used in this thesis.
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Definition 17. Consider a game F : P(S) → C(S). A map u : P(S) × C(S) → C(S) is
F -payoff stationary if, for all µ ∈ P(S) and all ρ ∈ C(S),

u(µ, ρ) = 0

implies that
ρ = F (µ).

As was the case in the static payoff setting, we need some technical regularity conditions in
order to apply Lyapunov theory. The appropriate conditions are distinct from those for static
payoffs (i.e., we no longer need to assume Assumption 2, Assumption 3, or Assumption 4 in
what follows). We list the new conditions below, and then state our stability theorem for
DPEDMs.

Assumption 6. Consider a dynamics map v : P(S) × C(S) → M(S) and a payoff map
u : P(S) × C(S) → C(S). There exists a compact set K ⊆ C(S) such that, for all initial
states µ0 ∈ P(S) and all initial payoffs ρ0 ∈ K, the solution (µ, ρ) to the DPEDM (5.7)
satisfies ρ(t) ∈ K for all t ∈ [0,∞).

Assumption 6 can be viewed as a “positive invariance” condition on the payoff dynamics.
Such an assumption on the bounded evolutions of the payoffs is standard in related works
(cf., Kara and Martins 2023) and is necessary to employ Lyapunov theory.

Assumption 7. The dynamics map v : P(S)×C(S)→M(S) is continuous with respect to
the weak-∞ topology on its domain and the weak topology on its codomain. Furthermore,
the payoff map u : P(S)× C(S)→ C(S) is weak-∞-continuous.

Theorem 3. Consider a weakly continuous game F : P(S)→ C(S), let v : P(S)× C(S)→
TP(S), and let u : P(S) × C(S) → C(S). Assume that Assumption 5 holds. Further-
more, assume that Assumption 6 holds with some compact K ⊆ C(S) containing F (NE(F )),
and that Assumption 7 holds. If v is Nash stationary and δ-dissipative with supply rate
w : M(S) × C(S) → R and u is F -payoff stationary and δ-antidissipative with supply rate
w̃ ≥ w, then

P := {(µ, ρ) ∈ P(S)× C(S) : v(µ, ρ) = 0, u(µ, ρ) = 0}

is a subset of NE(F )×F (NE(F )) and is weak-∞-Lyapunov stable under the DPEDM (5.7).
If, additionally, the δ-dissipativity of v and the δ-antidissipativity of u are both strict and v
is ‖ · ‖TV-bounded on P(S)×K, then P is weak-∞-attracting under the DPEDM (5.7) from
every (µ0, ρ0) ∈ P(S)×K.

Proof. Since v is δ-dissipative with supply rate w : M(S)×C(S)→ R, there exist σ : P(S)×
C(S) → R+ and Σ: P(S) × C(S) → R+ with Σ having an appropriate extension Σ: U ×
C(S) → R as in Definition 10. Furthermore, since u is δ-antidissipative with supply rate
w̃ : M(S) × C(S) → R, there exist γ : P(S) × C(S) → R+ and Γ: P(S) × C(S) → R+

with Γ having an appropriate extension Γ: Ũ × C(S) → R as in Definition 15. Define
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V : P(S)×K → R+ by V (µ, ρ) = Σ(µ, ρ) + Γ(µ, ρ). Consider P = {(µ, ρ) ∈ P(S)× C(S) :
v(µ, ρ) = 0, u(µ, ρ) = 0}. If (µ, ρ) ∈ P , then u(µ, ρ) = 0, implying that ρ = F (µ)
by F -payoff stationarity, and hence v(µ, F (µ)) = 0, so µ ∈ NE(F ) by Nash stationarity.
Thus, P ⊆ NE(F ) × F (NE(F )) ⊆ P(S) ×K. By Proposition 2 and Proposition 3, NE(F )
is weakly compact, and hence F (NE(F )) is compact as F is weakly continuous. Since v
is continuous with respect to the weak-∞ topology on its domain and the weak topology
on its codomain, and u is weak-∞-continuous, it holds that P = v−1({0}) ∩ u−1({0}) is
weak-∞-closed, and hence must be weak-∞-compact as well as NE(F ) × F (NE(F )) is.
Thus, by Lemma 7, it suffices to show that V is a global Lyapunov function for P under
(µ, ρ) 7→ (v(µ, ρ), u(µ, ρ)) (according to Definition 25). Let V : U ∩ Ũ×C(S)→ R be defined
by V (µ, ρ) = Σ(µ, ρ) + Γ(µ, ρ). Note that U ∩ Ũ is strongly open and contains P(S), and
that V is weak-∞-continuous and Fréchet differentiable since Σ and Γ are. Also note that
V (µ, ρ) = V (µ, ρ) for all (µ, ρ) ∈ P(S) × K. Also, if (µ, ρ) ∈ P , then v(µ, ρ) = 0 and
u(µ, ρ) = 0, so V (µ, ρ) = 0 by (5.2) and (5.9). Furthermore, if (µ, ρ) ∈ (P(S)×K) \P , then
again by (5.2) and (5.9) we have that V (µ, ρ) > 0. Therefore, the first two conditions from
Definition 25 on V to be a global Lyapunov function for P under (v, u) are satisfied.

Next, it holds for all (µ, ρ) ∈ P(S)×K that

DV (µ, ρ)(v(µ, ρ), u(µ, ρ)) = ∂1Σ(µ, ρ)v(µ, ρ) + ∂2Σ(µ, ρ)u(µ, ρ)

+ ∂1Γ(µ, ρ)v(µ, ρ) + ∂2Γ(µ, ρ)u(µ, ρ)

≤ −σ(µ, ρ) + w(v(µ, ρ), u(µ, ρ))− γ(µ, ρ)− w̃(v(µ, ρ), u(µ, ρ))

≤ −σ(µ, F (µ))− γ(µ, ρ)

≤ 0,
(5.11)

where the first inequality follows from (5.1) and (5.8), and the second inequality follows from
the fact that w̃ ≥ w. Hence, V is indeed a global Lyapunov function for P under (v, u), so
P is weak-∞-Lyapunov stable under the DPEDM (5.7).

Now suppose that the δ-dissipativity of v and the δ-antidissipativity of u are both strict,
and that v is ‖·‖TV-bounded on P(S)×K. By Lemma 8, it suffices to show that V is a strict
global Lyapunov function for P under (µ, ρ) 7→ (v(µ, ρ), u(µ, ρ)) (according to Definition 25).
This amounts to proving that (µ, ρ) 7→ DV (µ, ρ)(v(µ, ρ), u(µ, ρ)) is weak-∞-continuous and
that DV (µ, ρ)(v(µ, ρ), u(µ, ρ)) < 0 for all (µ, ρ) ∈ (P(S) × K) \ P . Indeed, the continuity
condition holds by Lemma 5, which we state and prove in Appendix A.

Next, if (µ, ρ) ∈ (P(S) × K) \ P , then v(µ, ρ) 6= 0 or u(µ, ρ) 6= 0, so σ(µ, ρ) > 0 or
γ(µ, ρ) > 0 by (5.3) and (5.10), implying that DV (µ, ρ)(v(µ, ρ), u(µ, ρ)) < 0 for all such
(µ, ρ) by (5.11). Hence, V is indeed a strict global Lyapunov function for P under (v, u), so
P is globally weak-∞-attracting under the DPEDM (5.7) from K.

The set P in Theorem 3 corresponds to the set of rest points of the DPEDM (5.7). The
result shows that, under the appropriate regularity conditions, the DPEDM has dynamically
stable rest points whenever the dynamics map is δ-dissipative and the payoff map is δ-
antidissipative, and the incoming energy supply rate to the dynamics is less than that of
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the payoffs. Since, under the hypotheses of the theorem, it holds that P ⊆ {(µ, ρ) ∈
P(S)×C(S) : ρ = F (µ), µ ∈ NE(F )} ⊆ NE(F )× F (NE(F )), the result shows convergence
of the µ-component of the trajectory (µ, ρ) to NE(F ), and convergence of the ρ-component
to the corresponding static payoff given by the game F .

Similar to the static payoff setting, it is easy to see that our dissipativity-based result
Theorem 3 may be specialized to the case of δ-passive dynamics maps coupled with δ-
antipassive payoff maps, resulting in analogues to Theorem 2 and Corollary 1 for the dynamic
payoff setting. In particular, the latter specialization yields the following result, which is
stronger than Hofbauer et al. (2009, Theorem 3) and Cheung (2014, Theorem 4), as it allows
for δ-antipassive dynamic payoffs.

Corollary 2. Consider a weakly continuous game F : P(S)→ C(S), let v : P(S)×C(S)→
TP(S), and let u : P(S) × C(S) → C(S). Assume that Assumption 5 holds. Furthermore,
assume that Assumption 6 holds with some compact K ⊆ C(S) containing F (NE(F )), and
that Assumption 7 holds. If v is the dynamics map for either the BNN dynamics of Example 1
or the impartial pairwise comparison dynamics of Example 2 and u is F -payoff stationary
and strictly δ-antipassive, then

P := {(µ, ρ) ∈ P(S)× C(S) : v(µ, ρ) = 0, u(µ, ρ) = 0}

is a subset of NE(F )× F (NE(F )) and is weak-∞-Lyapunov stable under the DPEDM (5.7)
and weak-∞-attracting under the DPEDM (5.7) from every (µ0, ρ0) ∈ P(S)×K.
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Chapter 6

Case Studies

6.1 War of Attrition—Failure of Finite

Approximations

In this section, we tie together various results from the literature to generate an example in
which approximations of an infinite-dimensional evolutionary game are proven to be dynam-
ically stable via finite-dimensional dissipativity analysis, yet the true underlying dynamics
do not weakly converge to the set of Nash equilibria. This finding shows that one cannot
in general use finite-dimensional dissipativity theory to assess the stability of evolutionary
games over infinite strategy sets, further motivating our studies directly concerned with the
infinite-dimensional regime.

Consider the famous “war of attrition” game, which is motivated by animal conflict and
studied at length in Smith (1982b, Chapter 3). We adopt the formalism of the game from
Bishop and Cannings (1978) and Hofbauer et al. (2009, Example 6). Consider a contest
being carried out on a time interval S := [0, T ] ⊆ R, with a common value of V ∈ R awarded
to the winner. The winner is the one who decides to compete in the contest for the longest
amount of time. The game is given by Fµ(s) =

∫
S
f(s, s′)dµ(s′), where

f(s, s′) =


V − s′ if s′ < s,
V
2
− s if s′ = s,

−s if s′ > s,

defines the payoff to a player employing strategy s when their opponent employs strategy
s′. It is assumed that T > V/2, so that there may be incentive to resigning from the contest
before time T . The game F is monotone and has a unique Nash equilibrium µ? ∈ P(S)
given by

µ?([0, s]) =


1− e−s/V if s ∈ [0, s?),

1− e−s?/V if s ∈ [s?, T ),

1 if s = T ,

(6.1)
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where s? = T − V/2 (cf., Bishop and Cannings 1978; Hofbauer et al. 2009).
Consider endowing the game F with the BNN dynamics of Example 1, where the reference

measure λ is Lebesgue. We will now show that the prior dissipativity results of Arcak
and Martins (2021) guarantee that finite-strategy approximations of this evolutionary game
asymptotically converge to their unique Nash equilibrium. Despite this, we will find that
the infinite-dimensional dynamics do not weakly converge to the unique Nash equilibrium
µ?, justifying the need for direct consideration of dissipativity theory over infinite strategy
sets, as we have done in this thesis.

Let n ∈ N and consider a finite approximation of the strategy set given by Sn =
{s1, . . . , sn} ⊆ S, with s1 < s2 < · · · < sn. Restricting the game F to the set of mea-
sures

D(Sn) :=

{
n∑
i=1

xiδsi ∈ P(S) : x ∈ ∆n−1

}
with ∆n−1 := {x ∈ Rn : xi ≥ 0 for all i,

∑n
i=1 xi = 1} yields the finite-dimensional approxi-

mation F̂n : ∆n−1 → Rn given by

(F̂n(x))i := F

(
n∑
j=1

xjδsj

)
(si) =

n∑
j=1

xjf(si, sj).

Thus, the finite-dimensional game may be written as

F̂n(x) = Anx,

where

An :=


f(s1, s1) f(s1, s2) · · · f(s1, sn)
f(s2, s1) f(s2, s2) · · · f(s2, sn)

...
...

. . .
...

f(sn, s1) f(sn, s2) · · · f(sn, sn)

 =


V
2
− s1 −s1 · · · −s1

V − s1 V
2
− s2 · · · −s2

...
...

. . .
...

V − s1 V − s2 · · · V
2
− sn

 ∈ Rn×n.

This finite-dimensional game F̂n is monotone (Hofbauer and Sandholm, 2009). The
corresponding finite-dimensional BNN dynamics are given by

ẋi(t) = max{0, (F̂n(x(t)))i − x(t)>F̂n(x(t))} − xi(t)
n∑
i=1

max{0, (F̂n(x(t)))i − x(t)>F̂n(x(t))}

for all i ∈ {1, . . . , n} (cf., Sandholm 2010, Example 4.3.4). These finite-dimensional BNN
dynamics are Nash stationary and δ-passive (Arcak and Martins, 2021), and therefore since
F̂n is monotone and admits a continuously differentiable extension defined on Rn (given by
the linear map defined by An), Arcak and Martins (2021, Theorem 1) asserts that NE(F̂n) is
globally asymptotically stable under these dynamics. Based on the above analysis, one may
hope that NE(F ) = {µ?} is also globally weakly attracting under the infinite-dimensional
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EDM (4.1). However, despite F being monotone and v being Nash stationary and strictly
δ-passive, this is not the case, as Hofbauer et al. (2009, Example 6) shows that this infinite-
dimensional dynamic does not weakly converge to µ? for initial states with density. The
intuition for this lack of convergence given by Hofbauer et al. (2009) is that the BNN dy-
namics under Lebesgue measure cannot generate mass at s = T , but that a point mass at
s = T is present in the equilibrium distribution µ?. Our theoretical results pinpoint two
key underlying technical conditions being violated in this example. In particular, F is not
weakly continuous since f is not continuous, and furthermore, there exists µ ∈ P(S) such
that F (µ) /∈ C(S), implying that F does not even have codomain C(S). Such continuity
conditions are key assumptions in our stability results. This breakdown of dissipativity-based
stability guarantees when moving “from finite to infinite” demonstrates the importance in
carefully identifying the technical conditions under which infinite-dimensional stability may
be guaranteed, as we have done in our main results of Chapter 5.

6.2 Continuous War of Attrition

The function f defining the war of attrition game in Section 6.1 can be equivalently written
as

f(s, s′) = VΘ(s− s′)− sΘ(s′ − s)− s′Θ(s− s′),

where Θ: R→ R is the step function given by

Θ(x) =


0 if x < 0,
1
2

if x = 0,

1 if x > 0.

Iyer and Killingback (2016) propose a smoothed variant of the war of attrition by replacing
the discontinuous step function Θ by the logistic function Θα : R→ R given by

Θα(x) =
1

1 + e−αx
,

where α > 0 is the smoothing parameter. However, in doing so, it is unclear whether
the resulting game is monotone, where the difficulty arises when analyzing the values of∫
S

∫
S
(sΘα(s′ − s) + s′Θα(s− s′))dµ(s′)dν(s) for various µ, ν ∈ P(S).

In this example, we propose a relaxed variant of the game in Iyer and Killingback (2016)
in which we only modify the war of attrition to be continuous, rather than smooth. This is
accomplished by noting that

sΘ(s′ − s) + s′Θ(s− s′) = min{s, s′}

is already a continuous function of (s, s′) ∈ S × S, and therefore the only term that should
be replaced in f(s, s′) is VΘ(s − s′), as it is where the discontinuity appears. To do so, let
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Θ̃ : R→ R be a Lipschitz continuous function such that 0 ≤ Θ̃(X) ≤ 1 and Θ̃(x)+Θ̃(−x) = 1
for all x ∈ R. For example, one may use the logistic function Θ̃ = Θα, or even a piecewise
linear approximation of the step function Θ given by

Θ̃(x) =


0 if x < x0,
x

2x0
+ 1

2
if x ∈ [−x0, x0],

1 if x > x0.

Then, we consider the game given by

Fµ(s) :=

∫
S

f̃(s, s′)dµ(s′),

f̃(s, s′) := V Θ̃(s− s′)−min{s, s′}.
(6.2)

We refer to our variant F as the “continuous war of attrition.” The closer Θ̃ approximates
the step function Θ, the closer the continuous war of attrition approximates the original
form of the war of attrition. We give two new results: 1) the continuous war of attrition
is a monotone game, and 2) the continuous war of attrition is weakly Lyapunov stable and
globally weakly attracting under the BNN and impartial pairwise comparison dynamics. It is
easily verified that indeed F (µ) ∈ C(S) for all µ ∈ P(S), that F satisfies both Assumption 2
and Assumption 3 with the extension F being defined by f̃ as well, and that F is continuously
Fréchet differentiable. We now present our results.

Theorem 4. The continuous war of attrition game F : P(S) → C(S) defined by (6.2) is
monotone.

Proof. In this proof, we denote the indicator function on a set A ⊆ R by χA : R→ R, where

χA(t) =

{
1 if t ∈ A,
0 if t /∈ A.

Let µ, ν ∈ P(S). It holds that

2

∫
S

∫
S

Θ̃(s− s′)d(µ− ν)(s′)d(µ− ν)(s)

=

∫
S

∫
S

Θ̃(s− s′)d(µ− ν)(s′)d(µ− ν)(s) +

∫
S

∫
S

Θ̃(s′ − s)d(µ− ν)(s′)d(µ− ν)(s)

=

∫
S

∫
S

(
Θ̃(s− s′) + Θ̃(s′ − s)

)
d(µ− ν)(s′)d(µ− ν)(s)

=

∫
S

∫
S

d(µ− ν)(s′)d(µ− ν)(s)

= ((µ− ν)(S))2

= 0,
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since (µ− ν)(S) = µ(S)− ν(S) = 0. Therefore,∫
S

∫
S

Θ̃(s− s′)d(µ− ν)(s′)d(µ− ν)(s) = 0.

Next, we note that∫
S

∫
S

min{s, s′}dµ(s′)dν(s) =

∫
S

∫
S

∫
[0,min{s,s′}]

dtdµ(s′)dν(s)

=

∫
S

∫
S

∫
[0,∞)

χ{t′∈R:t′≤min{s,s′}}(t)dtdµ(s′)dν(s)

=

∫
S

∫
S

∫
[0,∞)

χ{t′∈R:t′≤s}(t)χ{t′∈R:t≤s′}(t)dtdµ(s′)dν(s)

=

∫
S

∫
S

∫
[0,∞)

χ{s̃∈S:s̃≥t}(s)χ{s̃∈S:s̃≥t}(s
′)dtdµ(s′)dν(s)

=

∫
[0,∞)

∫
S

χ{s̃∈S:s̃≥t}(s
′)dµ(s′)

∫
S

χ{s̃∈S:s̃≥t}(s)dν(s)dt

=

∫
[0,∞)

µ(S ∩ [t,∞))ν(S ∩ [t,∞))dt.

Therefore, we find that∫
S

∫
S

min{s, s′}d(µ− ν)(s′)d(µ− ν)(s)

=

∫
[0,∞)

(
µ(S ∩ [t,∞))2 − 2µ(S ∩ [t,∞))ν(S ∩ [t,∞)) + ν(S ∩ [t,∞))2

)
dt

=

∫
[0,∞)

(µ(S ∩ [t,∞))− ν(S ∩ [t,∞)))2 dt.

Thus, overall, it holds that

〈F (µ)− F (ν), µ− ν〉 =

∫
S

(Fµ(s)− Fν(s))d(µ− ν)(s)

=

∫
S

∫
S

f̃(s, s′)d(µ− ν)(s′)d(µ− ν)(s)

= V

∫
S

∫
S

Θ̃(s− s′)d(µ− ν)(s′)d(µ− ν)(s)

−
∫
S

∫
S

min{s, s′}d(µ− ν)(s′)d(µ− ν)(s)

= −
∫
[0,∞)

(µ(S ∩ [t,∞))− ν(S ∩ [t,∞)))2 dt

≤ 0.

Hence, F is monotone.
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Theorem 4 allows us to immediately apply our dissipativity theory to conclude that
indeed the continuous war of attrition exhibits global stability on the infinite strategy set S,
unlike the original version of the game:

Corollary 3. Consider the continuous war of attrition game F : P(S) → C(S) defined by
(6.2). If v : P(S) × C(S) → TP(S) is the dynamics map for either the BNN dynamics of
Example 1 or the impartial pairwise comparison dynamics of Example 2 and if Assumption 1
holds, then NE(F ) is weakly Lyapunov stable and globally weakly attracting under the EDM
(4.1).

In Figure 6.1, we display a computer simulation illustrating the stability of the continuous
war of attrition game (6.2) with T = 2, V = 1, Θ̃ = Θα, and α = 100, under the BNN
dynamics. The simulation is carried out using the discretization technique described in
Section 6.1, which we know respects the true stability of the infinite-dimensional dynamics
due to Corollary 3. The initial population state in Figure 6.1 is the uniform distribution
on S = [0, 2]. We see that the distribution function values µ(t)([0, s]) converge in time
towards those of a distribution closely resembling µ?, the unique Nash equilibrium of the
(discontinuous) war of attrition given in (6.1). Upon increasing α, this limiting distribution
function even more closely approximates that of µ?. The simulation is repeated in Figure 6.2
using a Gaussian initial population state with mean 1 and variance 0.1. The same convergent
behavior is observed.
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Figure 6.1: Evolution of the distribution function s 7→ µ(t)([0, s]) for continuous war of
attrition on S = [0, 2] under BNN dynamics with uniform initial distribution µ0.
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Figure 6.2: Evolution of the distribution function s 7→ µ(t)([0, s]) for continuous war of
attrition on S = [0, 2] under BNN dynamics with Gaussian initial distribution µ0 (mean 1,
variance 0.1).

6.3 Smoothing Dynamics

In this section, we consider the DPEDM (5.7) with dynamic payoffs. Specifically, we consider
smoothing dynamics, which occur when short-term variations in an evolutionary game’s pay-
offs are suppressed, e.g., by the time delay between when a player receives payoff information
and when they revise their strategy (Fox and Shamma, 2013; Arcak and Martins, 2021). For-
mally, the smoothing dynamics DPEDM corresponding to a game F : P(S)→ C(S) is given
by

µ̇(t) = v(µ(t), ρ(t)),

ρ̇(t) = λ (F (µ(t))− ρ(t)) ,

µ(0) = µ0,

ρ(0) = ρ0,

where λ > 0 is the smoothing parameter. Notice that u(µ, ρ) = λ (F (µ)− ρ) = 0 if and only
if ρ = F (µ), so u is F -payoff stationary.

Even in the case of finite strategy sets, the incorporation of smoothing dynamics may
turn a dynamically stable evolutionary process into an unstable one (Park et al., 2019);
smoothing the payoff dynamics does not necessarily help with closed-loop stability. This
may also be the case in our setting of infinite strategy sets. Indeed, for the continuous war
of attrition game of Section 6.2 with T = 2, V = 1, Θ̃ = Θα, and α = 100, together with
the BNN dynamics map v and λ = 1, we see in Figure 6.3 that the smoothing has caused
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the population state to become unstable (the persistent oscillations are verified numerically
at times t > 104).
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Figure 6.3: Evolution of the distribution function s 7→ µ(t)([0, s]) for continuous war of attri-
tion game under BNN dynamics with smoothing, together with Gaussian initial distribution
µ0 (mean 1, variance 0.1) and initial payoff ρ0 = F (µ0).

Next, we consider the smoothing dynamics corresponding to a different game, namely,
that given by

Fµ(s) :=

∫
S

f(s, s′)dµ(s′),

f(s, s′) = cos(2πs)− cos(2πs′).

We will refer to this as the “cosine game.” It is easy to see that 〈Fν , ν〉 = 0 for all ν ∈M(S),
and in particular this shows that F is monotone. For finite S, Fox and Shamma (2013) show
that the smoothing dynamics corresponding to games satisfying 〈Fν , ν〉 ≤ 0 for all ν ∈M(S)
are δ-antipassive under an invertibility condition. Therefore, one may suspect based on our
Theorem 3 and Corollary 2 that this DPEDM with a δ-passive dynamics map (such as
that of BNN or impartial pairwise comparison) results in closed-loop dynamic stability.
We numerically find that this is indeed the case for simulated dynamics with smoothing
parameter λ = 0.5 and Gaussian initial population state µ0 with mean 1 and variance 0.1.
Figure 6.4 shows the evolution of the population state without smoothing (i.e., for the EDM
(4.1) with static feedback), Figure 6.5 shows the evolution for smoothing with initial payoff
ρ0 = F (µ0), and Figure 6.6 shows the evolution for smoothing with initial payoff given by
ρ0(s) = −s2.

All evolutions appear to exhibit asymptotic stability towards a Nash equilibrium; it is easy
to verify that δ0, δ1, and δ2 are all Nash equilibria of F , and hence the convex combination
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Figure 6.4: Evolution of the distribution function s 7→ µ(t)([0, s]) for the cosine game under
BNN dynamics with static feedback, together with Gaussian initial distribution µ0 (mean 1,
variance 0.1).
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δ2 is as well. Interestingly, in the case of Figure 6.6 where the initial payoff is

uninformative of the game’s structure, the population state initially approaches a different
Nash equilibrium, namely δ0, before the system overcomes the time delay of smoothing and
begins approaching 1

3
δ0 + 1

3
δ1 + 1

3
δ2. However, running the simulations for a longer time

horizon shows that all of these evolutions actually end up adjusting their mass distributions
to coincide with an even different Nash equilibrium, that being 1

2
δ0 + 1

2
δ2 (cf., Figure 6.7 for

the static feedback case).
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Figure 6.5: Evolution of the distribution function s 7→ µ(t)([0, s]) for the cosine game under
BNN dynamics with smoothing, together with Gaussian initial distribution µ0 (mean 1,
variance 0.1) and initial payoff ρ0 = F (µ0).
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Figure 6.6: Evolution of the distribution function s 7→ µ(t)([0, s]) for the cosine game under
BNN dynamics with smoothing, together with Gaussian initial distribution µ0 (mean 1,
variance 0.1) and initial payoff ρ0(s) = −s2.
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Figure 6.7: Long-time evolution of the distribution function s 7→ µ(t)([0, s]) for the cosine
game under BNN dynamics with static feedback, together with Gaussian initial distribution
µ0 (mean 1, variance 0.1).
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Chapter 7

Conclusions

In this thesis, we extend notions from dissipativity theory to evolutionary games with an
infinite number of strategies. Our novel dynamic stability results for games evolving un-
der δ-dissipative evolutionary dynamics provide a complete characterization of the technical
conditions under which such stability is guaranteed. We both specialize our theory to mono-
tone games, and extend our theory to δ-dissipative evolutionary dynamics coupled with
δ-antidissipative dynamic feedback payoffs. Our new framework and results are applicable
to much broader classes of games and dynamics than past works, recovering a handful of
prior stability guarantees as special cases. This breadth is illustrated through case studies in-
cluding a newly proposed variant of the classical war of attrition game. Interesting directions
for future research include the development of sufficient conditions for δ-dissipativity and
δ-antidissipativity from properties of a system’s finite-strategy approximations, the identifi-
cation and analysis of game-theoretic models and applications falling within the scope of our
framework, and extensions to games with multiple populations. Another open problem of
interest is the generalization of the invertibility requirement used in Fox and Shamma (2013,
Theorem 4.6) to our setting of maps between Banach spaces in order to prove δ-antipassivity
of payoff maps generated by smoothing of monotone games.
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Appendix A

Proofs

Proposition 1. Consider a game F : P(S) → C(S), and let µ ∈ P(S). The following are
equivalent:

1. µ is a Nash equilibrium of the game F .

2. EF (δs, µ) ≤ EF (µ, µ) for all s ∈ S.

3. Fµ(s) ≤ Fµ(s′) for all s ∈ S and all s′ ∈ supp(µ).

Proof of Proposition 1. Suppose that the third condition holds, so that Fµ(s) ≤ Fµ(s′) for
all s ∈ S and all s′ ∈ supp(µ). Then, for all s ∈ S, it holds that EF (δs, µ) = Fµ(s) ≤ Fµ(s′)
for all s′ ∈ supp(µ) and consequently that EF (δs, µ) =

∫
S
Fµ(s)dµ(s′) ≤

∫
S
Fµ(s′)dµ(s′) =

EF (µ, µ). Thus, the second condition holds. Furthermore, if ν ∈ P(S), then EF (ν, µ) =∫
S
Fµ(s)dν(s) =

∫
S
EF (δs, µ)dν(s) ≤

∫
S
EF (µ, µ)dν(s) = EF (µ, µ), so the first condition

holds as well.
To complete the proof, we show that the first condition implies the third. Suppose

that the first condition holds, so that EF (ν, µ) ≤ EF (µ, µ) for all ν ∈ P(S). Notice that
sups∈supp(µ)EF (δs, µ) ≤ EF (µ, µ), and also that

sup
s∈supp(µ)

EF (δs, µ) =

∫
S

(
sup

s∈supp(µ)
EF (δs, µ)

)
dµ(s′)

=

∫
supp(µ)

(
sup

s∈supp(µ)
EF (δs, µ)

)
dµ(s′)

≥
∫
supp(µ)

EF (δs′ , µ)dµ(s′)

=

∫
S

Fµ(s′)dµ(s′)

= EF (µ, µ).
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Hence, sups∈supp(µ)EF (δs, µ) = EF (µ, µ). Suppose for the sake of contradiction that there
exists s′ ∈ supp(µ) such that EF (δs′ , µ) < sups∈supp(µ)EF (δs, µ) = EF (µ, µ). Since Fµ is a
continuous real-valued function on S, the preimage U := F−1µ ((−∞, EF (µ, µ))) = {s ∈ S :
Fµ(s) < EF (µ, µ)} is open and contains s′, and hence it must be the case that µ(U) > 0 by
definition of supp(µ). Thus, since the Lebesgue integral of a positive function over a set of
positive measure is positive, we find that

0 = EF (µ, µ)− EF (µ, µ)

=

∫
S

(EF (µ, µ)− Fµ(s))dµ(s)

=

∫
U

(EF (µ, µ)− Fµ(s))dµ(s) +

∫
S\U

(EF (µ, µ)− EF (δs, µ))dµ(s)

≥
∫
U

(EF (µ, µ)− Fµ(s))dµ(s)

> 0,

which is a contradiction. Hence, it must be the case that EF (δs′ , µ) = sups∈supp(µ)EF (δs, µ) =
EF (µ, µ) for all s′ ∈ supp(µ). Therefore, Fµ(s′) = EF (δs′ , µ) = EF (µ, µ) ≥ EF (ν, µ) for all
ν ∈ P(S) and all s′ ∈ supp(µ), and in particular, we find that Fµ(s′) ≥ EF (δs, µ) = Fµ(s)
for all s ∈ S and all s′ ∈ supp(µ), so the third condition holds.

Proposition 2. Consider a game F : P(S) → C(S). If θν : P(S) → R defined by θν(µ) =
EF (ν, µ)− EF (µ, µ) is weakly continuous for all ν ∈ P(S), then NE(F ) is weakly compact.

Proof of Proposition 2. It holds that

NE(F ) = {µ ∈ P(S) : EF (ν, µ)− EF (µ, µ) ≤ 0 for all ν ∈ P(S)}

=
⋂

ν∈P(S)

{µ ∈ P(S) : EF (ν, µ)− EF (µ, µ) ≤ 0}.

For all ν ∈ P(S), the set {µ ∈ P(S) : EF (ν, µ)−EF (µ, µ) ≤ 0} is the preimage of the closed
set (−∞, 0] under the map θν . Hence, if this map is weakly continuous, then NE(F ) is weakly
closed. Since P(S) is weakly compact by Lemma 1, the weakly closed subset NE(F ) ⊆ P(S)
must also be weakly compact.

Proposition 3. Consider a game F : P(S) → C(S). If F is weakly continuous, then
θν : P(S)→ R defined by θν(µ) = EF (ν, µ)−EF (µ, µ) is weakly continuous for all ν ∈ P(S).

Proof of Proposition 3. Suppose that F is weakly continuous and let ν ∈ P(S). Since S is
a metric space, the weak topology on P(S) is metrizable (Dudley, 2002, Theorem 11.3.3).
Therefore, the weak topology on P(S) is first-countable and hence functions with domain
P(S) are weakly continuous if they are weakly sequentially continuous. Thus, to prove
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the claim, it suffices to show that θν is weakly sequentially continuous. To this end, let
{µn ∈ P(S) : n ∈ N} be a sequence that converges weakly to µ ∈ P(S). Then we have that

|EF (ν, µn)− EF (ν, µ)| = | 〈F (µn), ν〉 − 〈F (µ), ν〉 |
= | 〈F (µn)− F (µ), ν〉 |
≤ ‖F (µn)− F (µ)‖∞‖ν‖TV

→ 0

since ‖ν‖TV = 1 and F (µn) → F (µ) in C(S) with the topology induced by ‖ · ‖∞ due to
weak continuity of F . Furthermore, we have that

|EF (µn, µn)− EF (µ, µ)| = | 〈F (µn), µn〉 − 〈F (µ), µ〉 |
≤ | 〈F (µn), µn〉 − 〈F (µ), µn〉 |+ | 〈F (µ), µn〉 − 〈F (µ), µ〉 |
= | 〈F (µn)− F (µ), µn〉 |+ | 〈F (µ), µn − µ〉 |
≤ ‖F (µn)− F (µ)‖∞‖µn‖TV + | 〈F (µ), µn − µ〉 |
= ‖F (µn)− F (µ)‖∞ + | 〈F (µ), µn − µ〉 |
→ 0

since again F (µn) → F (µ) by weak continuity of F , and since 〈F (µ), µn − µ〉 → 0 by
definition of weak convergence of µn to µ. Therefore, we conclude that

θν(µn) = EF (ν, µn)− EF (µn, µn)→ EF (ν, µ)− EF (µ, µ) = θν(µ),

which proves the claim.

Proposition 4. Consider a game F : P(S)→ C(S) and let v : P(S)×C(S)→M(S). If v
is Nash stationary, then the set of rest points of the EDM (4.1) equals NE(F ).

Proof of Proposition 4. Suppose that v is Nash stationary. Let µ ∈ P(S) be a rest point
of the EDM (4.1) with dynamics map v. Then v(µ, F (µ)) = 0. Since v is Nash stationary,
this implies that EF (ν, µ) − EF (µ, µ) = 〈F (µ), ν〉 − 〈F (µ), µ〉 ≤ 0 for all ν ∈ P(S). Thus,
µ ∈ NE(F ). On the other hand, if µ ∈ NE(F ), then 〈F (µ), ν〉 − 〈F (µ), µ〉 = EF (ν, µ) −
EF (µ, µ) ≤ 0, so v(µ, F (µ)) = 0 since v is Nash stationary. Thus, µ is a rest point of the
EDM (4.1) with dynamics map v.

Proposition 5 (Hofbauer et al., 2009; Cheung, 2014). If v : P(S) × C(S) → M(S) is
the dynamics map for either the BNN dynamics of Example 1 or the pairwise comparison
dynamics of Example 2, then v is Nash stationary.

Proof of Proposition 5. Let µ ∈ P(S) and let ρ ∈ C(S). First consider the BNN dynamics
of Example 1. We have that

v(µ, ρ)(B) =

∫
B

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)− µ(B)

∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)
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for all B ∈ B(S). If 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S), then it follows immediately that
v(µ, ρ)(B) = 0 for all B ∈ B(S), and hence v(µ, ρ) = 0.

On the other hand, suppose that v(µ, ρ) = 0. Suppose that∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s) = 0.

Then we find that ∫
B

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s) = 0

for all B ∈ B(S). Hence, max{0, 〈ρ, δs〉 − 〈ρ, µ〉} = 0 for λ-almost every s ∈ S. Since λ
has full support by assumption and s 7→ max{0, 〈ρ, δs〉 − 〈ρ, µ〉} is continuous, this shows
that max{0, 〈ρ, δs〉 − 〈ρ, µ〉} = 0 for all s ∈ S. Hence, 〈ρ, δs〉 ≤ 〈ρ, µ〉 for all s ∈ S. Since
S is compact and ρ is continuous, the optimization sups∈S ρ(s) is attained by some s′ ∈ S.
Therefore, for all ν ∈ P(S) it holds that 〈ρ, ν〉 =

∫
S
ρ(s)dν(s) ≤

∫
S
ρ(s′)dν(s) = ρ(s′) =

〈ρ, δs′〉 ≤ 〈ρ, µ〉. Now suppose that the other case holds, namely, that
∫
S

max{0, 〈ρ, δs〉 −
〈ρ, µ〉}dλ(s) > 0. Then it holds that

µ(B) =

∫
B

max{0, 〈ρ, δs′〉 − 〈ρ, µ〉}∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)
dλ(s′)

for all B ∈ B(S). Suppose for the sake of contradiction that there exists s̃ ∈ S such that
〈ρ, δs̃〉 − 〈ρ, µ〉 > 0. Then, by continuity of s′ 7→ 〈ρ, δs′〉 − 〈ρ, µ〉, the preimage {s′ ∈ S :
〈ρ, δs′〉 − 〈ρ, µ〉 > 0} is open and contains s̃, and hence it must be the case that λ({s′ ∈
S : 〈ρ, δs′〉 − 〈ρ, µ〉 > 0}) > 0 by definition of supp(λ) and the fact that λ has full support.
Therefore, since the Lebesgue integral of a positive function over a set of positive measure
is positive, we find that

〈ρ, µ〉 =

∫
S

ρdµ

=

∫
S

ρ(s′)
max{0, 〈ρ, δs′〉 − 〈ρ, µ〉}∫

S
max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)

dλ(s′)

=

∫
{s′∈S:〈ρ,δs′ 〉−〈ρ,µ〉>0}

〈ρ, δs′〉
max{0, 〈ρ, δs′〉 − 〈ρ, µ〉}∫

S
max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)

dλ(s′)

>

∫
{s′∈S:〈ρ,δs′ 〉−〈ρ,µ〉>0}

〈ρ, µ〉 max{0, 〈ρ, δs′〉 − 〈ρ, µ〉}∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)
dλ(s′)

= 〈ρ, µ〉 ,

which is a contradiction. Hence, it must be that 〈ρ, δs̃〉 ≤ 〈ρ, µ〉 for all s̃ ∈ S. Arguing as in
the prior case, this yields that 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S). Since this exhausts all cases
to be considered, we conclude that indeed v is Nash stationary.



APPENDIX A. PROOFS 44

Now consider the pairwise comparison dynamics of Example 2. We have that

v(µ, ρ)(B) =

∫
S

∫
B

γ(s, s′, ρ)dλ(s′)dµ(s)−
∫
S

∫
B

γ(s′, s, ρ)dµ(s′)dλ(s)

for all B ∈ B(S). By Lemma 3, which we prove after completing the current proof, it
holds that 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S) if and only if ρ(s) ≤ ρ(s′) for all s ∈ S and all
s′ ∈ supp(µ). Thus, if 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S), then max{0, ρ(s) − ρ(s′)} = 0 for
all s ∈ S and all s′ ∈ supp(µ), implying that sign(max{0, ρ(s) − ρ(s′)}) = 0 for all s ∈ S
and all s′ ∈ supp(µ). Hence, since the conditional switch rate γ satisfies sign-preservation
by assumption, we find that

sign(γ(s′, s, ρ)) = 0

for all s ∈ S and all s′ ∈ supp(µ). This implies that v(µ, ρ)(B) = 0 for all B ∈ B(S), and
therefore that v(µ, ρ) = 0.

On the other hand, suppose that v(µ, ρ) = 0. Define the measures v1(µ, ρ), v2(µ, ρ) ∈
M(S) by

v1(µ, ρ)(B) :=

∫
S

∫
B

γ(s, s′, ρ)dλ(s′)dµ(s) =

∫
B

∫
S

γ(s, s′, ρ)dµ(s)dλ(s′),

v2(µ, ρ)(B) :=

∫
S

∫
B

γ(s′, s, ρ)dµ(s′)dλ(s) =

∫
B

∫
S

γ(s′, s, ρ)dλ(s)dµ(s′),

so that v(µ, ρ) = v1(µ, ρ)− v2(µ, ρ). Since v(µ, ρ) = 0, it holds that v1(µ, ρ) = v2(µ, ρ), and
hence 〈ρ, v1(µ, ρ)〉 = 〈ρ, v2(µ, ρ)〉. Therefore,∫

S

ρ(s′)

∫
S

γ(s, s′, ρ)dµ(s)dλ(s′) =

∫
S

ρ(s′)

∫
S

γ(s′, s, ρ)dλ(s)dµ(s′).

Hence, ∫
S

∫
S

ρ(s′)γ(s, s′, ρ)dµ(s)dλ(s′) =

∫
S

∫
S

ρ(s′)γ(s′, s, ρ)dλ(s)dµ(s′),

implying that ∫
S

∫
S

(ρ(s)− ρ(s′))γ(s′, s, ρ)dµ(s′)dλ(s) = 0.

By sign-preservation of the conditional switch rate γ, it holds that

sign(γ(s′, s, ρ)) = sign(max{0, ρ(s)− ρ(s′)})

for all s, s′ ∈ S, and therefore, if ρ(s) ≥ ρ(s′), we find that γ(s′, s, ρ) ≥ 0 so that (ρ(s) −
ρ(s′))γ(s′, s, ρ) ≥ 0, and similarly if ρ(s) ≤ ρ(s′), we find that γ(s′, s, ρ) = 0 so that (ρ(s)−
ρ(s′))γ(s′, s, ρ) = 0. Hence, (ρ(s) − ρ(s′))γ(s′, s, ρ) ≥ 0 for all s, s′ ∈ S, and also

∫
S
(ρ(s) −

ρ(s′))γ(s′, s, ρ)dµ(s′) ≥ 0 for all s ∈ S. Since s 7→
∫
S
(ρ(s)− ρ(s′))γ(s′, s, ρ)dµ(s′) is continu-

ous (which follows from compactness of S and continuity of s′ 7→ (ρ(s) − ρ(s′))γ(s′, s, ρ),



APPENDIX A. PROOFS 45

together with the dominated convergence theorem), the preimage {s ∈ S :
∫
S
(ρ(s) −

ρ(s′))γ(s′, s, ρ)dµ(s′) > 0} is open and therefore must be empty, for otherwise
∫
S

∫
S
(ρ(s) −

ρ(s′))γ(s′, s, ρ)dµ(s′)dλ(s) > 0 as λ has full support. Hence,∫
S

(ρ(s)− ρ(s′))γ(s′, s, ρ)dµ(s′) = 0 for all s ∈ S.

Similarly, since s′ 7→ (ρ(s) − ρ(s′))γ(s′, s, ρ) is continuous for all s ∈ S, the preimage {s′ ∈
S : (ρ(s)− ρ(s′))γ(s′, s, ρ) > 0} is open for all s ∈ S, and hence for all s′ ∈ supp(µ) it must
be the case that

(ρ(s)− ρ(s′))γ(s′, s, ρ) = 0

for all s ∈ S. Thus, for all s ∈ S and all s′ ∈ supp(µ), either ρ(s) = ρ(s′), or γ(s′, s, ρ) = 0.
In the latter case, we see by sign-preservation of the conditional switch rate that

sign(max{0, ρ(s)− ρ(s′)}) = sign(γ(s′, s, ρ)) = 0,

and hence ρ(s) ≤ ρ(s′). Therefore, we conclude that

ρ(s) ≤ ρ(s′) for all s ∈ S and all s′ ∈ supp(µ).

By Lemma 3, this proves that 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S), and consequently that v is
Nash stationary.

Lemma 3. It holds that 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S) if and only if ρ(s) ≤ ρ(s′) for all
s ∈ S and all s′ ∈ supp(µ).

Proof of Lemma 3. Suppose first that ρ(s) ≤ ρ(s′) for all s ∈ S and all s′ ∈ supp(µ). Then,
it holds that

ρ(s) =

∫
S

ρ(s)dµ(s′) ≤
∫
S

ρ(s′)dµ(s′) = 〈ρ, µ〉

for all s ∈ S. Therefore, for all ν ∈ P(S), we conclude that

〈ρ, ν〉 =

∫
S

ρ(s)dν(s) ≤
∫
S

〈ρ, µ〉 dν(s) = 〈ρ, µ〉 ,

which proves one direction of the lemma.
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On the other hand, suppose that 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S). Then we have that
ρ(s) = 〈ρ, δs〉 ≤ 〈ρ, µ〉 for all s ∈ S. Furthermore,

sup
s∈supp(µ)

ρ(s) =

∫
S

(
sup

s∈supp(µ)
ρ(s)

)
dµ(s′)

=

∫
supp(µ)

(
sup

s∈supp(µ)
ρ(s)

)
dµ(s′)

≥
∫
supp(µ)

ρ(s′)dµ(s′)

=

∫
S

ρ(s′)dµ(s′)

= 〈ρ, µ〉 .

Hence, sups∈supp(µ) ρ(s) = 〈ρ, µ〉. Suppose for the sake of contradiction that there exists
s′ ∈ supp(µ) such that ρ(s′) < sups∈supp(µ) ρ(s) = 〈ρ, µ〉. Since ρ is a continuous real-valued
function on S, the preimage U := ρ−1((−∞, 〈ρ, µ〉)) = {s ∈ S : ρ(s) < 〈ρ, µ〉} is open and
contains s′, and hence it must be the case that µ(U) > 0 by definition of supp(µ). Thus,
since the Lebesgue integral of a positive function over a set of positive measure is positive,
we find that

0 = 〈ρ, µ〉 − 〈ρ, µ〉

=

∫
S

(〈ρ, µ〉 − ρ(s))dµ(s)

=

∫
U

(〈ρ, µ〉 − ρ(s))dµ(s) +

∫
S\U

(〈ρ, µ〉 − ρ(s))dµ(s)

≥
∫
U

(〈ρ, µ〉 − ρ(s))dµ(s)

> 0,

which is a contradiction. Hence, it must be the case that ρ(s′) = sups∈supp(µ) ρ(s) = 〈ρ, µ〉
for all s′ ∈ supp(µ). Therefore, ρ(s′) = 〈ρ, µ〉 ≥ 〈ρ, ν〉 for all ν ∈ P(S) and all s′ ∈ supp(µ),
and in particular, we find that ρ(s′) ≥ 〈ρ, δs〉 = ρ(s) for all s ∈ S and all s′ ∈ supp(µ). This
concludes the proof.

Lemma 4. The map µ 7→ DV (µ)v(µ, F (µ)) is weakly continuous.

Proof of Lemma 4. Since S is a metric space, the weak topology on P(S) is metrizable
(Dudley, 2002, Theorem 11.3.3). Therefore, the weak topology on P(S) is first-countable
and hence functions with domain P(S) are weakly continuous if they are weakly sequentially
continuous. Thus, to prove the claim, it suffices to show that

DV (µn)v(µn, F (µn))→ DV (µ)v(µ, F (µ))
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whenever µn → µ weakly. To this end, let {µn ∈ P(S) : n ∈ N} be a sequence that converges
weakly to µ ∈ P(S). Then we have that

|DV (µn)v(µn, F (µn))−DV (µ)v(µ, F (µ))| = |DV (µn)v(µn, F (µn))−DV (µ)v(µ, F (µ))|
≤ |DV (µ)(v(µn, F (µn))− v(µ, F (µ)))|

+ |(DV (µn)−DV (µ))v(µ, F (µ))|
+ |(DV (µn)−DV (µ))(v(µn, F (µn))

− v(µ, F (µ)))|.
(A.1)

Assume for the time being that every Fréchet derivative DV (ν) is weakly continuous, and
that DV is weakly continuous on P(S). Then, under this assumption, it holds that

|DV (µ)(v(µn, F (µn))− v(µ, F (µ)))| → 0,

since v(µn, F (µn))→ v(µ, F (µ)) weakly, as F is weakly continuous and v is continuous with
respect to the weak-∞ topology on its domain and the weak topology on its codomain.
Furthermore,

|(DV (µn)−DV (µ))v(µ, F (µ))| ≤ ‖DV (µn)−DV (µ)‖M(S)∗‖v(µ, F (µ))‖TV → 0,

since DV (µn)→ DV (µ) in the dual space M(S)∗ with associated operator norm ‖ · ‖M(S)∗

induced by the total variation norm onM(S), as DV : U∩U ′ →M(S)∗ is weakly continuous
on P(S) by our above assumption. Finally,

|(DV (µn)−DV (µ))(v(µn, F (µn))− v(µ, F (µ)))|
≤ ‖DV (µn)−DV (µ)‖M(S)∗‖v(µn, F (µn))− v(µ, F (µ))‖TV

≤ 2‖DV (µn)−DV (µ)‖M(S)∗ sup
ν∈P(S)

‖v(ν, F (ν))‖TV

→ 0,

since again DV (µn) → DV (µ) in M(S)∗ by the weak continuity assumption on DV , and
supν∈P(S) ‖v(ν, F (ν))‖TV ≤ sup(ν,g)∈P(S)×F (P(S)) ‖v(ν, g)‖TV ≤ M for some finite M ∈ [0,∞)
by the ‖ · ‖TV-boundedness of v on weak-∞ compact subsets of P(S) × C(S). Therefore,
under the above assumptions, it must be that

DV (µn)v(µn, F (µn))→ DV (µ)v(µ, F (µ)),

which is what was to be proven. Thus, it remains to prove the above assumptions, namely,
that every Fréchet derivative DV (ν) is weakly continuous, and that DV is weakly continuous
on P(S).

Let us first prove that DV (µ) : M(S)→ R is weakly continuous for all µ ∈ U ∩ U ′. Let
µ ∈ U ∩ U ′. Since ∂2Σ(µ, ρ) : C(S) → R is continuous (with respect to the topology on
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C(S) induced by ‖ · ‖∞) for all ρ ∈ C(S) by definition of the Fréchet derivative, and since
DF (µ) : M(S)→ C(S) is weakly continuous under the hypotheses of the theorem, it holds
that the composition ∂2Σ(µ, F (µ))◦DF (µ) : M(S)→ R is weakly continuous. Since we also
have that ∂1Σ(µ, F (µ)) : M(S) → R is also weakly continuous under the hypotheses of the
theorem, we conclude that

DV (µ) = ∂1Σ(µ, F (µ)) + ∂2Σ(µ, F (µ)) ◦DF (µ)

is weakly continuous, which proves the first assumption to be proven.
Finally, let us prove the remaining assumption, namely, that DV : U ∩ U ′ → M(S)∗ is

weakly continuous on P(S) (that is, continuous with respect to the weak topology on its
domain U ∩ U ′ ⊆M(S) and the topology on its codomain M(S)∗ induced by the operator
norm ‖·‖M(S)∗). Once again, since we are considering weak continuity of a function on P(S),
where the weak topology is first-countable, it suffices to prove weak sequential continuity.
Let {µn ∈ P(S) : n ∈ N} be a sequence that converges weakly to µ ∈ P(S). Then

‖DV (µn)−DV (µ)‖M(S)∗ ≤
∥∥∂1Σ(µn, F (µn))− ∂1Σ(µ, F (µ))

∥∥
M(S)∗

+
∥∥∂2Σ(µn, F (µn)) ◦DF (µn)− ∂2Σ(µ, F (µ)) ◦DF (µ)

∥∥
M(S)∗

.

It is clear that the first term in the above upper bound converges to 0 due to the weak-∞
continuity of (ν, ρ) 7→ ∂1Σ(ν, ρ) together with the weak continuity of F . Further upper-
bounding the second term in a similar manner to the bound (A.1) and appealing to the
finiteness of ‖ϕ‖TV and ‖ψ‖M(S)∗ for ϕ ∈ C(S)∗ =M(S) and ψ ∈M(S)∗ together with the
weak continuity of F and DF as well as the weak-∞ continuity of (ν, ρ) 7→ ∂2Σ(ν, ρ) yields
that the second term converges to 0 as well. Thus, DV (µn)→ DV (µ) in M(S)∗, so DV is
indeed weakly continuous on P(S).

Proposition 6. If v : P(S) × C(S) → M(S) is the dynamics map for either the BNN
dynamics of Example 1 or the impartial pairwise comparison dynamics of Example 2, then
v is strictly δ-passive.

Proof of Proposition 6. We prove the result for the two dynamics separately.

BNN dynamics. Consider the BNN dynamics of Example 1. We have that

v(µ, ρ)(B) =

∫
B

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)− µ(B)

∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)

for all µ ∈ P(S), all ρ ∈ C(S), and all B ∈ B(S). Define Σ: M(S) × C(S) → R and
σ : P(S)× C(S)→ R by

Σ(µ, ρ) =
1

2

∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}2dλ(s),

σ(µ, ρ) = 〈ρ, v(µ, ρ)〉
∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s).
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Notice that Σ(µ, ρ) and σ(µ, ρ) are finite for all µ ∈ M(S) and all ρ ∈ C(S), since s 7→
max{0, 〈ρ, δs〉 − 〈ρ, µ〉} and s 7→ max{0, 〈ρ, δs〉 − 〈ρ, µ〉}2 are continuous and S is compact.
Also notice that Σ(µ, ρ) ≥ 0 for all µ ∈ M(S) and all ρ ∈ C(S). Thus, we may define
Σ: P(S)×C(S)→ R+ by the restriction of Σ to the domain P(S)×C(S) ⊆M(S)×C(S).
We claim that σ and Σ are appropriate maps to prove the strict δ-passivity of v.

To this end, first note thatM(S) is strongly open, Σ is weak-∞-continuous, Σ is Fréchet
differentiable, (µ, ρ) 7→ ∂1Σ(µ, ρ) and (µ, ρ) 7→ ∂2Σ(µ, ρ) are weak-∞-continuous, and every
partial Fréchet derivative ∂1Σ(µ, ρ) is weakly continuous. All that remains to prove are (5.1)
with w : (µ, η) 7→ 〈η, µ〉, (5.2), (5.3), and that σ ≥ 0.

Let µ ∈ P(S) and ρ ∈ C(S). It holds that Σ(µ, ρ) = 0 if and only if∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}2dλ(s) = 0. (A.2)

Since s 7→ max{0, 〈ρ, δs〉 − 〈ρ, µ〉}2 is a continuous real-valued function on S, the preimage
U := {s ∈ S : max{0, 〈ρ, δs〉− 〈ρ, µ〉}2 > 0} is open. Therefore, if U is nonempty, it contains
some s′ ∈ S, and hence since λ has full support, s′ must be an element of supp(λ), implying
that λ(U) > 0. This in turn would imply that

∫
U

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}2dλ(s) > 0 as the
Lebesgue integral of a positive function over a set of positive measure is positive. However,
this would contradict (A.2). Thus, Σ(µ, ρ) = 0 if and only if

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}2 = 0 for all s ∈ S,

which holds if and only if
ρ(s) ≤ 〈ρ, µ〉 for all s ∈ S. (A.3)

It is clear that, if 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S), then (A.3) holds. Conversely, if (A.3)
holds, then 〈ρ, ν〉 =

∫
S
ρ(s)dν(s) ≤

∫
S
〈ρ, µ〉 dν(s) = 〈ρ, µ〉 for all ν ∈ P(S), and thus by

Nash stationarity of v (Proposition 5) we conclude that Σ(µ, ρ) = 0 if and only if

v(µ, ρ) = 0,

which proves (5.2).
Again let µ ∈ P(S) and ρ ∈ C(S). If v(µ, ρ) = 0, then certainly σ(µ, ρ) = 0 due to

linearity of 〈ρ, ·〉. Notice that

〈ρ, v(µ, ρ)〉 =

∫
S

ρ(s′)d(v(µ, ρ))(s′)

=

∫
S

ρ(s′) max{0, 〈ρ, δs′〉 − 〈ρ, µ〉}dλ(s′)

−
∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)

∫
S

ρ(s′)dµ(s′)

=

∫
S

(
ρ(s′)−

∫
S

ρ(s̃)dµ(s̃)

)
max{0, 〈ρ, δs′〉 − 〈ρ, µ〉}dλ(s′)

=

∫
S

(〈ρ, δs′〉 − 〈ρ, µ〉) max{0, 〈ρ, δs′〉 − 〈ρ, µ〉}dλ(s′).
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Notice that (〈ρ, δs′〉−〈ρ, µ〉) max{0, 〈ρ, δs′〉−〈ρ, µ〉} ≥ 0 for all s′ ∈ S and hence 〈ρ, v(µ, ρ)〉 ≥
0. Furthermore, by the usual arguments based on continuity and nonnegativity of the inte-
grand together with full support of λ, we see that

〈ρ, v(µ, ρ)〉 = 0

if and only if
ρ(s′) = 〈ρ, δs′〉 ≤ 〈ρ, µ〉 for all s′ ∈ S,

which, as shown above, holds true if and only if v(µ, ρ) = 0. Furthermore, notice that by
the same arguments, ∫

S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s) ≥ 0,

with equality holding if and only if v(µ, ρ) = 0. Thus,

σ(µ, ρ) = 〈ρ, v(µ, ρ)〉
∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s) ≥ 0,

with equality holding if and only if v(µ, ρ) = 0. This proves (5.3).
All that remains to be proven is (5.1) with w : (µ, η) 7→ 〈η, µ〉. Let µ ∈ P(S), ρ ∈ C(S),

and η ∈ C(S). Define τ : R → R+ by τ(r) = max{0, r}2, so that τ ′(r) = 2 max{0, r} and
Σ(µ, ρ) = 1

2

∫
S
τ(〈ρ, δs〉 − 〈ρ, µ〉)dλ(s). Computing the first partial Fréchet derivative of Σ

using the chain rule yields that

∂1Σ(µ, ρ)v(µ, ρ) =
1

2

∫
S

τ ′(〈ρ, δs〉 − 〈ρ, µ〉)(−〈ρ, v(µ, ρ)〉)dλ(s)

= −〈ρ, v(µ, ρ)〉
∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)

= −σ(µ, ρ).
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Computing the second partial Fréchet derivative of Σ using the chain rule yields that

∂2Σ(µ, ρ)η =
1

2

∫
S

τ ′(〈ρ, δs〉 − 〈ρ, µ〉)(〈η, δs〉 − 〈η, µ〉)dλ(s)

=

∫
S

(〈η, δs〉 − 〈η, µ〉) max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)

=

∫
S

(
η(s)−

∫
S

η(s̃)dµ(s̃)

)
max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)

=

∫
S

η(s) max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)

−
∫
S

η(s̃)dµ(s̃)

∫
S

max{0, 〈ρ, δs〉 − 〈ρ, µ〉}dλ(s)

=

∫
S

η(s)d(v(µ, ρ))(s)

= 〈η, v(µ, ρ)〉
= w(v(µ, ρ), η).

Thus, altogether we find that

∂1Σ(µ, ρ)v(µ, ρ) + ∂2Σ(µ, ρ)η = −σ(µ, ρ) + w(v(µ, ρ), η),

which shows that (5.1) holds and hence concludes the proof for the BNN dynamics.

Impartial pairwise comparison dynamics. Consider the impartial pairwise comparison
dynamics of Example 2. We have that

v(µ, ρ)(B) =

∫
B

∫
S

γ(s, s′, ρ)dµ(s)dλ(s′)−
∫
B

∫
S

γ(s′, s, ρ)dλ(s)dµ(s′)

for all µ ∈ P(S), all ρ ∈ C(S), and all B ∈ B(S). Since the pairwise comparison dynamics
under consideration are impartial, it holds that for all s′ ∈ S, there exists some continuous
function φs′ : R→ R+ such that

γ(s, s′, ρ) = φs′(ρ(s′)− ρ(s))

for all s ∈ S and all ρ ∈ C(S). For all s′ ∈ S, define τs′ : R→ R+ by

τs′(r) =

∫
[0,r]

φs′(u)du,

where we see that τs′(r) = 0 whenever r < 0, since we take [0, r] = ∅ in such cases. Notice
that τs′ is strictly increasing on [0,∞) since φs′(u) > 0 for all u > 0: let u > 0, let s, s′ ∈ S
be such that s 6= s′, and let ρ ∈ C(S) be such that ρ(s′) − ρ(s) = u > 0 (which exists
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by Urysohn’s lemma and the fact that S is a metric space and hence normal), so that, by
sign-preservation, we have that sign(φs′(u)) = sign(φs′(ρ(s′) − ρ(s))) = sign(γ(s, s′, ρ)) =
sign(max{0, ρ(s′)− ρ(s)}) = 1. Define Σ: M(S)× C(S)→ R and σ : P(S)× C(S)→ R by

Σ(µ, ρ) =

∫
S

∫
S

τs(ρ(s)− ρ(s′))dλ(s)dµ(s′),

σ(µ, ρ) = −Σ(v(µ, ρ), ρ).

Notice that Σ(µ, ρ) is finite for all µ ∈M(S) and all ρ ∈ C(S) since (s, s′) 7→ τs(ρ(s)−ρ(s′))
is continuous and S is compact. Also notice that Σ(µ, ρ) ≥ 0 for all µ ∈ P(S) and all
ρ ∈ C(S). Thus, we may define Σ: P(S)×C(S)→ R+ by the restriction of Σ to the domain
P(S) × C(S) ⊆ M(S) × C(S). We claim that σ and Σ are appropriate maps to prove the
strict δ-passivity of v.

To this end, first note thatM(S) is strongly open, Σ is weak-∞-continuous, Σ is Fréchet
differentiable, (µ, ρ) 7→ ∂1Σ(µ, ρ) and (µ, ρ) 7→ ∂2Σ(µ, ρ) are weak-∞-continuous, and every
partial Fréchet derivative ∂1Σ(µ, ρ) is weakly continuous. All that remains to prove are (5.1)
with w : (µ, η) 7→ 〈η, µ〉, (5.2), (5.3), and that σ ≥ 0.

Let µ ∈ P(S) and ρ ∈ C(S). It holds that Σ(µ, ρ) = 0 if and only if∫
S

∫
S

τs(ρ(s)− ρ(s′))dλ(s)dµ(s′) = 0,

which holds if and only if

τs(ρ(s)− ρ(s′)) = 0 for all s ∈ S and all s′ ∈ supp(µ),

since λ has full support, s 7→ τs(ρ(s)−ρ(s′)) is nonnegative and continuous for all s′ ∈ S, and
s′ 7→

∫
S
τs(ρ(s)−ρ(s′))dλ(s) is nonnegative and continuous (which follows from compactness

of S together with the dominated convergence theorem). Since, for all s ∈ S, it holds that
τs is strictly increasing on [0,∞) and τs(0) = 0, it must be that Σ(µ, ρ) = 0 if and only if

ρ(s) ≤ ρ(s′) for all s ∈ S and all s′ ∈ supp(µ).

Therefore, by Lemma 3, it holds that 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S). Hence, by Nash
stationarity of v (Proposition 5), it holds that Σ(µ, ρ) = 0 if and only if

v(µ, ρ) = 0,

which proves (5.2).
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Again let µ ∈ P(S) and ρ ∈ C(S). If v(µ, ρ) = 0, then σ(µ, ρ) = −Σ(v(µ, ρ), ρ) = 0 due
to linearity of Σ(·, ρ). Writing out σ(µ, ρ), we find that

σ(µ, ρ) = −
∫
S

∫
S

τs(ρ(s)− ρ(s′))dλ(s)d(v(µ, ρ))(s′)

= −
∫
S

(∫
S

τs(ρ(s)− ρ(s′))dλ(s)

)(∫
S

γ(s, s′, ρ)dµ(s)

)
dλ(s′)

+

∫
S

(∫
S

τs(ρ(s)− ρ(s′))dλ(s)

)(∫
S

γ(s′, s, ρ)dλ(s)

)
dµ(s′)

=

∫
S

∫
S

γ(s′, s, ρ)

∫
S

(τs̃(ρ(s̃)− ρ(s′))− τs̃(ρ(s̃)− ρ(s))) dλ(s̃)dλ(s)dµ(s′).

For all s, s′ ∈ S such that ρ(s) ≤ ρ(s′), it holds by sign-preservation that sign(γ(s′, s, ρ)) =
sign(max{0, ρ(s) − ρ(s′)}) = 0, and therefore γ(s′, s, ρ) = 0 for all such s, s′. On the other
hand, if s, s′ ∈ S are such that ρ(s) > ρ(s′), then sign(γ(s′, s, ρ)) = sign(max{0, ρ(s) −
ρ(s′)}) = 1, implying that γ(s′, s, ρ) > 0. Furthermore, in this case with ρ(s) > ρ(s′), we see
that ρ(s̃)− ρ(s) < ρ(s̃)− ρ(s′) for all s̃ ∈ S, and therefore τs̃(ρ(s̃)− ρ(s′)) ≥ τs̃(ρ(s̃)− ρ(s))
for all s̃ ∈ S by the fact that every τs̃ is nondecreasing. Thus, we immediately see that

σ(µ, ρ) ≥ 0.

We furthermore see that if σ(µ, ρ) = 0, then

γ(s′, s, ρ)

∫
S

(τs̃(ρ(s̃)− ρ(s′))− τs̃(ρ(s̃)− ρ(s))) dλ(s̃) = 0 for all s ∈ S and all s′ ∈ supp(µ)

by the usual arguments based on continuity and nonnegativity of the integrand together
with full support of λ. Thus, let s ∈ S and s′ ∈ supp(µ). Either γ(s′, s, ρ) = 0, or∫
S

(τs̃(ρ(s̃)− ρ(s′))− τs̃(ρ(s̃)− ρ(s))) dλ(s̃) = 0. In the former case, it must be that ρ(s) ≤
ρ(s′), for otherwise φs(ρ(s) − ρ(s′)) > 0, which would contradict the fact that φs(ρ(s) −
ρ(s′)) = γ(s′, s, ρ) = 0. Suppose that the latter case holds. Then either ρ(s) ≤ ρ(s′)
or ρ(s) > ρ(s′). If ρ(s) > ρ(s′), then, as argued above, we find that τs̃(ρ(s̃) − ρ(s′)) −
τs̃(ρ(s̃) − ρ(s)) ≥ 0 for all s̃ ∈ S, and hence by the usual arguments based on continuity
and nonnegativity of the integrand together with the full support of λ, we conclude that
τs̃(ρ(s̃) − ρ(s′)) = τs̃(ρ(s̃) − ρ(s)) for all s̃ ∈ S. In this case, by the fact that every τs̃ is
strictly increasing on [0,∞) and ρ(s′) 6= ρ(s), it must be the case that, for all s̃ ∈ S, we
have that ρ(s̃) − ρ(s′) ≤ 0 and ρ(s̃) − ρ(s) ≤ 0. But these two inequalities cannot hold
simultaneously, as they would imply that ρ(s) ≤ ρ(s′) and ρ(s′) ≤ ρ(s), which contradicts
the fact that ρ(s) > ρ(s′) in the case under consideration. Hence, we conclude that, when
σ(µ, ρ) = 0, it must hold that

ρ(s) ≤ ρ(s′) for all s ∈ S and all s′ ∈ supp(µ).
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Thus, by Lemma 3, we find that 〈ρ, ν〉 ≤ 〈ρ, µ〉 for all ν ∈ P(S), and therefore by Nash
stationarity of v (Proposition 5), it holds that v(µ, ρ) = 0 whenever σ(µ, ρ) = 0. This proves
(5.3).

All that remains to be proven is (5.1) with w : (µ, η) 7→ 〈η, µ〉. Let µ ∈ P(S), ρ ∈ C(S),
and η ∈ C(S). Since Σ(·, ρ) is linear, it is immediate that D(Σ(·, ρ))(µ) = Σ(·, ρ), which
implies that

∂1Σ(µ, ρ)v(µ, ρ) = Σ(v(µ, ρ), ρ) = −σ(µ, ρ).

Furthermore, computing the second partial Fréchet derivative of Σ using the chain rule yields
that

∂2Σ(µ, ρ)η =

∫
S

∫
S

τ ′s(ρ(s)− ρ(s′))(η(s)− η(s′))dλ(s)dµ(s′),

where the derivatives of the functions τs : R→ R+ are computed via the fundamental theorem
of calculus:

τ ′s(r) =
d

dr

∫
[0,r]

φs(u)du = φs(r).

By impartiality of the pairwise comparison dynamics under consideration, we find that

∂2Σ(µ, ρ)η =

∫
S

∫
S

γ(s′, s, ρ)(η(s)− η(s′))dλ(s)dµ(s′)

=

∫
S

η(s)

∫
S

γ(s′, s, ρ)dµ(s′)dλ(s)−
∫
S

η(s′)

∫
S

γ(s′, s, ρ)dλ(s)dµ(s′)

=

∫
S

η(s′)

∫
S

γ(s, s′, ρ)dµ(s)dλ(s′)−
∫
S

η(s′)

∫
S

γ(s′, s, ρ)dλ(s)dµ(s′)

=

∫
S

η(s′)d(v(µ, ρ))(s′)

= 〈η, v(µ, ρ)〉
= w(v(µ, ρ), η).

Thus, altogether we find that

∂1Σ(µ, ρ)v(µ, ρ) + ∂2Σ(µ, ρ)η = −σ(µ, ρ) + w(v(µ, ρ), η),

which shows that (5.1) holds and hence concludes the proof.

Corollary 1. Consider a game F : P(S) → C(S), let v : P(S) × C(S) → TP(S), and as-
sume that Assumption 1 holds. Furthermore, assume that Assumption 2 holds and that the
extension F is continuously Fréchet differentiable. If F is monotone and v is the dynam-
ics map for either the BNN dynamics of Example 1 or the impartial pairwise comparison
dynamics of Example 2, then NE(F ) is weakly Lyapunov stable under the EDM (4.1). If,
additionally, Assumption 3 holds, then NE(F ) is globally weakly attracting under the EDM
(4.1).
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Proof of Corollary 1. Notice that weak Lyapunov stability of NE(F ) follows immediately
from Theorem 2 together with Proposition 5 and Proposition 6. Furthermore, global weak
attraction of NE(F ) under Assumption 3 follows by additionally noting that, for both the
BNN dynamics and the impartial pairwise comparison dynamics, v satisfies the appropriate
continuity conditions of Assumption 4 and v is ‖ · ‖TV-bounded on weak-∞ compact subsets
of P(S)×C(S) (the latter condition of which follows from the fact that v(µ, ρ)(B) ≤ 4‖ρ‖∞
for all µ ∈ P(S) and all ρ ∈ C(S) for the BNN dynamics and that the conditional switch
rate γ is assumed bounded for the pairwise comparison dynamics).

Lemma 5. The map µ 7→ DV (µ)v(µ, F (µ)) is weakly continuous.

Proof of Lemma 5. The result follows from a nearly identical analysis as in the proof of
Lemma 4 with minor changes. In particular, it follows from the ‖ · ‖TV-boundedness of v
on P(S) × K, the weak-∞-to-weak continuity of v, the weak-∞ continuity of u, the weak
continuity of every ∂1Σ(µ, ρ) and every ∂1Γ(µ, ρ), and the weak-∞ continuity of the maps
(µ, ρ) 7→ ∂1Σ(µ, ρ), (µ, ρ) 7→ ∂2Σ(µ, ρ), (µ, ρ) 7→ ∂1Γ(µ, ρ), and (µ, ρ) 7→ ∂2Γ(µ, ρ).

Corollary 2. Consider a weakly continuous game F : P(S)→ C(S), let v : P(S)×C(S)→
TP(S), and let u : P(S) × C(S) → C(S). Assume that Assumption 5 holds. Furthermore,
assume that Assumption 6 holds with some compact K ⊆ C(S) containing F (NE(F )), and
that Assumption 7 holds. If v is the dynamics map for either the BNN dynamics of Example 1
or the impartial pairwise comparison dynamics of Example 2 and u is F -payoff stationary
and strictly δ-antipassive, then

P := {(µ, ρ) ∈ P(S)× C(S) : v(µ, ρ) = 0, u(µ, ρ) = 0}

is a subset of NE(F )× F (NE(F )) and is weak-∞-Lyapunov stable under the DPEDM (5.7)
and weak-∞-attracting under the DPEDM (5.7) from every (µ0, ρ0) ∈ P(S)×K.

Proof of Corollary 2. The proof follows analogously to that of Corollary 1.

Corollary 3. Consider the continuous war of attrition game F : P(S) → C(S) defined by
(6.2). If v : P(S) × C(S) → TP(S) is the dynamics map for either the BNN dynamics of
Example 1 or the impartial pairwise comparison dynamics of Example 2 and if Assumption 1
holds, then NE(F ) is weakly Lyapunov stable and globally weakly attracting under the EDM
(4.1).

Proof of Corollary 3. This is immediate from Corollary 1 together with Theorem 4 and the
fact that F satisfies all of the appropriate regularity conditions.
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Appendix B

Supplementary Definitions and
Results

B.1 Differentiation in Banach Spaces

Here, we review formal definitions for the notions of differentiability used throughout this
thesis.

Definition 18. Let (X, ‖ · ‖) be a Banach space. A mapping x : [0,∞)→ X is differentiable
at t = 0 if there exists ẋ(0) ∈ X such that

lim
ε↓0

∥∥∥∥x(ε)− x(0)

ε
− ẋ(0)

∥∥∥∥ = 0,

and is differentiable at t ∈ (0,∞) if there exists ẋ(t) ∈ X such that

lim
ε→0

∥∥∥∥x(t+ ε)− x(t)

ε
− ẋ(t)

∥∥∥∥ = 0,

and in either of these cases, ẋ(t) is called the derivative of x at t. A mapping x : [0,∞)→ X
that is differentiable at t = 0 and at every t ∈ (0,∞) is called differentiable.

Definition 19. A mapping µ : [0,∞)→M(S) is strongly differentiable at t ∈ [0,∞) if µ is
differentiable at t with respect to the norm ‖ · ‖TV on the Banach space M(S).

A strong derivative µ̇(t) of µ at t, if it exists, is necessarily unique. The qualifier “strong”
is used to emphasize that µ̇(t) is defined in terms of convergence with respect to the strong
topology. Note that if µ is strongly differentiable, then it is continuous with respect to the
strong topology. In this case, since every weakly open set is strongly open, it must also be
that µ is weakly continuous.
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Definition 20. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and let U ⊆ X be open. A
mapping f : U → Y is called Fréchet differentiable at x ∈ U if there exists a bounded linear
operator Df(x) : X → Y such that

lim
ε→0

‖f(x+ ε)− f(x)−Df(x)ε‖Y
‖ε‖X

= 0,

and in this case Df(x) is called the Fréchet derivative of f at x. A mapping f : U → Y that
is Fréchet differentiable at every x ∈ U is called Fréchet differentiable.

Throughout this work, we consider maps f : U → Y with U ⊆ X where (X, ‖ · ‖X) and
(Y, ‖ · ‖Y ) may be (R, | · |), (M(S), ‖ · ‖TV), or (C(S), ‖ · ‖∞). Fréchet differentiability is
always with respect to one of the norms | · |, ‖ · ‖TV, or ‖ · ‖∞ in this work. The particular
norm is clear from context. We remark that µ : [0,∞)→M(S) is strongly differentiable on
(0,∞) if and only if it is Fréchet differentiable on (0,∞). In this case, the strong derivative
coincides with the Fréchet derivative under the identification of µ̇(t) with the linear map
Dµ(t) : R→M(S) defined by usual multiplication; Dµ(t) : ε 7→ µ̇(t)ε. We similarly identify
Dµ(0) with µ̇(0) when µ is strongly differentiable at 0. As is the case with strong derivatives,
Fréchet derivatives are unique when they exist.

Partial Fréchet differentiation is defined as follows:

Definition 21. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be Banach spaces and let U ⊆ X
and V ⊆ Y be open. Let (x, y) ∈ U×Y and assume that f(·, y) : U → Z and f(x, ·) : V → Z
are Fréchet differentiable. The first partial Fréchet derivative of f at (x, y) is the bounded
linear operator ∂1f(x, y) : X → Z defined by

∂1f(x, y) = D(f(·, y))(x).

Similarly, the second partial Fréchet derivative of f at (x, y) is the bounded linear operator
∂2f(x, y) : Y → Z defined by

∂2f(x, y) = D(f(x, ·))(y).

B.2 Alternative Notions of Equilibrium in Population

Games

Aside from the notion of a Nash equilibrium, another commonly used notion of static stability
within evolutionary game theory is the following, due to Smith (1974).

Definition 22. A population state µ ∈ P(S) is an evolutionarily stable state (ESS) of the
game F : P(S) → C(S) if, for all ν ∈ P(S) \ {µ}, there exists ε(ν) ∈ (0, 1] such that for all
η ∈ (0, ε(ν)] it holds that

hFν:µ(η) := EF (ν, (1− η)µ+ ην)− EF (µ, (1− η)µ+ ην) < 0. (B.1)
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The function hFν:µ is called the score function of ν against µ, and the value ε(ν) is called an
invasion barrier for µ against ν.

Intuitively, a population state µ ∈ P(S) is evolutionarily stable whenever the average
mean payoff to a mutated population ν is lower given payoffs defined by a small mutation
(1−η)µ+ην towards it, i.e., the population is not incentivized to continue evolving towards
any mutant population given a small fluctuation towards it. Perhaps less commonly used is
the following relaxation of evolutionary stability—yet, it becomes important in the study of
monotone games to be defined later.

Definition 23. A population state µ ∈ P(S) is a neutrally stable state (NSS) of the game
F : P(S)→ C(S) if, for all ν ∈ P(S), there exists ε(ν) ∈ (0, 1] such that for all η ∈ (0, ε(ν)]
it holds that

hFν:µ(η) ≤ 0.

Such a value ε(ν) is called a neutrality barrier for µ against ν.

The following proposition shows that, under a mild condition, neutral stability (and hence
evolutionary stability) is stronger than stability in the sense of Nash.

Proposition 7. Let µ ∈ P(S) be a NSS of the game F : P(S) → C(S). If hFν:µ is right-
continuous at 0 for all ν ∈ P(S), then µ is a Nash equilibrium of the game F .

Proof. Let µ ∈ P(S) be a NSS of the game F : P(S) → C(S). Suppose that hFν:µ is right-
continuous at 0 for all ν ∈ P(S). Let ν ∈ P(S). Then, there exists ε(ν) ∈ (0, 1] such
that

hFν:µ(η) = EF (ν, (1− η)µ+ ην)− EF (µ, (1− η)µ+ ην) ≤ 0

for all η ∈ (0, ε(ν)]. Thus, by the right-continuity of hFν:µ, it holds that

EF (ν, µ)− EF (µ, µ) = hFν:µ(0) = lim
η↓0

hFν:µ(η) ≤ 0.

Since ν is arbitrary, this proves the claim.

Notice that hFν:µ is right-continuous at 0 for all µ, ν ∈ P(S) whenever F is weakly con-
tinuous. The converse of Proposition 7 is not true in general. However, it can be shown
that a Nash equilibrium is an ESS (and hence a NSS) under additional conditions; see, e.g.,
Proposition 10 and Bomze and Pötscher (1989, Theorem 21).

Notice that the notions of ESS and NSS are local ones. They can be extended into global
notions as follows.

Definition 24. A population state µ ∈ P(S) is a globally neutrally stable state (GNSS) of
the game F : P(S)→ C(S) if

EF (ν, ν) ≤ EF (µ, ν) (B.2)

for all ν ∈ P(S). If, additionally, the inequality (B.2) holds strictly for all ν ∈ P(S) \ {µ},
then µ is a globally evolutionarily stable state (GESS) of the game F .
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As one should expect, every GNSS is a NSS, and every GESS is an ESS, as the following
result shows.

Proposition 8. Let µ ∈ P(S). If µ is a GNSS of the game F : P(S) → C(S), then it is a
NSS of the game F . If µ is a GESS of the game F , then it is an ESS of the game F .

Proof. Suppose that µ ∈ P(S) is a GNSS of the game F : P(S) → C(S). Let ν ∈ P(S).
Then, since µ is a GNSS of the game F , it holds that

EF ((1− η)µ+ ην, (1− η)µ+ ην)− EF (µ, (1− η)µ+ ην) ≤ 0

for all η ∈ (0, 1]. By linearity of EF in its first argument, we find that

ηEF (ν, (1− η)µ+ ην)− ηEF (µ, (1− η)µ+ ην) ≤ 0

for all η ∈ (0, 1]. Dividing by η proves that µ is a NSS of the game F . The proof that µ
being a GESS implies that µ is an ESS is identical as above with strict inqualities when
considering ν ∈ P(S) \ {µ}.

If a GESS exists, it must necessarily be the unique Nash equilibrium under a mild reg-
ularity condition, as the following proposition shows. Hence, globally evolutionarily stable
states are stable in a very strong sense.

Proposition 9. Let µ ∈ P(S) be a GESS of the game F : P(S) → C(S), and suppose that
hFν:µ is right-continuous at 0 for all ν ∈ P(S). Then, it holds that NE(F ) = {µ}.

Proof. Since µ is a GESS of the game F , it holds that µ is a NSS of the game F , and therefore
µ ∈ NE(F ) by Proposition 7, as hFν:µ is right-continuous at 0. For all ν ∈ P(S) \ {µ}, it
holds that EF (ν, ν) < E(µ, ν) since µ is a GESS of the game F , and therefore such ν are
not Nash equilibria of the game F . This proves that indeed NE(F ) = {µ}.

Equilibria of Monotone Games

The following results show that the added structure of monotone games yields more infor-
mation about the game’s equilibria.

Proposition 10. Suppose that the game F : P(S)→ C(S) is monotone. Then the following
all hold:

1. Every Nash equilibrium of the game F is a GNSS of the game F .

2. Every strict Nash equilibrium of the game F is a GESS of the game F .

3. If F is strictly monotone, then every Nash equilibrium of the game F is a GESS of the
game F .
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Proof. Let µ ∈ P(S) be a Nash equilibrium of the game F . Then
∫
S
Fµdν ≤

∫
S
Fµdµ for all

ν ∈ P(S), so by monotonicity it holds that

EF (ν, ν)− EF (µ, ν) =

∫
S

Fνdν −
∫
S

Fνdµ

=

∫
S

Fµ(ν − µ) +

∫
S

(Fν − Fµ)d(ν − µ)

≤ 0

for all ν ∈ P(S). Hence, µ is a GNSS of the game F . It is clear that if µ is a strict
Nash equilibrium or if F is strictly monotone, then the above inequality becomes strict for
ν ∈ P(S) \ {µ} and hence µ is a GESS of the game F in these cases.

Proposition 10 shows that we can ensure a sort of “global evolutionary stability” for Nash
equilibria in the case of monotone games, whereas in more general games Nash equilibria
may only be “locally” neutrally or evolutionarily stable, or they may not be neutrally or
evolutionarily stable at all.

Corollary 4. Suppose that the game F : P(S) → C(S) is monotone, let µ ∈ NE(F ), and
assume that hFν:µ is right-continuous at 0 for all ν ∈ P(S). If either µ is a strict Nash
equilibrium of F or F is strictly monotone, then µ is the unique Nash equilibrium of the
game F .

Proof. This follows directly from Proposition 10 together with Proposition 9.

Lemma 6. Consider a game F : P(S) → C(S) and let N ⊆ P(S) be an arbitrary set of
population states. Let SF

N ⊆ P(S) denote the set of all population states µ ∈ P(S) such
that, for all ν ∈ N , it holds that

EF (ν, ν) ≤ EF (µ, ν).

Then, it holds that SF
N is a convex set.

Proof. It holds that

SF
N = {µ ∈ P(S) : EF (ν, ν) ≤ EF (µ, ν) for all ν ∈ N}

=
⋂
ν∈N

{µ ∈ P(S) : EF (ν, ν) ≤ EF (µ, ν)}.

Since EF is linear in its first argument, the set {µ ∈ P(S) : EF (ν, ν) ≤ EF (µ, ν)} is convex
for all ν ∈ N , and therefore the set SF

N , being the intersection of convex sets, is also a convex
set.
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We now show in Proposition 11 that the set of Nash equilibria of a monotone game is
a convex set under a mild regularity condition. The convexity of NE(F ) rules out the case
of isolated Nash equilibria. This result is similar to Hofbauer et al. (2009, Lemma 2), but
allows for general nonlinear maps F (whereas their result is derived in the special case that
F (µ)(s) =

∫
S
f(s, s′)dµ(s′) for some function f : S × S → R).

Proposition 11. Suppose that the game F : P(S) → C(S) is monotone. If hFν:µ is right-
continuous at 0 for every GNSS µ ∈ P(S) of the game F and for all ν ∈ P(S), then NE(F )
is a convex set.

Proof. By Proposition 10, every Nash equilibrium of the game F is a GNSS of the game F ,
and by Proposition 7 every GNSS of the game F is a Nash equilibrium of the game F . Hence,
the set of Nash equilibria of the game F equals the set of globally neutrally stable states
of the game F , so NE(F ) = {µ ∈ P(S) : EF (ν, ν) ≤ EF (µ, ν) for all ν ∈ P(S)}. Applying
Lemma 6 with N = P(S) proves the claim.

B.3 Characteristics and Existence of Solutions to

Evolutionary Dynamics

Since the population states of our evolutionary game are probability measures, we are pri-
marily concerned with the case where the image of the mapping µ : [0,∞) → M(S) is a
subset of P(S) (so that the curve t 7→ µ(t) evolves on the manifold of probability measures).
In fact, for such maps, we can characterize their strong derivatives using the tangent space
TP(S).

Proposition 12. Let µ : [0,∞) → M(S) be strongly differentiable. If µ([0,∞)) ⊆ P(S),
then µ̇(t) ∈ TP(S) for all t ∈ [0,∞).

Proof. Suppose that µ([0,∞)) ⊆ P(S). Let t ∈ (0,∞). Since µ(t+ε)−µ(t)
ε

converges strongly
to µ̇(t) as ε→ 0, it also converges weakly to µ̇(t) as ε→ 0, so

lim
ε→0

∫
S

fd

(
µ(t+ ε)− µ(t)

ε

)
=

∫
S

fdµ̇(t)

for all f ∈ C(S). In particular, taking f to be the function that is identically 1 on S yields
that

lim
ε→0

1

ε
(µ(t+ ε)(S)− µ(t)(S)) = µ̇(t)(S).

Since µ(t) and µ(t+ε) are probability measures for all ε ∈ [−t,∞), it holds that µ(t+ε)(S) =
µ(t)(S) = 1 for all such ε, and hence 1

ε
(µ(t+ ε)(S)− µ(t)(S)) = 0 for all ε ∈ [−t,∞) \ {0}.

Therefore, it must be that
µ̇(t)(S) = 0,

so indeed µ̇(t) ∈ TP(S). The case for t = 0 follows similarly.
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Remark 1. The proof of Proposition 12 shows that, upon fixing an arbitrary time t, the
condition µ̇(t) ∈ TP(S) still holds under a weaker hypothesis. In particular, if µ is strongly
differentiable and t ∈ (0,∞) is such that there exists ε ∈ (0, t) such that µ((t − ε, t + ε)) ⊆
P(S), then µ̇(t) ∈ TP(S).

We now briefly discuss characteristics and existence of solutions to the EDM (4.1). Propo-
sition 12 shows that if a solution µ : [0,∞)→ P(S) to the EDM (4.1) exists, then its strong
derivative must satisfy µ̇(t) = v(µ(t), F (µ(t))) ∈ TP(S) for all t ∈ [0,∞), since the map-
ping’s image satisfies µ([0,∞)) ⊆ P(S). The intuition in this case is that the curve µ,
which remains in P(S) for all time, must necessarily have instantaneous velocity vectors
that are “tangent” to P(S). This is analogous to the case where S = {1, 2} so that P(S)
corresponds to the probability simplex {µ ∈ R2

+ : µ1 + µ2 = 1} in R2—in this setting it is
geometrically obvious that a curve µ : [0,∞) → P(S) must always have velocity vectors in
{ν ∈ R2 : ν1 + ν2 = 0} that keep µ(t) on the probability simplex.

Natural questions to ask are when a solution to the EDM (4.1) exists, and when such
a solution is unique. These questions have simple answers in the case that the EDM is
defined on the entire Banach space M(S) (Zeidler, 1986, Corollary 3.9), but our restriction
of solutions to the subset P(S) makes things more difficult. In the case that S is finite,
Sandholm (2010, Theorem 4.4.1) shows that a unique solution exists when VF : P(S) →
M(S) defined by VF (µ) = v(µ, F (µ)) is Lipschitz continuous and satisfies that VF (µ) is in
the tangent cone of P(S) at µ for all µ ∈ P(S). However, this proof cannot be directly
generalized to the case where S is infinite, as it relies on the existence and uniqueness of
closest point projections onto P(S) (which fails to hold due to non-uniqueness of solutions to
infµ∈P(S) ‖µ− ν‖TV for general ν ∈M(S), e.g., arg minµ∈P(S) ‖µ‖TV = P(S)). Despite these
difficulties, some related existence and uniqueness conditions have been proven for differential
equations defined on closed subsets of Banach spaces, albeit, they are reliant on technically
cumbersome conditions (Martin, 1973). Since our work is focused on the development of
dynamic stability conditions for general EDMs that do in fact possess solutions, we make
use of the existence and uniqueness conditions granted by Assumption 1 throughout this
thesis.

B.4 Dynamical Systems in Banach Spaces

Definition 25. Consider a Banach space X and a topology τ on X. Let Y ⊆ X, let
v : Y → X, and let P ⊆ Y be τ -compact. A map V : Y → R+ is a global Lyapunov function
for P under v if it extends to a τ -continuous Fréchet differentiable map V : U → R defined
on a norm-open set U ⊆ X containing Y that satisfies the following conditions:

1. V (x) = 0 for all x ∈ P .

2. V (x) > 0 for all x ∈ Y \ P .

3. DV (x)v(x) ≤ 0 for all x ∈ Y .
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If, additionally, the map x 7→ DV (x)v(x) is τ -continuous and DV (x)v(x) < 0 for all x ∈
Y \ P , then V is a strict global Lyapunov function for P under v.

Notice that the topology τ in Definition 25 need not coincide with the topology induced
by the norm on X. Indeed, our dissipativity results for static feedback ρ(t) = F (µ(t)) rely
on taking X =M(S) with τ being the weak topology and Y = P(S).

Lemma 7. Consider a Banach space X and a topology τ on X. Let Y ⊆ X, let v : Y → X,
and let P ⊆ Y be τ -compact. If τ is weaker than the norm topology, Y is τ -compact, and
there exists a global Lyapunov function for P under v, then P is τ -Lyapunov stable under v.

Proof. Suppose that there exists a global Lyapunov function V : Y → R+ for P under v,
and let V : U → R be an appropriate extension as in Definition 25. Let Q ⊆ Y be relatively
τ -open and contain P . Then Q = Y ∩O for some τ -open set O ⊆ X. Define ∂YQ := Y ∩∂O,
where ∂O is the boundary of O in X with respect to τ . It holds that ∂YQ is τ -compact since
Y is τ -compact and ∂O is τ -closed. Therefore,

m := min
x∈∂Y Q

V (x)

exists, since V is τ -continuous. Notice that, since ∂O∩O = ∅, it must be that ∂YQ∩Q = ∅,
and therefore ∂YQ ∩ P = ∅. Hence, since V (x) > 0 for all x ∈ Y \ P , it must be that
V (x) > 0 for all x ∈ ∂YQ and thus m > 0.

Now, let
R = {x ∈ Q : V (x) ∈ (−∞,m)}.

Since V is τ -continuous and (−∞,m) is open, the preimage V
−1

((−∞,m)) is τ -open, and

hence R = Q∩V −1((−∞,m)) = Y ∩O∩V −1((0,m)) ⊆ Y is relatively τ -open. Furthermore,
since P ⊆ Q and P ⊆ V −1((−∞,m)) as V (x) = 0 for all x ∈ P , it holds that P ⊆ R ⊆ Y .
Let x : [0,∞)→ Y be a solution to the differential equation ẋ(t) = v(x(t)) with x(0) = x0 ∈
Y . Suppose that x0 ∈ R. Then, since the Fréchet derivative of real-valued functions on R
recovers the usual derivative, we have that

dV ◦ x
dt

(t)ε = D(V ◦ x)(t)ε = (DV (x(t)) ◦Dx(t))ε = DV (x(t))(εẋ(t)) = εDV (x(t))v(x(t))

for all t ∈ [0,∞) and all ε ∈ R, where we have used the chain rule for Fréchet differentiation,
linearity of Fréchet derivatives. Hence,

dV ◦ x
dt

(t) = DV (x(t))v(x(t)) ≤ 0

for all t ∈ [0,∞). Since V is τ -continuous and x is τ -continuous since it is necessarily norm-
continuous and τ is weaker than the norm topology, we may apply the mean value theorem
to find that V (x(t)) ≤ V (x(0)) < m for all t ∈ [0,∞). Since R ⊆ Q, we conclude that
x(t) ∈ Q for all t ∈ [0,∞), so indeed P is τ -Lyapunov stable under v.
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Lemma 8. Consider a Banach space X and a topology τ on X. Let Y ⊆ X, let v : Y → X,
and let P ⊆ Y be τ -compact. Suppose that, for every x0 ∈ Y , there exists a unique solution
x : [0,∞)→ Y to the differential equation ẋ(t) = v(x(t)) with x(0) = x0. If τ is weaker than
the norm topology, Y is τ -compact, and there exists a strict global Lyapunov function for P
under v, then P is globally τ -attracting under v.

Proof. In this proof, we denote the complement of a subset M ⊆ X by M c.
Suppose that there exists a strict global Lyapunov function V : Y → R+ for P under v,

and let V : U → R be an appropriate extension as in Definition 25. Let x0 ∈ Y be arbitrary.
Let Q ⊆ Y be relatively τ -open and contain P , and let x : [0,∞)→ Y be the unique solution
to the differential equation ẋ(t) = v(x(t)) with x(0) = x0. It suffices to show that there exists
T ∈ [0,∞) such that

x(t) ∈ Q for all t ∈ [T,∞). (B.3)

Since V is a global Lyapunov function, Lemma 7 gives that P is τ -Lyapunov stable under v,
which implies that there exists a relatively τ -open set R ⊆ Y containing P such that x(t) ∈ Q
for all t ∈ [0,∞) whenever x(0) ∈ R. By time-invariance of the ordinary differential equation
ẋ(t) = v(x(t)) with x(0) = x0 and uniqueness of its solutions, if there exists T ∈ [0,∞) such
that x(T ) ∈ R, this implies that x(t) ∈ Q for all t ∈ [T,∞). Thus, to prove (B.3), it suffices
to prove that there exists T ∈ [0,∞) such that x(T ) ∈ R.

For the sake of contradiction, suppose that x(t) /∈ R for all t ∈ [0,∞). Since R is relatively
τ -open, R = Y ∩ O for some τ -open set O ⊆ X, and therefore Y \ R = Y ∩ (Y ∩ O)c =
Y ∩ (Y c ∪Oc) = Y ∩Oc is τ -compact since Oc is τ -closed and Y is τ -compact. Hence,

m := max
y∈Y \R

DV (y)v(y)

exists, since y 7→ DV (y)v(y) is τ -continuous. Since Y \R ⊆ Y \ P , it must hold that m < 0
as V is a strict global Lyapunov function. Furthermore, since x(t) ∈ Y \R for all t ∈ [0,∞),
it holds that

dV ◦ x
dt

(t) = DV (x(t))v(x(t)) ≤ m

for all t ∈ [0,∞). Since V is τ -continuous and x is τ -continuous since it is necessarily norm-
continuous and τ is weaker than the norm topology, we may apply the mean value theorem
to conclude that, for all τ ∈ (0,∞), there exists t ∈ (0, τ) such that

V (x(τ))− V (x(0))

τ
=
dV ◦ x
dt

(t) ≤ m,

and hence
V (x(τ)) ≤ mτ + V (x(0))

for all τ ∈ (0,∞). Since m < 0, mτ + V (x(0)) → −∞ as τ → ∞, which implies that there
exists τ ∈ (0,∞) such that V (x(τ)) < 0. Since, for such τ , it holds that x(τ) ∈ Y \R ⊆ Y \P ,
this contradicts the property of the global Lyapunov function V that V (y) > 0 for all
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y ∈ Y \ P . Therefore, the supposition that x(t) /∈ R for all t ∈ [0,∞) is false, and we
conclude that indeed there exists T ∈ [0,∞) such that x(T ) ∈ R, which completes the
proof.
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