Part 1: Multiple Choice

1. Calculate the solubility product constant for lead(II) iodide if 0.0024 mole of I ion is present in 2.0 L of a saturated lead(II) iodide solution
a. 1.4×10^{-5}
b. 8.6×10^{-10}
c. 5.2×10^{-8}
d. 3.5×10^{-6}
e. 4.6×10^{-9}
2. Calculate the number of moles of Ag^{+}ion present in 2.0 L of a saturated solution of silver chromate. For silver chromate, $\mathrm{K}_{\mathrm{sp}}=1.1 \times 10^{-12}$.
a. 2.6×10^{-4}
b. 1.3×10^{-4}
c. 2.1×10^{-4}
d. 1.1×10^{-4}
e. 4.1×10^{-4}
3. Calculate the molar solubility of silver carbonate in 1.0 M sodium carbonate solution. For silver carbonate, $\mathrm{K}_{\mathrm{sp}}=8.1 \times 10^{-12}$.
a. 8.1×10^{-12}
b. 2.8×10^{-6}
c. 1.4×10^{-6}
d. 1.4×10^{-8}
e. 2.0×10^{-4}
4. Calculate the pH of a solution necessary to just begin the precipitation of magnesium hydroxide when the concentration of magnesium ion $=0.001 \mathrm{M}$. For magnesium hydroxide $K_{\text {sp }}=1.2 \times 10^{-11}$.
a. 11
b. 10
c. 9
d. 8
e. 4
5. The line notation, $\mathrm{Mg}(\mathrm{s})\left|\mathrm{Mg}^{2+}(\mathrm{aq})\right|\left|\mathrm{Fe}^{2+}(\mathrm{aq})\right| \mathrm{Fe}(\mathrm{s})$, indicates that:
a. iron metal is the reducing agent
b. magnesium metal is the cathode
c. Fe^{2+} ions are oxidized
d. magnesium metal is the reducing agent
e. Mg^{2+} ion is the reducing agent
6. Consider the following two electrode reactions and their standard electrode potentials:

$$
\begin{aligned}
& \mathrm{Al}^{+3}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{~s}) \mathrm{E}^{\circ}=-1.66 \mathrm{~V} \\
& \mathrm{Cd}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{~s}) \mathrm{E}^{\circ}=-0.40 \mathrm{~V}
\end{aligned}
$$

Write the cell reaction for a voltaic cell based on these two electrodes, and calculate the standard cell potential
a. $2 \mathrm{Al}^{+3}(\mathrm{aq})+3 \mathrm{Cd}^{+2}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cd}(\mathrm{s}) \mathrm{E}^{\circ}$ cell $=2.10 \mathrm{~V}$
b. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cd}^{+2}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}^{+3}(\mathrm{aq})+3 \mathrm{Cd}(\mathrm{s}) \mathrm{E}^{\circ}$ cell $=1.26 \mathrm{~V}$
c. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cd}^{+2}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}^{+3}(\mathrm{aq})+3 \mathrm{Cd}(\mathrm{s}) \mathrm{E}^{\circ}$ cell $=3.78 \mathrm{~V}$
d. $2 \mathrm{Al}^{+3}(\mathrm{aq})+3 \mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cd}^{+2}(\mathrm{aq}) \mathrm{E}^{\circ}{ }_{\text {cell }}=1.26 \mathrm{~V}$
e. $2 \mathrm{Al}^{+3}(\mathrm{aq})+3 \mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cd}^{+2}(\mathrm{aq}) \mathrm{E}^{\circ}{ }_{\text {cell }}=2.10 \mathrm{~V}$
7. A voltaic cell consists of $\mathrm{Mn} / \mathrm{Mn}^{2+}$ and $\mathrm{Cd} / \mathrm{Cd}^{2+}$ half-cells with concentrations $\left[\mathrm{Mn}^{2+}\right]=0.75 \mathrm{M}$ and $\left[\mathrm{Cd}^{2+}\right]=0.15 \mathrm{M}$. Calculate the cell potential at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{Cd}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{~s}) \mathrm{E}^{\circ}=-0.40 \mathrm{~V} \\
& \mathrm{Mn}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}(\mathrm{~s}) \mathrm{E}^{\circ}=-1.18 \mathrm{~V}
\end{aligned}
$$

a. 1.60 V
b. 1.56 V
c. 1.54 V
d. 0.80 V
e. 0.76 V
8. The standard reference electrode that is used to measure all other standard electrode potentials is called the "standard \qquad electrode."
a. sulfur
b. oxygen
c. hydrogen
d. iron
e. platinum
9. A constant current was passed through a solution of KAuCl_{4} between gold electrodes. Over a period of 20.00 min, the cathode increased in mass by 2.664 g. What was the current in amperes?
($\mathrm{F}=96500 \mathrm{C} / \mathrm{mol}$) Cathode half-reaction: $\mathrm{AuCl}_{4}^{-}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})+4 \mathrm{Cl}^{-}(\mathrm{aq})$
a. 1.08 A
b. 3.26 A
c. 2.17 A
d. 6.52 A
e. 3.48 A
10. Calculate the equilibrium constant K_{c} for this reaction at $25^{\circ} \mathrm{C}$:
$2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{~Pb}^{2+}(\mathrm{aq}) \rightarrow 3 \mathrm{~Pb}(\mathrm{~s})+2 \mathrm{Cr}^{3+}(\mathrm{aq}) \mathrm{E}^{\circ}$ cell $=0.61 \mathrm{~V}$
a. 6.7×10^{61}
b. 8.1×10^{30}
c. 9.2×10^{45}
d. 3.2×10^{51}
e. 4.6×10^{22}
11. Consider the following half-reactions and select the strongest oxidizing agent present:
$\mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sr}(\mathrm{s}) \mathrm{E}^{\circ}=-2.89 \mathrm{~V}$
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s}) \mathrm{E}^{\circ}=-0.913 \mathrm{~V}$
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s}) \mathrm{E}^{\circ}=-0.28 \mathrm{~V}$
a. $\mathrm{Cr}^{2+}(\mathrm{aq})$
b. $\mathrm{Sr}^{2+}(\mathrm{aq})$
c. $\mathrm{Co}^{2+}(\mathrm{aq})$
d. $\mathrm{Sr}(\mathrm{s})$
e. $\mathrm{Co}(\mathrm{s})$
12. The standard free energy change for the following reaction is -210 kJ . What is the cell potential?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

a. +0.640 V
b. +1.09 V
c. +0.420 V
d. +0.547 V
e. +0.752 V
13. In the electrolysis of aqueous sodium sulfate, which one of the following species is oxidized?
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \quad \mathrm{E}^{\circ}=2.10 \mathrm{~V}$
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) \quad \mathrm{E}^{\circ}=-2.71 \mathrm{~V}$
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{E}^{\circ}=-0.38 \mathrm{~V}$
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{E}^{\circ}=1.23 \mathrm{~V}$
a. sodium ion
b. oxygen
c. sulfate ion
d. water
e. hydronium ion
14. Calculate ΔS° for the following reaction:

Standard molar entropies, S° (J/mol $\cdot \mathrm{K}$): $\mathrm{Cr}(\mathrm{s}), 23.8 ; \mathrm{O}_{2}(\mathrm{~g}), 205.1 ; \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}), 81.2$

$$
4 \mathrm{Cr}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

a. $548.1 \mathrm{~J} / \mathrm{K}$
b. $147.7 \mathrm{~J} / \mathrm{K}$
c. $-147.7 \mathrm{~J} / \mathrm{K}$
d. $-548.1 \mathrm{~J} / \mathrm{K}$
e. $-66.5 \mathrm{~J} / \mathrm{K}$
15. When crystalline solid barium hydroxide octahydrate and crystalline solid ammonium nitrate are mixed in a beaker at room temperature, a spontaneous reaction occurs. The temperature of the beaker contents rapidly falls to below $0^{\circ} \mathrm{C}$. Use this information to decide whether the reaction is exothermic or endothermic and what the signs of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are.
a. endothermic; $\Delta \mathrm{H}>0 ; \Delta \mathrm{S}>0$
b. exothermic; $\Delta \mathrm{H}<0 ; \Delta \mathrm{S}>0$
c. endothermic; $\Delta \mathrm{H}<0 ; \Delta \mathrm{S}<0$
d. endothermic; $\Delta \mathrm{H}<0 ; \Delta \mathrm{S}>0$
e. exothermic; $\Delta \mathrm{H}>0 ; \Delta \mathrm{S}<0$
16. A certain reaction has $\Delta H^{\circ}=-14.2 \mathrm{~kJ}$ and $\Delta \mathrm{S}^{\circ}=+87.9 \mathrm{~J} / \mathrm{K}$. What is the value of $\Delta \mathrm{G}^{\circ}$ for this reaction? (Temperature is $25^{\circ} \mathrm{C}$)
a. +40.4 kJ
b. -16.4 kJ
c. -26200 kJ
d. -40.4 kJ
e. -7820 kJ
17. A reaction has an equilibrium constant $\mathrm{K}_{\mathrm{c}}=7.0$ at $35^{\circ} \mathrm{C}$. Calculate the value of ΔG° for the reaction
a. -4.98 kJ
b. -2.46 kJ
c. -5.66 kJ
d. -2.16 kJ
e. none of the above
18. The compound 1-pentanol has an enthalpy of vaporization of $55.5 \mathrm{~kJ} / \mathrm{mol}$ and an entropy of vaporization of $148 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$. Calculate its approximate boiling point.
a. $45^{\circ} \mathrm{C}$
b. $102^{\circ} \mathrm{C}$
C. $93^{\circ} \mathrm{C}$
d. $210^{\circ} \mathrm{C}$
e. $375^{\circ} \mathrm{C}$
19. Which of the following statements about entropy and enthalpy of a system is correct?
a. The absolute entropy of pure oxygen at $25^{\circ} \mathrm{C}$ and 1 atm is zero.
b. When ice melts, $\Delta \mathrm{S}$ is positive and $\Delta \mathrm{H}$ is negative.
c. When a candle burns, $\Delta \mathrm{S}$ is positive and $\Delta \mathrm{H}$ is negative.
d. The entropy of a system must increase for the reaction to be spontaneous.
e. None of the above statements are correct.
20. Sodium carbonate can be made by heating sodium bicarbonate carbonate:

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

For this reaction, $\Delta \mathrm{H}^{\circ}=128.9 \mathrm{~kJ}$ and $\Delta \mathrm{S}^{\circ}=321 \mathrm{~J} / \mathrm{K}$. At approximately what temperature will $\mathrm{K}=1$?
a. $401.6^{\circ} \mathrm{C}$
b. 401.6 K
c. $33.1^{\circ} \mathrm{C}$
d. 33.1 K
e. None of the above

Part 2: Free Response. Please show all work.

1. Will a precipitate form when 125 ml of 0.0250 M aluminum nitrate and 25.0 ml of 0.000100 M calcium hydroxide are mixed together? Why? K_{sp} of aluminum hydroxide $=3.7 \times 10^{-15}$
2. In the electrolysis of a molten mixture of potassium iodide and magnesium fluoride, identify which product forms at the positive electrode, and what product forms at the negative electrode.
$\mathrm{K}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{K}(\mathrm{s}) \quad \mathrm{E}^{\circ}=-2.93 \mathrm{~V}$
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-} \quad \mathrm{E}^{\circ}=-0.53 \mathrm{~V}$
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s}) \quad \mathrm{E}^{\circ}=-2.37 \mathrm{~V}$
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-} \quad \mathrm{E}^{\circ}=2.87 \mathrm{~V}$
3. In a $\mathrm{Cd}^{2+} / \mathrm{Cd}(\mathrm{s})$ and $\mathrm{Au}^{3+} / \mathrm{Au}(\mathrm{s})$ voltaic cell the electronic voltmeter measures to be 1.92 -Volts. What concentration of cadmium (II) ion must be present in the cell if the gold (III) ion concentration is known to be 0.10 M .

$$
\begin{array}{ll}
\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{~s}) & \mathrm{E}^{\circ}=1.50 \\
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{~s}) & \mathrm{E}^{\circ}=-0.40
\end{array}
$$

